1
|
Gong X, Zhang Y, Chen J. Likely Overstabilization of Charge-Charge Interactions in CHARMM36m(w): A Case for a99SB-disp Water. J Phys Chem B 2024; 128:11554-11564. [PMID: 39536029 DOI: 10.1021/acs.jpcb.4c04777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Recent years have witnessed drastic improvements in general-purpose explicit solvent protein force fields, partially driven by the need to study intrinsically disordered proteins (IDPs), and yet the state-of-the-art force fields such as CHARMM36m (c36m) and a99SB-disp still provide different performances in simulating disordered protein states, where c36m has a bias toward overcompaction for large IDPs. Here, we examine the performance of c36m and a99SB-disp in describing the stabilities of a set of 46 amino acid backbone and side chain pairs in various configurations. The free energy results show that c36m systematically predicts stronger interactions compared to a99SB-disp by an average of 0.2 kcal/mol for nonpolar pairs, 0.6 kcal/mol for polar pairs, and 0.8 kcal/mol for salt bridges. The most severe overstabilization in c36m is observed for charged pairs involving the Arg and Glu side chains by up to 2.9 kcal/mol. Importantly, the systematic overstabilization of c36m is only marginally alleviated by c36mw, an ad hoc patch to c36m that increases the dispersion interactions between TIP3P hydrogens and protein atoms. Guided by free energy decomposition, we evaluated if revising the charges alone could alleviate the severe overstabilization of salt bridges of c36m(w) vs a99SB-disp. The results suggested that the direct modification of protein-water interactions is also necessary. Toward this end, we proposed a tentative modification to c36m, referred to as c36mrb-disp, which combines modified Arg side chain charges, retuned backbone hydrogen bonding strength, and the a99SB-disp water model. The modified force field successfully reproduces the secondary structures of several intrinsically disordered peptides and proteins including (AAQAA)3, GB1p, and p53 transactivation domain, while maintaining the stability of a set of folded proteins. This work provides a set of useful systems for benchmarking and optimizing protein force fields and highlights the importance of balancing protein-protein and protein-water electrostatic interactions for accurately describing both folded and disordered proteins.
Collapse
Affiliation(s)
- Xiping Gong
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yumeng Zhang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Waibl F, Casagrande F, Dey F, Riniker S. Validating Small-Molecule Force Fields for Macrocyclic Compounds Using NMR Data in Different Solvents. J Chem Inf Model 2024; 64:7938-7948. [PMID: 39405498 PMCID: PMC11523072 DOI: 10.1021/acs.jcim.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Macrocycles are a promising class of compounds as therapeutics for difficult drug targets due to a favorable combination of properties: They often exhibit improved binding affinity compared to their linear counterparts due to their reduced conformational flexibility, while still being able to adapt to environments of different polarity. To assist in the rational design of macrocyclic drugs, there is need for computational methods that can accurately predict conformational ensembles of macrocycles in different environments. Molecular dynamics (MD) simulations remain one of the most accurate methods to predict ensembles quantitatively, although the accuracy is governed by the underlying force field. In this work, we benchmark four different force fields for their application to macrocycles by performing replica exchange with solute tempering (REST2) simulations of 11 macrocyclic compounds and comparing the obtained conformational ensembles to nuclear Overhauser effect (NOE) upper distance bounds from NMR experiments. Especially, the modern force fields OpenFF 2.0 and XFF yield good results, outperforming force fields like GAFF2 and OPLS/AA. We conclude that REST2 in combination with modern force fields can often produce accurate ensembles of macrocyclic compounds. However, we also highlight examples for which all examined force fields fail to produce ensembles that fulfill the experimental constraints.
Collapse
Affiliation(s)
- Franz Waibl
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Fabio Casagrande
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Fabian Dey
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Sereina Riniker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Burns D, Venditti V, Potoyan DA. Illuminating Protein Allostery by Chemically Accurate Contact Response Analysis (ChACRA). J Chem Theory Comput 2024; 20:8711-8723. [PMID: 39038177 DOI: 10.1021/acs.jctc.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Decoding allostery at the atomic level is essential for understanding the relationship between a protein's sequence, structure, and dynamics. Recently, we have shown that decomposing temperature responses of inter-residue contacts can reveal allosteric couplings and provide useful insight into the functional dynamics of proteins. The details of this Chemically Accurate Contact Response Analysis (ChACRA) are presented here along with its application to two well-known allosteric proteins. The first protein, IGPS, is a model of ensemble allostery that lacks clear structural differences between the active and inactive states. We show that the application of ChACRA reveals the experimentally identified allosteric coupling between effector and active sites of IGPS. The second protein, ATCase, is a classic example of allostery with distinct active and inactive structural states. Using ChACRA, we directly identify the most significant residue level interactions underlying the enzyme's cooperative behavior. Both test cases demonstrate the utility of ChACRA's unsupervised machine learning approach for dissecting allostery at the residue level.
Collapse
Affiliation(s)
- Daniel Burns
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
4
|
Yao Y, Liu R, Li W, Huang W, Lai Y, Luo HB, Li Z. Convergence-Adaptive Roundtrip Method Enables Rapid and Accurate FEP Calculations. J Chem Theory Comput 2024. [PMID: 39236257 DOI: 10.1021/acs.jctc.4c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The free energy perturbation (FEP) method is a powerful technique for accurate binding free energy calculations, which is crucial for identifying potent ligands with a high affinity in drug discovery. However, the widespread application of FEP is limited by the high computational cost required to achieve equilibrium sampling and the challenges in obtaining converged predictions. In this study, we present the convergence-adaptive roundtrip (CAR) method, which is an enhanced adaptive sampling approach, to address the key challenges in FEP calculations, including the precision-efficiency tradeoff, sampling efficiency, and convergence assessment. By employing on-the-fly convergence analysis to automatically adjust simulation times, enabling efficient traversal of the important phase space through rapid propagation of conformations between different states and eliminating the need for multiple parallel simulations, the CAR method increases convergence and minimizes computational overhead while maintaining calculation accuracy. The performance of the CAR method was evaluated through relative binding free energy (RBFE) calculations on benchmarks comprising four diverse protein-ligand systems. The results demonstrated a significant speedup of over 8-fold compared to conventional FEP methods while maintaining high accuracy. The overall R2 values of 0.65 and 0.56 were obtained using the combined-structure FEP approach and the single-step FEP approach, respectively, in conjunction with the CAR method. In-depth case studies further highlighted the superior performance of the CAR method in terms of convergence acceleration, improved predicted correlations, and reduced computational costs. The advancement of the CAR method makes it a highly effective approach, enhancing the applicability of FEP in drug discovery.
Collapse
Affiliation(s)
- Yufen Yao
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Runduo Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wenchao Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wanyi Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yijun Lai
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Zhe Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Brooks CL, MacKerell AD, Post CB, Nilsson L. Biomolecular dynamics in the 21st century. Biochim Biophys Acta Gen Subj 2024; 1868:130534. [PMID: 38065235 PMCID: PMC10842176 DOI: 10.1016/j.bbagen.2023.130534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The relevance of motions in biological macromolecules has been clear since the early structural analyses of proteins by X-ray crystallography. Computer simulations have been applied to provide a deeper understanding of the dynamics of biological macromolecules since 1976, and are now a standard tool in many labs working on the structure and function of biomolecules. In this mini-review we highlight some areas of current interest and active development for simulations, in particular all-atom molecular dynamics simulations.
Collapse
Affiliation(s)
- Charles L Brooks
- University of Michigan, Department of Chemistry, Ann Arbor, MI 48109, USA.
| | | | - Carol B Post
- Purdue University, Department of Medicinal Chemistry and Molecular Pharmacology, West Lafayette, IN 47907-2091, USA.
| | - Lennart Nilsson
- Karolinska Institutet, Department of Biosciences and Nutrition, SE-14183 Huddinge, Sweden.
| |
Collapse
|
6
|
Ghosh C, Nagpal S, Muñoz V. Molecular simulations integrated with experiments for probing the interaction dynamics and binding mechanisms of intrinsically disordered proteins. Curr Opin Struct Biol 2024; 84:102756. [PMID: 38118365 PMCID: PMC11242915 DOI: 10.1016/j.sbi.2023.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Intrinsically disordered proteins (IDPs) exploit their plasticity to deploy a rich panoply of soft interactions and binding phenomena. Advances in tailoring molecular simulations for IDPs combined with experimental cross-validation offer an atomistic view of the mechanisms that control IDP binding, function, and dysfunction. The emerging theme is that unbound IDPs autonomously form transient local structures and self-interactions that determine their binding behavior. Recent results have shed light on whether and how IDPs fold, stay disordered or drive condensation upon binding; how they achieve binding specificity and select among competing partners. The disorder-binding paradigm is now being proactively used by researchers to target IDPs for rational drug design and engineer molecular responsive elements for biosensing applications.
Collapse
Affiliation(s)
- Catherine Ghosh
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 CA, USA; Department of Bioengineering, University of California at Merced, Merced, 95343 CA, USA. https://twitter.com/cat_ghosh
| | - Suhani Nagpal
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 CA, USA; Department of Bioengineering, University of California at Merced, Merced, 95343 CA, USA; OpenEye, Cadence Molecular Sciences, Boston, 02114 MA, USA
| | - Victor Muñoz
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 CA, USA; Department of Bioengineering, University of California at Merced, Merced, 95343 CA, USA.
| |
Collapse
|
7
|
Singh Y, Hocky GM. Improved Prediction of Molecular Response to Pulling by Combining Force Tempering with Replica Exchange Methods. J Phys Chem B 2024; 128:706-715. [PMID: 38230998 PMCID: PMC10823473 DOI: 10.1021/acs.jpcb.3c07081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Small mechanical forces play important functional roles in many crucial cellular processes, including in the dynamic behavior of the cytoskeleton and in the regulation of osmotic pressure through membrane-bound proteins. Molecular simulations offer the promise of being able to design the behavior of proteins that sense and respond to these forces. However, it is difficult to predict and identify the effect of the relevant piconewton (pN) scale forces due to their small magnitude. Previously, we introduced the Infinite Switch Simulated Tempering in Force (FISST) method, which allows one to estimate the effect of a range of applied forces from a single molecular dynamics simulation, and also demonstrated that FISST additionally accelerates sampling of a molecule's conformational landscape. For some problems, we find that this acceleration is not sufficient to capture all relevant conformational fluctuations, and hence, here we demonstrate that FISST can be combined with either temperature replica exchange or solute tempering approaches to produce a hybrid method that enables more robust prediction of the effect of small forces on molecular systems.
Collapse
Affiliation(s)
- Yuvraj Singh
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Glen M. Hocky
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Simons
Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
8
|
Zhang Y, Li S, Gong X, Chen J. Toward Accurate Simulation of Coupling between Protein Secondary Structure and Phase Separation. J Am Chem Soc 2024; 146:342-357. [PMID: 38112495 PMCID: PMC10842759 DOI: 10.1021/jacs.3c09195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Intrinsically disordered proteins (IDPs) frequently mediate phase separation that underlies the formation of a biomolecular condensate. Together with theory and experiment, efficient coarse-grained (CG) simulations have been instrumental in understanding the sequence-specific phase separation of IDPs. However, the widely used Cα-only models are limited in capturing the peptide nature of IDPs, particularly backbone-mediated interactions and effects of secondary structures, in phase separation. Here, we describe a hybrid resolution (HyRes) protein model toward a more accurate description of the backbone and transient secondary structures in phase separation. With an atomistic backbone and coarse-grained side chains, HyRes can semiquantitatively capture the residue helical propensity and overall chain dimension of monomeric IDPs. Using GY-23 as a model system, we show that HyRes is efficient enough for the direct simulation of spontaneous phase separation and, at the same time, appears accurate enough to resolve the effects of single His to Lys mutations. HyRes simulations also successfully predict increased β-structure formation in the condensate, consistent with available experimental CD data. We further utilize HyRes to study the phase separation of TPD-43, where several disease-related mutants in the conserved region (CR) have been shown to affect residual helicities and modulate the phase separation propensity as measured by the saturation concentration. The simulations successfully recapitulate the effect of these mutants on the helicity and phase separation propensity of TDP-43 CR. Analyses reveal that the balance between backbone and side chain-mediated interactions, but not helicity itself, actually determines phase separation propensity. These results support that HyRes represents an effective protein model for molecular simulation of IDP phase separation and will help to elucidate the coupling between transient secondary structures and phase separation.
Collapse
Affiliation(s)
| | | | - Xiping Gong
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Bowers SR, Lockhart C, Klimov DK. Replica Exchange with Hybrid Tempering Efficiently Samples PGLa Peptide Binding to Anionic Bilayer. J Chem Theory Comput 2023; 19:6532-6550. [PMID: 37676235 DOI: 10.1021/acs.jctc.3c00787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
We evaluated the utility of a variant of the replica exchange method, a replica exchange with hybrid tempering (REHT), for all-atom explicit water biomolecular simulations and compared it with a more traditional replica exchange with the solute tempering (REST) algorithm. As a test system, we selected a 21-mer antimicrobial peptide PGLa binding to an anionic DMPC/DMPG lipid bilayer. Application of REHT revealed the following binding mechanism. Due to the strong hydrophobic moment, the bound PGLa adopts an extensive helical structure. The binding free energy landscape identifies two major bound states, a metastable surface bound state and a dominant inserted state. In both states, positively charged PGLa amino acids maintain electrostatic interactions with anionic phosphate groups by rotating the PGLa helix around its axis. PGLa binding causes an influx of anionic DMPG and an efflux of zwitterionic DMPC lipids from the peptide proximity. PGLa thins the bilayer and disorders the adjacent fatty acid tails. Deep invasion of water wires into the bilayer hydrophobic core is detected in the inserted peptide state. The analysis of charge density distributions indicated that peptide positive charges are nearly compensated for by lipid negative charges and water dipole ordering, whereas ions play no role in peptide binding. Thus, electrostatic interactions are the key energetic factor in binding cationic PGLa to an anionic DMPC/DMPG bilayer. Comparison of REHT and REST shows that due to exclusion of lipids from tempered partition, REST lags behind REHT in peptide equilibration, particularly, with respect to peptide insertion and helix acquisition. As a result, REST struggles to provide accurate details of PGLa binding, although it still qualitatively maps the bimodal binding mechanism. Importantly, REHT not only equilibrates PGLa in the bilayer faster than REST, but also with less computational effort. We conclude that REHT is a preferable choice for studying interfacial biomolecular systems.
Collapse
Affiliation(s)
- Steven R Bowers
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Christopher Lockhart
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Dmitri K Klimov
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| |
Collapse
|
10
|
Zhang Y, Li S, Gong X, Chen J. Accurate Simulation of Coupling between Protein Secondary Structure and Liquid-Liquid Phase Separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554378. [PMID: 37662293 PMCID: PMC10473686 DOI: 10.1101/2023.08.22.554378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Intrinsically disordered proteins (IDPs) frequently mediate liquid-liquid phase separation (LLPS) that underlies the formation of membraneless organelles. Together with theory and experiment, efficient coarse-grained (CG) simulations have been instrumental in understanding sequence-specific phase separation of IDPs. However, the widely-used Cα-only models are severely limited in capturing the peptide nature of IDPs, including backbone-mediated interactions and effects of secondary structures, in LLPS. Here, we describe a hybrid resolution (HyRes) protein model for accurate description of the backbone and transient secondary structures in LLPS. With an atomistic backbone and coarse-grained side chains, HyRes accurately predicts the residue helical propensity and chain dimension of monomeric IDPs. Using GY-23 as a model system, we show that HyRes is efficient enough for direct simulation of spontaneous phase separation, and at the same time accurate enough to resolve the effects of single mutations. HyRes simulations also successfully predict increased beta-sheet formation in the condensate, consistent with available experimental data. We further utilize HyRes to study the phase separation of TPD-43, where several disease-related mutants in the conserved region (CR) have been shown to affect residual helicities and modulate LLPS propensity. The simulations successfully recapitulate the effect of these mutants on the helicity and LLPS propensity of TDP-43 CR. Analyses reveal that the balance between backbone and sidechain-mediated interactions, but not helicity itself, actually determines LLPS propensity. We believe that the HyRes model represents an important advance in the molecular simulation of LLPS and will help elucidate the coupling between IDP transient secondary structures and phase separation.
Collapse
Affiliation(s)
| | | | - Xiping Gong
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|