1
|
Hennefarth MR, Truhlar DG, Gagliardi L. Semiclassical Nonadiabatic Molecular Dynamics Using Linearized Pair-Density Functional Theory. J Chem Theory Comput 2024; 20:8741-8748. [PMID: 39383493 DOI: 10.1021/acs.jctc.4c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Nonadiabatic molecular dynamics is an effective method for modeling nonradiative decay in electronically excited molecules. Its accuracy depends strongly on the quality of the potential energy surfaces, and its affordability for long direct-dynamic simulations with adequate ensemble averaging depends strongly on the cost of the required electronic structure calculations. Linearized pair-density functional theory (L-PDFT) is a recently developed post-self-consistent-field multireference method that can model potential energy surfaces with an accuracy similar to expensive multireference perturbation theories but at a computational cost similar to the underlying multiconfiguration self-consistent field method. Here, we integrate the SHARC dynamics and PySCF electronic structure code to utilize L-PDFT for electronically nonadiabatic calculations and use the combined programs to study the photoisomerization reaction of cis-azomethane. We show that L-PDFT is able to successfully simulate the photoisomerization without crashes, and it yields results similar to the more expensive extended multistate complete active space second-order perturbation theory. This shows that L-PDFT can model internal conversion, and it demonstrates its promise for broader photodynamics applications.
Collapse
Affiliation(s)
- Matthew R Hennefarth
- Department of Chemistry and Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
2
|
Shu Y, Truhlar DG. Generalized Semiclassical Ehrenfest Method: A Route to Wave Function-Free Photochemistry and Nonadiabatic Dynamics with Only Potential Energies and Gradients. J Chem Theory Comput 2024; 20:4396-4426. [PMID: 38819014 DOI: 10.1021/acs.jctc.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We reconsider recent methods by which direct dynamics calculations of electronically nonadiabatic processes can be carried out while requiring only adiabatic potential energies and their gradients. We show that these methods can be understood in terms of a new generalization of the well-known semiclassical Ehrenfest method. This is convenient because it eliminates the need to evaluate electronic wave functions and their matrix elements along the mixed quantum-classical trajectories. The new approximations and procedures enabling this advance are the curvature-driven approximation to the time-derivative coupling, the generalized semiclassical Ehrenfest method, and a new gradient correction scheme called the time-derivative matrix (TDM) scheme. When spin-orbit coupling is present, one can carry out dynamics calculations in the fully adiabatic basis using potential energies and gradients calculated without spin-orbit coupling plus the spin-orbit coupling matrix elements. Even when spin-orbit coupling is neglected, the method is useful because it allows calculations by electronic structure methods for which nonadiabatic coupling vectors are unavailable. In order to place the new considerations in context, the article starts out with a review of background material on trajectory surface hopping, the semiclassical Ehrenfest scheme, and methods for incorporating decoherence. We consider both internal conversion and intersystem crossing. We also review several examples from our group of successful applications of the curvature-driven approximation.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
3
|
Mannouch JR, Kelly A. Quantum Quality with Classical Cost: Ab Initio Nonadiabatic Dynamics Simulations Using the Mapping Approach to Surface Hopping. J Phys Chem Lett 2024; 15:5814-5823. [PMID: 38781480 PMCID: PMC11163471 DOI: 10.1021/acs.jpclett.4c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Nonadiabatic dynamics methods are an essential tool for investigating photochemical processes. In the context of employing first-principles electronic structure techniques, such simulations can be carried out in a practical manner using semiclassical trajectory-based methods or wave packet approaches. While all approaches applicable to first-principles simulations are necessarily approximate, it is commonly thought that wave packet approaches offer inherent advantages over their semiclassical counterparts in terms of accuracy and that this trait simply comes at a higher computational cost. Here we demonstrate that the mapping approach to surface hopping (MASH), a recently introduced trajectory-based nonadiabatic dynamics method, can be efficiently applied in tandem with ab initio electronic structure. Our results even suggest that MASH may provide more accurate results than on-the-fly wave packet techniques, all at a much lower computational cost.
Collapse
Affiliation(s)
- Jonathan R. Mannouch
- Hamburg Center for Ultrafast
Imaging, Universität Hamburg and
the Max Planck Institute
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Aaron Kelly
- Hamburg Center for Ultrafast
Imaging, Universität Hamburg and
the Max Planck Institute
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
4
|
Pengmei Z, Liu J, Shu Y. Beyond MD17: the reactive xxMD dataset. Sci Data 2024; 11:222. [PMID: 38378670 PMCID: PMC10879526 DOI: 10.1038/s41597-024-03019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
System specific neural force fields (NFFs) have gained popularity in computational chemistry. One of the most popular datasets as a bencharmk to develop NFF models is the MD17 dataset and its subsequent extension. These datasets comprise geometries from the equilibrium region of the ground electronic state potential energy surface, sampled from direct adiabatic dynamics. However, many chemical reactions involve significant molecular geometrical deformations, for example, bond breaking. Therefore, MD17 is inadequate to represent a chemical reaction. To address this limitation in MD17, we introduce a new dataset, called Extended Excited-state Molecular Dynamics (xxMD) dataset. The xxMD dataset involves geometries sampled from direct nonadiabatic dynamics, and the energies are computed at both multireference wavefunction theory and density functional theory. We show that the xxMD dataset involves diverse geometries which represent chemical reactions. Assessment of NFF models on xxMD dataset reveals significantly higher predictive errors than those reported for MD17 and its variants. This work underscores the challenges faced in crafting a generalizable NFF model with extrapolation capability.
Collapse
Affiliation(s)
- Zihan Pengmei
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Junyu Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Department of Computer Science, The University of Chicago, Chicago, IL, 60637, USA
- Kadanoff Center for Theoretical Physics, The University of Chicago, Chicago, IL, 60637, USA
- qBraid Co., Chicago, IL, 60615, USA
- SeQure, Chicago, IL, 60615, USA
| | - Yinan Shu
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55414, USA.
| |
Collapse
|
5
|
do Casal MT, Veys K, Bousquet MHE, Escudero D, Jacquemin D. First-Principles Calculations of Excited-State Decay Rate Constants in Organic Fluorophores. J Phys Chem A 2023; 127:10033-10053. [PMID: 37988002 DOI: 10.1021/acs.jpca.3c06191] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In this Perspective, we discuss recent advances made to evaluate from first-principles the excited-state decay rate constants of organic fluorophores, focusing on the so-called static strategy. In this strategy, one essentially takes advantage of Fermi's golden rule (FGR) to evaluate rate constants at key points of the potential energy surfaces, a procedure that can be refined in a variety of ways. In this way, the radiative rate constant can be straightforwardly obtained by integrating the fluorescence line shape, itself determined from vibronic calculations. Likewise, FGR allows for a consistent calculation of the internal conversion (related to the non-adiabatic couplings) in the weak-coupling regime and intersystem crossing rates, therefore giving access to estimates of the emission yields when no complex photophysical phenomenon is at play. Beyond outlining the underlying theories, we summarize here the results of benchmarks performed for various types of rates, highlighting that both the quality of the vibronic calculations and the accuracy of the relative energies are crucial to reaching semiquantitative estimates. Finally, we illustrate the successes and challenges in determining the fluorescence quantum yields using a series of organic fluorophores.
Collapse
Affiliation(s)
- Mariana T do Casal
- Department of Chemistry, Physical Chemistry and Quantum Chemistry Division, KU Leuven, 3001 Leuven, Belgium
| | - Koen Veys
- Department of Chemistry, Physical Chemistry and Quantum Chemistry Division, KU Leuven, 3001 Leuven, Belgium
| | | | - Daniel Escudero
- Department of Chemistry, Physical Chemistry and Quantum Chemistry Division, KU Leuven, 3001 Leuven, Belgium
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), FR-75005 Paris, France
| |
Collapse
|