1
|
Kubincová A, Riniker S, Hünenberger PH. Solvent-scaling as an alternative to coarse-graining in adaptive-resolution simulations: The adaptive solvent-scaling (AdSoS) scheme. J Chem Phys 2021; 155:094107. [PMID: 34496576 DOI: 10.1063/5.0057384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new approach termed Adaptive Solvent-Scaling (AdSoS) is introduced for performing simulations of a solute embedded in a fine-grained (FG) solvent region itself surrounded by a coarse-grained (CG) solvent region, with a continuous FG ↔ CG switching of the solvent resolution across a buffer layer. Instead of relying on a distinct CG solvent model, the AdSoS scheme is based on CG models defined by a dimensional scaling of the FG solvent by a factor s, accompanied by an s-dependent modulation of the atomic masses and interaction parameters. The latter changes are designed to achieve an isomorphism between the dynamics of the FG and CG models, and to preserve the dispersive and dielectric solvation properties of the solvent with respect to a solute at FG resolution. This scaling approach offers a number of advantages compared to traditional coarse-graining: (i) the CG parameters are immediately related to those of the FG model (no need to parameterize a distinct CG model); (ii) nearly ideal mixing is expected for CG variants with similar s-values (ideal mixing holding in the limit of identical s-values); (iii) the solvent relaxation timescales should be preserved (no dynamical acceleration typical for coarse-graining); (iv) the graining level NG (number of FG molecules represented by one CG molecule) can be chosen arbitrarily (in particular, NG = s3 is not necessarily an integer); and (v) in an adaptive-resolution scheme, this level can be varied continuously as a function of the position (without requiring a bundling mechanism), and this variation occurs at a constant number of particles per molecule (no occurrence of fractional degrees of freedom in the buffer layer). By construction, the AdSoS scheme minimizes the thermodynamic mismatch between the different regions of the adaptive-resolution system, leading to a nearly homogeneous scaled solvent density s3ρ. Residual density artifacts in and at the surface of the boundary layer can easily be corrected by means of a grid-based biasing potential constructed in a preliminary pure-solvent simulation. This article introduces the AdSoS scheme and provides an initial application to pure atomic liquids (no solute) with Lennard-Jones plus Coulomb interactions in a slab geometry.
Collapse
Affiliation(s)
- Alžbeta Kubincová
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
2
|
Giulini M, Rigoli M, Mattiotti G, Menichetti R, Tarenzi T, Fiorentini R, Potestio R. From System Modeling to System Analysis: The Impact of Resolution Level and Resolution Distribution in the Computer-Aided Investigation of Biomolecules. Front Mol Biosci 2021; 8:676976. [PMID: 34164432 PMCID: PMC8215203 DOI: 10.3389/fmolb.2021.676976] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
The ever increasing computer power, together with the improved accuracy of atomistic force fields, enables researchers to investigate biological systems at the molecular level with remarkable detail. However, the relevant length and time scales of many processes of interest are still hardly within reach even for state-of-the-art hardware, thus leaving important questions often unanswered. The computer-aided investigation of many biological physics problems thus largely benefits from the usage of coarse-grained models, that is, simplified representations of a molecule at a level of resolution that is lower than atomistic. A plethora of coarse-grained models have been developed, which differ most notably in their granularity; this latter aspect determines one of the crucial open issues in the field, i.e. the identification of an optimal degree of coarsening, which enables the greatest simplification at the expenses of the smallest information loss. In this review, we present the problem of coarse-grained modeling in biophysics from the viewpoint of system representation and information content. In particular, we discuss two distinct yet complementary aspects of protein modeling: on the one hand, the relationship between the resolution of a model and its capacity of accurately reproducing the properties of interest; on the other hand, the possibility of employing a lower resolution description of a detailed model to extract simple, useful, and intelligible information from the latter.
Collapse
Affiliation(s)
- Marco Giulini
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Marta Rigoli
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Giovanni Mattiotti
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Roberto Menichetti
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Thomas Tarenzi
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaele Fiorentini
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaello Potestio
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| |
Collapse
|
3
|
Machado MR, Zeida A, Darré L, Pantano S. From quantum to subcellular scales: multi-scale simulation approaches and the SIRAH force field. Interface Focus 2019; 9:20180085. [PMID: 31065347 PMCID: PMC6501346 DOI: 10.1098/rsfs.2018.0085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Modern molecular and cellular biology profits from astonishing resolution structural methods, currently even reaching the whole cell level. This is encompassed by the development of computational methods providing a deep view into the structure and dynamics of molecular processes happening at very different scales in time and space. Linking such scales is of paramount importance when aiming at far-reaching biological questions. Computational methods at the interface between classical and coarse-grained resolutions are gaining momentum with several research groups dedicating important efforts to their development and tuning. An overview of such methods is addressed herein, with special emphasis on the SIRAH force field for coarse-grained and multi-scale simulations. Moreover, we provide proof of concept calculations on the implementation of a multi-scale simulation scheme including quantum calculations on a classical fine-grained/coarse-grained representation of double-stranded DNA. This opens the possibility to include the effect of large conformational fluctuations in chromatin segments on, for instance, the reactivity of particular base pairs within the same simulation framework.
Collapse
Affiliation(s)
- Matías R. Machado
- Institut Pasteur de Montevideo, Group of Biomolecular Simulations, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Leonardo Darré
- Institut Pasteur de Montevideo, Group of Biomolecular Simulations, Mataojo 2020, CP 11400 Montevideo, Uruguay
- Institut Pasteur de Montevideo, Functional Genomics Unit, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Sergio Pantano
- Institut Pasteur de Montevideo, Group of Biomolecular Simulations, Mataojo 2020, CP 11400 Montevideo, Uruguay
| |
Collapse
|
4
|
Renevey A, Riniker S. Benchmarking Hybrid Atomistic/Coarse-Grained Schemes for Proteins with an Atomistic Water Layer. J Phys Chem B 2019; 123:3033-3042. [DOI: 10.1021/acs.jpcb.8b12149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Annick Renevey
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Garate JA, Bernardin A, Escalona Y, Yanez C, English NJ, Perez-Acle T. Orientational and Folding Thermodynamics via Electric Dipole Moment Restraining. J Phys Chem B 2019; 123:2599-2608. [PMID: 30831028 DOI: 10.1021/acs.jpcb.8b09374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The projection of molecular processes onto a small set of relevant descriptors, the so-called reaction coordinates or collective variables (CVs), is a technique nowadays routinely employed by the biomolecular simulation community. In this work, we implemented two CVs to manipulate the orientation (i.e., angle) (μ⃗a) and magnitude (|μ⃗|) of the electric dipole moment. In doing so, we studied the thermodynamics of water orientation under the application of external voltages and the folding of two polypeptides at zero-field conditions. The projection of the free-energy [potential of mean force (PMF)] along water orientation defined an upper limit of around 0.3 V for irrelevant thermodynamic effects. On the other hand, sufficiently strong μ⃗a restraints applied on 12-alanine (Ala12) triggered structural effects because of the alignment of local dipoles; for lower restraints, a full-body rotation is achieved. The manipulation of |μ⃗| produced strong perturbations on the secondary structure of Ala12, promoting an enhanced sampling to its configurational space. Rigorous free-energy calculations in the form of 2-D PMFs for deca-alanine showed the utility of |μ⃗| as a reaction coordinate to study folding in small α helices. As a whole, we propose that the manipulation of both components of the dipole moment, μ⃗a and |μ⃗|, provides thermodynamics insights into the structural conformation and stability of biomolecules. These new CVs are implemented in the Colvars module, available for NAMD and LAMMPS.
Collapse
Affiliation(s)
- Jose Antonio Garate
- Centro Interdisciplinario de Neurociencia de Valparaiso , Universidad de Valparaiso , Pasaje Harrington 287 , Playa Ancha, Valparaiso 2381850 , Chile
| | - Alejandro Bernardin
- Centro Interdisciplinario de Neurociencia de Valparaiso , Universidad de Valparaiso , Pasaje Harrington 287 , Playa Ancha, Valparaiso 2381850 , Chile.,Computational Biology Lab , Fundacion Ciencia & Vida , Avenida Zanartu 1482, Nunoa , Santiago 7780272 , Chile
| | - Yerko Escalona
- Institute for Molecular Modeling and Simulation , Muthgasse 18 , Vienna 1190 , Austria
| | - Carlos Yanez
- Computational Biology Lab , Fundacion Ciencia & Vida , Avenida Zanartu 1482, Nunoa , Santiago 7780272 , Chile
| | - Niall J English
- School of Chemical and Bioprocess Engineering , University College Dublin , Belfield, Dublin 4 , Ireland
| | - Tomas Perez-Acle
- Centro Interdisciplinario de Neurociencia de Valparaiso , Universidad de Valparaiso , Pasaje Harrington 287 , Playa Ancha, Valparaiso 2381850 , Chile.,Computational Biology Lab , Fundacion Ciencia & Vida , Avenida Zanartu 1482, Nunoa , Santiago 7780272 , Chile
| |
Collapse
|
6
|
Wagoner JA, Pande VS. Communication: Adaptive boundaries in multiscale simulations. J Chem Phys 2018; 148:141104. [PMID: 29655340 DOI: 10.1063/1.5025826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Combined-resolution simulations are an effective way to study molecular properties across a range of length and time scales. These simulations can benefit from adaptive boundaries that allow the high-resolution region to adapt (change size and/or shape) as the simulation progresses. The number of degrees of freedom required to accurately represent even a simple molecular process can vary by several orders of magnitude throughout the course of a simulation, and adaptive boundaries react to these changes to include an appropriate but not excessive amount of detail. Here, we derive the Hamiltonian and distribution function for such a molecular simulation. We also design an algorithm that can efficiently sample the boundary as a new coordinate of the system. We apply this framework to a mixed explicit/continuum simulation of a peptide in solvent. We use this example to discuss the conditions necessary for a successful implementation of adaptive boundaries that is both efficient and accurate in reproducing molecular properties.
Collapse
Affiliation(s)
- Jason A Wagoner
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Vijay S Pande
- Department of Chemistry, Department of Structural Biology, and Department of Computer Science, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
7
|
Zavadlav J, Marrink SJ, Praprotnik M. Multiscale Simulation of Protein Hydration Using the SWINGER Dynamical Clustering Algorithm. J Chem Theory Comput 2018; 14:1754-1761. [PMID: 29439560 DOI: 10.1021/acs.jctc.7b01129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To perform computationally efficient concurrent multiscale simulations of biological macromolecules in solution, where the all-atom (AT) models are coupled to supramolecular coarse-grained (SCG) solvent models, previous studies resorted to modified AT water models, such as the bundled-simple point charge (SPC) models, that use semiharmonic springs to restrict the relative movement of water molecules within a cluster. Those models can have a significant impact on the simulated biomolecules and can lead, for example, to a partial unfolding of a protein. In this work, we employ the recently developed alternative approach with a dynamical clustering algorithm, SWINGER, which enables a direct coupling of original unmodified AT and SCG water models. We perform an adaptive resolution molecular dynamics simulation of a Trp-Cage miniprotein in multiscale water, where the standard SPC water model is interfaced with the widely used MARTINI SCG model, and demonstrate that, compared to the corresponding full-blown AT simulations, the structural and dynamic properties of the solvated protein and surrounding solvent are well reproduced by our approach.
Collapse
Affiliation(s)
- Julija Zavadlav
- Computational Science & Engineering Laboratory , ETH Zurich , Clausiusstrasse 33 , CH-8092 Zurich , Switzerland
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| | - Matej Praprotnik
- Laboratory for Molecular Modeling , National Institute of Chemistry , Hajdrihova 19 , SI-1001 Ljubljana , Slovenia.,Department of Physics, Faculty of Mathematics and Physics , University of Ljubljana , Jadranska 19 , SI-1000 Ljubljana , Slovenia
| |
Collapse
|
8
|
Fogarty AC, Potestio R, Kremer K. A multi-resolution model to capture both global fluctuations of an enzyme and molecular recognition in the ligand-binding site. Proteins 2016; 84:1902-1913. [PMID: 27699855 DOI: 10.1002/prot.25173] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/07/2016] [Accepted: 09/16/2016] [Indexed: 11/11/2022]
Abstract
In multi-resolution simulations, different system components are simultaneously modeled at different levels of resolution, these being smoothly coupled together. In the case of enzyme systems, computationally expensive atomistic detail is needed in the active site to capture the chemistry of ligand binding. Global properties of the rest of the protein also play an essential role, determining the structure and fluctuations of the binding site; however, these can be modeled on a coarser level. Similarly, in the most computationally efficient scheme only the solvent hydrating the active site requires atomistic detail. We present a methodology to couple atomistic and coarse-grained protein models, while solvating the atomistic part of the protein in atomistic water. This allows a free choice of which protein and solvent degrees of freedom to include atomistically. This multi-resolution methodology can successfully model stable ligand binding, and we further confirm its validity by exploring the reproduction of system properties relevant to enzymatic function. In addition to a computational speedup, such an approach can allow the identification of the essential degrees of freedom playing a role in a given process, potentially yielding new insights into biomolecular function. Proteins 2016; 84:1902-1913. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aoife C Fogarty
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Raffaello Potestio
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
9
|
Zavadlav J, Marrink SJ, Praprotnik M. Adaptive Resolution Simulation of Supramolecular Water: The Concurrent Making, Breaking, and Remaking of Water Bundles. J Chem Theory Comput 2016; 12:4138-45. [PMID: 27409519 PMCID: PMC5008762 DOI: 10.1021/acs.jctc.6b00536] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The
adaptive resolution scheme (AdResS) is a multiscale molecular
dynamics simulation approach that can concurrently couple atomistic
(AT) and coarse-grained (CG) resolution regions, i.e., the molecules
can freely adapt their resolution according to their current position
in the system. Coupling to supramolecular CG models, where several
molecules are represented as a single CG bead, is challenging, but
it provides higher computational gains and connection to the established
MARTINI CG force field. Difficulties that arise from such coupling
have been so far bypassed with bundled AT water models, where additional
harmonic bonds between oxygen atoms within a given supramolecular
water bundle are introduced. While these models simplify the supramolecular
coupling, they also cause in certain situations spurious artifacts,
such as partial unfolding of biomolecules. In this work, we present
a new clustering algorithm SWINGER that can concurrently make, break,
and remake water bundles and in conjunction with the AdResS permits
the use of original AT water models. We apply our approach to simulate
a hybrid SPC/MARTINI water system and show that the essential properties
of water are correctly reproduced with respect to the standard monoscale
simulations. The developed hybrid water model can be used in biomolecular
simulations, where a significant speed up can be obtained without
compromising the accuracy of the AT water model.
Collapse
Affiliation(s)
- Julija Zavadlav
- Department of Molecular Modeling, National Institute of Chemistry , Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana , Jadranska 19, SI-1000 Ljubljana, Slovenia
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Matej Praprotnik
- Department of Molecular Modeling, National Institute of Chemistry , Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana , Jadranska 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Kreis K, Potestio R, Kremer K, Fogarty AC. Adaptive Resolution Simulations with Self-Adjusting High-Resolution Regions. J Chem Theory Comput 2016; 12:4067-81. [PMID: 27384753 DOI: 10.1021/acs.jctc.6b00440] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In adaptive resolution simulations, different regions of a simulation box are modeled with different levels of detail. Particles change their resolution on-the-fly when traveling from one subregion to the other. This method is particularly useful for studying multiscale systems in which effects on a broad range of length and time scales play a role. Until now, the geometry of the high-resolution region has been limited to simple geometries of spherical, cuboid, or cylindrical form, whose shape does not change during the simulation. However, many phenomena involve changes in size and shape of system components, for example, protein folding, polymer collapse, nucleation, and crystallization. In this work, we develop a scheme that uses a series of overlapping spheres to allow for an arbitrary division of space into domains of different levels of resolution. Furthermore, the geometry is automatically adjusted on-the-fly during the simulation according to changes in size and shape of, for example, a solvated macromolecule within the high-resolution region. The proposed approach is validated on liquid water. We then simulate the folding of an atomistically detailed polypeptide solvated in a shell of atomistic water that changes shape as the peptide conformation changes. We demonstrate that the peptide folding process is unperturbed by the use of our methodology.
Collapse
Affiliation(s)
- Karsten Kreis
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudinger Weg 9, 55128 Mainz, Germany
| | - Raffaello Potestio
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Aoife C Fogarty
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|