1
|
Chen T, Zhang C, Cheng L, Ng KB, Malbrunot-Ettenauer S, Flambaum VV, Lasner Z, Doyle JM, Yu P, Conn CJ, Zhang C, Hutzler NR, Jayich AM, Augenbraun B, DeMille D. Relativistic Exact Two-Component Coupled-Cluster Study of Molecular Sensitivity Factors for Nuclear Schiff Moments. J Phys Chem A 2024. [PMID: 39047199 DOI: 10.1021/acs.jpca.4c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Relativistic exact two-component coupled-cluster calculations of molecular sensitivity factors for nuclear Schiff moments (NSMs) are reported. We focus on molecules containing heavy nuclei, especially octupole-deformed nuclei. Analytic relativistic coupled-cluster gradient techniques are used and serve as useful tools for identifying candidate molecules that sensitively probe for physics beyond the Standard Model in the hadronic sector. Notably, these tools enable straightforward "black-box" calculations. Two competing chemical mechanisms that contribute to the NSM are analyzed, illuminating the physics of ligand effects on NSM sensitivity factors.
Collapse
Affiliation(s)
- Tianxiang Chen
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kia Boon Ng
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Stephan Malbrunot-Ettenauer
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Physics, University of Toronto, Toronto M5S 1A7, Canada
| | - Victor V Flambaum
- School of Physics, University of New South Wales, Sydney 2052, Australia
| | - Zack Lasner
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, United States
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, United States
| | - Phelan Yu
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, United States
| | - Chandler J Conn
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, United States
| | - Chi Zhang
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, United States
| | - Nicholas R Hutzler
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, United States
| | - Andrew M Jayich
- Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Benjamin Augenbraun
- Department of Chemistry, Williams College, 47 Lab Campus Drive, Williamstown, Massachusetts 01267, United States
| | - David DeMille
- Department of Physics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Zhang ZY, Hu JR, Fang YY, Li JF, Liu JM, Huang X, Sun Z. Quantum gate control of polar molecules with machine learning. J Chem Phys 2024; 161:034102. [PMID: 39007369 DOI: 10.1063/5.0216013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
We propose a scheme for achieving basic quantum gates using ultracold polar molecules in pendular states. The qubits are encoded in the YbF molecules trapped in an electric field with a certain gradient and coupled by the dipole-dipole interaction. The time-dependent control sequences consisting of multiple pulses are considered to interact with the pendular qubits. To achieve high-fidelity quantum gates, we map the control problem for the coupled molecular system into a Markov decision process and deal with it using the techniques of deep reinforcement learning (DRL). By training the agents over multiple episodes, the optimal control pulse sequences for the two-qubit gates of NOT, controlled NOT, and Hadamard are discovered with high fidelities. Moreover, the population dynamics of YbF molecules driven by the discovered gate sequences are analyzed in detail. Furthermore, by combining the optimal gate sequences, we successfully simulate the quantum circuit for entanglement. Our findings could offer new insights into efficiently controlling molecular systems for practical molecule-based quantum computing using DRL.
Collapse
Affiliation(s)
- Zuo-Yuan Zhang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jie-Ru Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yu-Yan Fang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jin-Fang Li
- Department of Physics and Electronic Engineering, Xianyang Normal University, Shaanxi 712000, China
| | - Jin-Ming Liu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Xinning Huang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhaoxi Sun
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
3
|
Zhang ZY, Sun Z, Duan T, Ding YK, Huang X, Liu JM. Entanglement Generation of Polar Molecules via Deep Reinforcement Learning. J Chem Theory Comput 2024; 20:1811-1820. [PMID: 38320113 DOI: 10.1021/acs.jctc.3c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Polar molecules are a promising platform for achieving scalable quantum information processing because of their long-range electric dipole-dipole interactions. Here, we take the coupled ultracold CaF molecules in an external electric field with gradient as qubits and concentrate on the creation of intermolecular entanglement with the method of deep reinforcement learning (RL). After sufficient training episodes, the educated RL agents can discover optimal time-dependent control fields that steer the molecular systems from separate states to two-qubit and three-qubit entangled states with high fidelities. We analyze the fidelities and the negativities (characterizing entanglement) of the generated states as a function of training episodes. Moreover, we present the population dynamics of the molecular systems under the influence of control fields discovered by the agents. Compared with the schemes for creating molecular entangled states based on optimal control theory, some conditions (e.g., molecular spacing and electric field gradient) adopted in this work are more feasible in the experiment. Our results demonstrate the potential of machine learning to effectively solve quantum control problems in polar molecular systems.
Collapse
Affiliation(s)
- Zuo-Yuan Zhang
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhaoxi Sun
- Changping Laboratory, Beijing 102206, China
| | - Tao Duan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an 710119, China
| | - Yi-Kai Ding
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xinning Huang
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jin-Ming Liu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Zhu GZ, Lao G, Dickerson CE, Caram JR, Campbell WC, Alexandrova AN, Hudson ER. Extending the Large Molecule Limit: The Role of Fermi Resonance in Developing a Quantum Functional Group. J Phys Chem Lett 2024; 15:590-597. [PMID: 38198595 DOI: 10.1021/acs.jpclett.3c03177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Polyatomic molecules equipped with optical cycling centers (OCCs), enabling continuous photon scattering during optical excitation, are exciting candidates for advancing quantum information science. However, as these molecules grow in size and complexity, the interplay of complex vibronic couplings on optical cycling becomes a critical but relatively unexplored consideration. Here, we present an extensive exploration of Fermi resonances in large-scale OCC-containing molecules using high-resolution dispersed laser-induced fluorescence and excitation spectroscopy. These resonances manifest as vibrational coupling leading to intensity borrowing by combination bands near optically active harmonic bands, which require additional repumping lasers for effective optical cycling. To mitigate these effects, we explore altering the vibrational energy level spacing through substitutions on the phenyl ring or changes in the OCC itself. While the complete elimination of vibrational coupling in complex molecules remains challenging, our findings highlight significant mitigation possibilities, opening new avenues for optimizing optical cycling in large polyatomic molecules.
Collapse
Affiliation(s)
- Guo-Zhu Zhu
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, United States
| | - Guanming Lao
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, United States
| | - Claire E Dickerson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Wesley C Campbell
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, United States
- Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, United States
- Challenge Institute for Quantum Computation, University of California, Los Angeles, California 90095, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Eric R Hudson
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, United States
- Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, United States
- Challenge Institute for Quantum Computation, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Zhang C, Zheng X, Liu J, Asthana A, Cheng L. Analytic gradients for relativistic exact-two-component equation-of-motion coupled-cluster singles and doubles method. J Chem Phys 2023; 159:244113. [PMID: 38153147 DOI: 10.1063/5.0175041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
A first implementation of analytic gradients for spinor-based relativistic equation-of-motion coupled-cluster singles and doubles method using an exact two-component Hamiltonian augmented with atomic mean-field spin-orbit integrals is reported. To demonstrate its applicability, we present calculations of equilibrium structures and harmonic vibrational frequencies for the electronic ground and excited states of the radium mono-amide molecule (RaNH2) and the radium mono-methoxide molecule (RaOCH3). Spin-orbit coupling is shown to quench Jahn-Teller effects in the first excited state of RaOCH3, resulting in a C3v equilibrium structure. The calculations also show that the radium atoms in these molecules serve as efficient optical cycling centers.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xuechen Zheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Junzi Liu
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Ayush Asthana
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
6
|
Zhang C, Yu P, Conn CJ, Hutzler NR, Cheng L. Relativistic coupled-cluster calculations of RaOH pertinent to spectroscopic detection and laser cooling. Phys Chem Chem Phys 2023; 25:32613-32621. [PMID: 38009218 DOI: 10.1039/d3cp04040b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
A relativistic coupled-cluster study of the low-lying electronic states in the radium monohydroxide molecule (RaOH), a radioactive polyatomic molecule of interest to laser cooling and to the search of new physics beyond the Standard Model, is reported. The level positions of the A2Π1/2 and C2Σ states have been computed with an accuracy of around 200 cm-1 to facilitate spectroscopic observation of RaOH using laser induced fluorescence spectroscopy, thereby exploiting the systematic convergence of electron-correlation and basis-set effects in relativistic coupled-cluster calculations. The energy level for the B2Δ3/2 state has also been calculated accurately to conclude that the B2Δ3/2 state lies above the A2Π1/2 state. This confirms X2Σ ↔ A2Π1/2 as a promising optical cycling transition for laser cooling RaOH.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Phelan Yu
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Chandler J Conn
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Nicholas R Hutzler
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|