1
|
Vornweg J, Jacob CR. Protein-Ligand Interaction Energies from Quantum-Chemical Fragmentation Methods: Upgrading the MFCC-Scheme with Many-Body Contributions. J Phys Chem B 2024; 128:11597-11606. [PMID: 39550698 PMCID: PMC11613497 DOI: 10.1021/acs.jpcb.4c05645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Quantum-chemical fragmentation methods offer an attractive approach for the accurate calculation of protein-ligand interaction energies. While the molecular fractionation with conjugate caps (MFCC) scheme offers a rather straightforward approach for this purpose, its accuracy is often not sufficient. Here, we upgrade the MFCC scheme for the calculation of protein-ligand interactions by including many-body contributions. The resulting fragmentation scheme is an extension of our previously developed MFCC-MBE(2) scheme [J. Comput. Chem. 2023, 44, 1634-1644]. For a diverse test set of protein-ligand complexes, we demonstrate that by upgrading the MFCC scheme with many-body contributions, the error in protein-ligand interaction energies can be reduced significantly, and one generally achieves errors below 20 kJ/mol. Our scheme allows for systematically reducing these errors by including higher-order many-body contributions. As it combines the use of single amino acid fragments with high accuracy, our scheme provides an ideal starting point for the parametrization of accurate machine learning potentials for proteins and protein-ligand interactions.
Collapse
Affiliation(s)
- Johannes
R. Vornweg
- Institute of Physical and Theoretical
Chemistry, Technische Universität
Braunschweig, Gaußstr.
17, Braunschweig 38106, Germany
| | - Christoph R. Jacob
- Institute of Physical and Theoretical
Chemistry, Technische Universität
Braunschweig, Gaußstr.
17, Braunschweig 38106, Germany
| |
Collapse
|
2
|
Chan B, Ho J. Simple Composite Approach to Efficiently Estimate Basis Set Limit CCSD(T) Harmonic Frequencies and Reaction Thermochemistry. J Phys Chem A 2023; 127:10026-10031. [PMID: 37970798 DOI: 10.1021/acs.jpca.3c06027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
We introduce a simple strategy that combines the G3(MP2) composite method and explicitly correlated coupled cluster CCSD(T)-F12 method to efficiently estimate complete basis set CCSD(T) molecular geometries and harmonic vibrational frequencies at the cost of a double-ζ basis set calculation. Based on a large test set of 61 neutral, ionic, and open-shell molecules, and additionally 31 molecules in the HFREQ2014 data set, we demonstrate that this composite strategy has an average accuracy of 2 cm-1 or better relative to complete basis set CCSD(T) values. Using this approach, we estimated 696 CCSD(T)/CBS reaction energies of small to medium-sized systems containing up to 6 heavy atoms and confirmed existing approximations that use small basis set density functional theory methods [e.g., M06-2X/6-31+G(d)] to calculate thermal contributions to reaction enthalpies and Gibbs free energies that are accurate to within 0.2 kcal mol-1 on average.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Junming Ho
- School of Chemistry, The University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
3
|
Tripathy V, Raghavachari K. Fragment-based models for dissociation of strong acids in water: Electrostatic embedding minimizes the dependence on the fragmentation schemes. J Chem Phys 2023; 159:124106. [PMID: 38127382 DOI: 10.1063/5.0164089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/28/2023] [Indexed: 12/23/2023] Open
Abstract
Fragmentation methods such as MIM (Molecules-in-Molecules) provide a route to accurately model large systems and have been successful in predicting their structures, energies, and spectroscopic properties. However, their use is often limited to systems at equilibrium due to the inherent complications in the choice of fragments in systems away from equilibrium. Furthermore, the presence of charges resulting from any heterolytic bond breaking may increase the fragmentation error. We have previously suggested EE-MIM (Electrostatically Embedded Molecules-In-Molecules) as a method to mitigate the errors resulting from the missing long-range interactions in molecular clusters in equilibrium. Here, we show that the same method can be applied to improve the performance of MIM to solve the longstanding problem of dependency of the fragmentation energy error on the choice of the fragmentation scheme. We chose four widely used acid dissociation reactions (HCl, HClO4, HNO3, and H2SO4) as test cases due to their importance in chemical processes and complex reaction potential energy surfaces. Electrostatic embedding improves the performance at both one and two-layer MIM as shown by lower EE-MIM1 and EE-MIM2 errors. The EE-MIM errors are also demonstrated to be less dependent on the choice of the fragmentation scheme by analyzing the variation in fragmentation energy at the points with more than one possible fragmentation scheme (points where the fragmentation scheme changes). EE-MIM2 with M06-2X as the low-level resulted in a variation of less than 1 kcal/mol for all the cases and 1 kJ/mol for all but three cases, rendering our method fragmentation scheme-independent for acid dissociation processes.
Collapse
Affiliation(s)
- Vikrant Tripathy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
4
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
5
|
Zhang P, Yang W. Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein. J Chem Phys 2023; 159:024118. [PMID: 37431910 PMCID: PMC10481389 DOI: 10.1063/5.0142280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Molecular dynamics (MD) is an extremely powerful, highly effective, and widely used approach to understanding the nature of chemical processes in atomic details for proteins. The accuracy of results from MD simulations is highly dependent on force fields. Currently, molecular mechanical (MM) force fields are mainly utilized in MD simulations because of their low computational cost. Quantum mechanical (QM) calculation has high accuracy, but it is exceedingly time consuming for protein simulations. Machine learning (ML) provides the capability for generating accurate potential at the QM level without increasing much computational effort for specific systems that can be studied at the QM level. However, the construction of general machine learned force fields, needed for broad applications and large and complex systems, is still challenging. Here, general and transferable neural network (NN) force fields based on CHARMM force fields, named CHARMM-NN, are constructed for proteins by training NN models on 27 fragments partitioned from the residue-based systematic molecular fragmentation (rSMF) method. The NN for each fragment is based on atom types and uses new input features that are similar to MM inputs, including bonds, angles, dihedrals, and non-bonded terms, which enhance the compatibility of CHARMM-NN to MM MD and enable the implementation of CHARMM-NN force fields in different MD programs. While the main part of the energy of the protein is based on rSMF and NN, the nonbonded interactions between the fragments and with water are taken from the CHARMM force field through mechanical embedding. The validations of the method for dipeptides on geometric data, relative potential energies, and structural reorganization energies demonstrate that the CHARMM-NN local minima on the potential energy surface are very accurate approximations to QM, showing the success of CHARMM-NN for bonded interactions. However, the MD simulations on peptides and proteins indicate that more accurate methods to represent protein-water interactions in fragments and non-bonded interactions between fragments should be considered in the future improvement of CHARMM-NN, which can increase the accuracy of approximation beyond the current mechanical embedding QM/MM level.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
6
|
Vornweg JR, Wolter M, Jacob CR. A simple and consistent quantum-chemical fragmentation scheme for proteins that includes two-body contributions. J Comput Chem 2023; 44:1634-1644. [PMID: 37171574 DOI: 10.1002/jcc.27114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
The Molecular Fractionation with Conjugate Caps (MFCC) method is a popular fragmentation method for the quantum-chemical treatment of proteins. However, it does not account for interactions between the amino acid fragments, such as intramolecular hydrogen bonding. Here, we present a combination of the MFCC fragmentation scheme with a second-order many-body expansion (MBE) that consistently accounts for all fragment-fragment, fragment-cap, and cap-cap interactions, while retaining the overall simplicity of the MFCC scheme with its chemically meaningful fragments. We show that with the resulting MFCC-MBE(2) scheme, the errors in the total energies of selected polypeptides and proteins can be reduced by up to one order of magnitude and relative energies of different protein conformers can be predicted accurately.
Collapse
Affiliation(s)
- Johannes R Vornweg
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mario Wolter
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
7
|
Ma Y, Li Z, Chen X, Ding B, Li N, Lu T, Zhang B, Suo B, Jin Z. Machine-learning assisted scheduling optimization and its application in quantum chemical calculations. J Comput Chem 2023; 44:1174-1188. [PMID: 36648254 DOI: 10.1002/jcc.27075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023]
Abstract
Easy and effective usage of computational resources is crucial for scientific calculations, both from the perspectives of timeliness and economic efficiency. This work proposes a bi-level optimization framework to optimize the computational sequences. Machine-learning (ML) assisted static load-balancing, and different dynamic load-balancing algorithms can be integrated. Consequently, the computational and scheduling engine of the ParaEngine is developed to invoke optimized quantum chemical (QC) calculations. Illustrated benchmark calculations include high-throughput drug suit, solvent model, P38 protein, and SARS-CoV-2 systems. The results show that the usage rate of given computational resources for high throughput and large-scale fragmentation QC calculations can primarily profit, and faster accomplishing computational tasks can be expected when employing high-performance computing (HPC) clusters.
Collapse
Affiliation(s)
- Yingjin Ma
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| | - ZhiYing Li
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| | - Xin Chen
- ShenZhen Bay Laboratory, Shenzhen, China
| | - Bowen Ding
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wen Zhou, China
| | - Teng Lu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| | - Baohua Zhang
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| | - BingBing Suo
- Department of Physics, Northwest University, Xi'an, China
| | - Zhong Jin
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Hong B, Fang T, Li W, Li S. Predicting the structures and vibrational spectra of molecular crystals containing large molecules with the generalized energy-based fragmentation approach. J Chem Phys 2023; 158:044117. [PMID: 36725497 DOI: 10.1063/5.0137072] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The generalized energy-based fragmentation (GEBF) approach under periodic boundary conditions (PBCs) has been developed to facilitate calculations of molecular crystals containing large molecules. The PBC-GEBF approach can help predict structures and properties of molecular crystals at different theory levels by performing molecular quantum chemistry calculations on a series of non-periodic subsystems constructed from the studied systems. A more rigorous formula of the forces on translational vectors of molecular crystals was proposed and implemented, enabling more reliable predictions of crystal structures. Our benchmark results on several typical molecular crystals show that the PBC-GEBF approach could reproduce the forces on atoms and the translational vectors and the optimized crystal structures from the corresponding conventional periodic methods. The improved PBC-GEBF approach is then applied to predict the crystal structures and vibrational spectra of two molecular crystals containing large molecules. The PBC-GEBF approach can provide a satisfactory description on the crystal structure of a molecular crystal containing 312 atoms in a unit cell at density-fitting second-order Møller-Plesset perturbation theory and density functional theory (DFT) levels and the infrared vibrational spectra of another molecular crystal containing 864 atoms in a unit cell at the DFT level. The PBC-GEBF approach is expected to be a promising theoretical tool for electronic structure calculations on molecular crystals containing large molecules.
Collapse
Affiliation(s)
- Benkun Hong
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
| | - Tao Fang
- Genesys Microelectronics (Shanghai) Co., Ltd., 6th Floor, 11th Building, No. 3000 LongDong Road, Pu Dong District, Shanghai, People's Republic of China
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
9
|
Liu J, He X. Recent advances in quantum fragmentation approaches to complex molecular and condensed‐phase systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering East China Normal University Shanghai China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering East China Normal University Shanghai China
- New York University‐East China Normal University Center for Computational Chemistry New York University Shanghai Shanghai China
| |
Collapse
|
10
|
Hellmers J, Hedegård ED, König C. Fragmentation-Based Decomposition of a Metalloenzyme-Substrate Interaction: A Case Study for a Lytic Polysaccharide Monooxygenase. J Phys Chem B 2022; 126:5400-5412. [PMID: 35833656 DOI: 10.1021/acs.jpcb.2c02883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a novel decomposition scheme for electronic interaction energies based on the flexible formulation of fragmentation schemes through fragment combination ranges (FCRs; J. Chem. Phys., 2021, 155, 164105). We devise a clear additive decomposition with contribution of nondisjoint fragments and correction terms for overlapping fragments and apply this scheme to the metalloenzyme-substrate complex of a lytic polysaccharide monooxygenase (LPMO) with an oligosaccharide. By this, we further illustrate the straightforward adaptability of the FCR-based schemes to novel systems. Our calculations suggest that the description of the electronic structure is a larger error source than the fragmentation scheme. In particular, we find a large impact of the basis set size on the interaction energies. Still, the introduction of three-body interaction terms in the fragmentation setup improves the agreement to the supermolecular reference. Yet, the qualitative results for the decomposition scheme with two-body terms only largely agree within the investigated electronic-structure approaches and basis sets, which are B97-3c, DFT (TPSS and B3LYP), and MP2 methods. The overlap contributions are found to be small, allowing analysis of the interaction energy into individual amino acid residues: We find a particularly strong interaction between the substrate and the LPMO copper active site.
Collapse
Affiliation(s)
- Janine Hellmers
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Erik Donovan Hedegård
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Carolin König
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, 30167 Hannover, Germany
| |
Collapse
|
11
|
Liu J, Lan J, He X. Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks. J Phys Chem A 2022; 126:3926-3936. [PMID: 35679610 DOI: 10.1021/acs.jpca.2c00601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate and efficient simulation of liquids, such as water and salt solutions, using high-level wave function theories is still a formidable task for computational chemists owing to the high computational costs. In this study, we develop a deep machine learning potential based on fragment-based second-order Møller-Plesset perturbation theory (DP-MP2) for water through neural networks. We show that the DP-MP2 potential predicts the structural, dynamical, and thermodynamic properties of liquid water in better agreement with the experimental data than previous studies based on density functional theory (DFT). The nuclear quantum effects (NQEs) on the properties of liquid water are also examined, which are noticeable in affecting the structural and dynamical properties of liquid water under ambient conditions. This work provides a general framework for quantitative predictions of the properties of condensed-phase systems with the accuracy of high-level wave function theory while achieving significant computational savings compared to ab initio simulations.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jinggang Lan
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
12
|
Du J, Ma Y, Ma J, Li S, Li W. Transition orbital projection approach for excited state tracking. J Chem Phys 2022; 156:214104. [DOI: 10.1063/5.0081207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quantitively comparing the features between different electronic excited states (ESs) is a crucial task in both potential energy surface (PES) studies and excited-state fragmentation approaches. However, it is still a challenging problem in regard to the comparison of complex and highly degenerate systems. Herein, we present a transition orbital projection (TOP) method to calculate the similarity of different ESs based on the configuration vectors of two types of transition densities. It fully considers four significant problems, including phase, hole-particle bijectivity, orbital permutation, and sign of configuration coefficients. TOP state-tracking-based excited-state optimization shows high robustness in several high-symmetric systems, which are difficult to describe with traditional state-tracking approaches. The TOP state-tracking method is expected to be widely applied to the PES of photochemical reactions, ES molecular dynamics to track the diabatic states, and fragmentation approaches for local excitation of large systems.
Collapse
Affiliation(s)
- Jiahui Du
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Yixuan Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Wei Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
13
|
Liu J, He X. Ab initio molecular dynamics simulation of liquid water with fragment-based quantum mechanical approach under periodic boundary conditions. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Shanghai 200062, China
| |
Collapse
|
14
|
Kumar A, DeGregorio N, Iyengar SS. Graph-Theory-Based Molecular Fragmentation for Efficient and Accurate Potential Surface Calculations in Multiple Dimensions. J Chem Theory Comput 2021; 17:6671-6690. [PMID: 34623129 DOI: 10.1021/acs.jctc.1c00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present a multitopology molecular fragmentation approach, based on graph theory, to calculate multidimensional potential energy surfaces in agreement with post-Hartree-Fock levels of theory but at the density functional theory cost. A molecular assembly is coarse-grained into a set of graph-theoretic nodes that are then connected with edges to represent a collection of locally interacting subsystems up to an arbitrary order. Each of the subsystems is treated at two levels of electronic structure theory, the result being used to construct many-body expansions that are embedded within an ONIOM scheme. These expansions converge rapidly with the many-body order (or graphical rank) of subsystems and capture many-body interactions accurately and efficiently. However, multiple graphs, and hence multiple fragmentation topologies, may be defined in molecular configuration space that may arise during conformational sampling or from reactive, bond breaking and bond formation, events. Obtaining the resultant potential surfaces is an exponential scaling proposition, given the number of electronic structure computations needed. We utilize a family of graph-theoretic representations within a variational scheme to obtain multidimensional potential surfaces at a reduced cost. The fast convergence of the graph-theoretic expansion with increasing order of many-body interactions alleviates the exponential scaling cost for computing potential surfaces, with the need to only use molecular fragments that contain a fewer number of quantum nuclear degrees of freedom compared to the full system. This is because the dimensionality of the conformational space sampled by the fragment subsystems is much smaller than the full molecular configurational space. Additionally, we also introduce a multidimensional clustering algorithm, based on physically defined criteria, to reduce the number of energy calculations by orders of magnitude. The molecular systems benchmarked include coupled proton motion in protonated water wires. The potential energy surfaces and multidimensional nuclear eigenstates obtained are shown to be in very good agreement with those from explicit post-Hartree-Fock calculations that become prohibitive as the number of quantum nuclear dimensions grows. The developments here provide a rigorous and efficient alternative to this important chemical physics problem.
Collapse
Affiliation(s)
- Anup Kumar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Nicole DeGregorio
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
15
|
Wang X, Li X, He X, Zhang JZH. A fixed multi-site interaction charge model for an accurate prediction of the QM/MM interactions. Phys Chem Chem Phys 2021; 23:21001-21012. [PMID: 34522933 DOI: 10.1039/d1cp02776j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fixed multi-site interaction charge (FMIC) model was proposed for the accurate prediction of intermolecular electrostatic interactions based on the quantum mechanical linear response of a molecule to an external electric field. In such a model, some additional off-center interaction sites were added for capturing multipole interactions for a given molecule. By multivariate least-square fitting analysis of the calculated QM/MM interactions of a given molecule with the electrostatic environment and the electrostatic potentials of the environment at the pre-defined distributed interaction sites, the FMIC of the molecule was obtained. The model system of CO in myoglobin (Mb) was utilized to demonstrate the derivation of the FMIC. The accuracy of FMIC in predicting the electrostatic interactions between CO and the Mb environment was investigated using 10 000 different Mb-CO configurations generated from the 400 ps QM/MM MD simulation. In comparison to the QM/MM calculations at the B3LYP/aug-cc-pVTZ/ff99SB level, the mean unsigned error (MUE) of the results based on the FMIC model was merely 0.10 kcal mol-1, and the root mean square error (RMSE) was only 0.13 kcal mol-1, which are significantly lower than the results predicted by the ESP charge model (MUE = 1.45 kcal mol-1, and RMSE = 1.7 kcal mol-1, respectively). The transferability of FMIC was tested by applying the obtained FMIC in the wild type Mb-CO system to the mutants of V68F and H64L Mb-CO systems. The MUEs of the obtained results for 10 000 different configurations are both smaller than 0.2 kcal mol-1 for the V68F and H64L Mb-CO systems in comparison to the B3LYP/aug-cc-pVTZ/ff99SB calculations, and the RMSEs are also lower than 0.2 kcal mol-1 for both mutants. The applications of FMIC were extended to model the electrostatic interactions between a hydrogen fluoride molecule and 492 waters in a truncated octahedron box; our study showed that the FMIC could give satisfactory results with a MUE of 0.12 kcal mol-1 and a RMSE of 0.16 kcal mol-1 in comparison to the B3LYP/aug-cc-pVDZ/TIP3P calculations for 10 000 different configurations generated using the 10 ns classical MD simulation. Therefore, the FMIC method provides an accurate and efficient tool for predicting intermolecular electrostatic interactions, which can be utilized in the future development of molecular force fields.
Collapse
Affiliation(s)
- Xianwei Wang
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China. .,Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Xilong Li
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Xiao He
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.
| | - John Z H Zhang
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China. .,Department of Chemistry, New York University, New York, New York 10003, USA
| |
Collapse
|
16
|
Fragment-Based Ab Initio Molecular Dynamics Simulation for Combustion. Molecules 2021; 26:molecules26113120. [PMID: 34071128 PMCID: PMC8197069 DOI: 10.3390/molecules26113120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
We develop a fragment-based ab initio molecular dynamics (FB-AIMD) method for efficient dynamics simulation of the combustion process. In this method, the intermolecular interactions are treated by a fragment-based many-body expansion in which three- or higher body interactions are neglected, while two-body interactions are computed if the distance between the two fragments is smaller than a cutoff value. The accuracy of the method was verified by comparing FB-AIMD calculated energies and atomic forces of several different systems with those obtained by standard full system quantum calculations. The computational cost of the FB-AIMD method scales linearly with the size of the system, and the calculation is easily parallelizable. The method is applied to methane combustion as a benchmark. Detailed reaction network of methane reaction is analyzed, and important reaction species are tracked in real time. The current result of methane simulation is in excellent agreement with known experimental findings and with prior theoretical studies.
Collapse
|
17
|
Liu J, Liu Y, Yang J, Zeng XC, He X. Directional Proton Transfer in the Reaction of the Simplest Criegee Intermediate with Water Involving the Formation of Transient H 3O . J Phys Chem Lett 2021; 12:3379-3386. [PMID: 33784110 DOI: 10.1021/acs.jpclett.1c00448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The reaction of Criegee intermediates with water vapor has been widely known as a key Criegee reaction in the troposphere. Herein, we investigated the reaction of the smallest Criegee intermediate, CH2OO, with a water cluster through fragment-based ab initio molecular dynamics simulations at the MP2/aug-cc-pVDZ level. Our results show that the CH2OO-water reaction could occur not only at the air/water interface but also inside the water cluster. Moreover, more than one reactive water molecules are required for the CH2OO-water reaction, which is always initiated from the Criegee carbon atom and ends at the terminal Criegee oxygen atom via a directional proton transfer process. The observed reaction pathways include the loop-structure-mediated and stepwise mechanisms, and the latter involves the formation of transient H3O+. The lifetime of transient H3O+ is on the order of a few picoseconds, which may impact the atmospheric budget of the other trace gases in the actual atmosphere.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yanqing Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinrong Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU, Shanghai, Shanghai, 200062, China
| |
Collapse
|
18
|
Silva SRB, de Lima Neto JX, Fuzo CA, Fulco UL, Vieira DS. A quantum biochemistry investigation of the protein-protein interactions for the description of allosteric modulation on biomass-degrading chimera. Phys Chem Chem Phys 2020; 22:25936-25948. [PMID: 33164009 DOI: 10.1039/d0cp04415f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The worldwide dependence of population on fossil fuels continues to have several harmful implications for the environment. Bioethanol is an excellent option for renewable fuel to replace the current greenhouse gas emitters. In addition, its production by enzymatic route has gained space among the industrial processes because it replaces the traditional acid treatment. Due to its high versatility, the xylanase family is used in this process as an accessory enzyme for degrading the lignocellulosic substrate of biomass. A chimera built by a xylanolytic domain (Xyl) and a xylose-binding protein (XBP) showed an experimentally improved catalytic efficiency and interdomain allosteric modulation after xylose binding. In this context, we performed a quantum biochemistry characterization of the interactions between these domains and dynamic cross-correlation (DCC) analysis after performing molecular dynamics (DM) simulations of the systems in the presence and absence of xylose in the XBP active site. We used the density functional theory (DFT) within the molecular fractionation with the conjugated caps (MFCC) approach to describe the pair energies, and the corresponding energy difference between the chimera domains responsible for the allosteric effect and amino acid DCC to evaluate the interdomain coupling differences between the energy states. The detailed energetic investigation together with the related structural and dynamics counterparts revealed the molecular mechanisms of chimeric improvement of the xylanase activity observed experimentally. This mechanism was correlated with greater stability and high connectivity at the interdomain interface in the xylose bound relative to the free chimera. We identify the contributions of hydrogen bonds, hydrophobic interactions and water-mediated interactions in the interdomain region responsible for stability together with the structural and dynamical elements related to the allosteric effect. Taken together, these observations led to a comprehensive understanding of the chimera's modulatory action that occurs through the formation of a highly connected interface that makes the essential movements related to xylanolytic activity in xylanase correlated to those of the xylose-binding protein.
Collapse
|
19
|
Jin X, Glover WJ, He X. Fragment Quantum Mechanical Method for Excited States of Proteins: Development and Application to the Green Fluorescent Protein. J Chem Theory Comput 2020; 16:5174-5188. [PMID: 32551640 DOI: 10.1021/acs.jctc.9b00980] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Understanding the excited-state properties of luminescent biomolecules is of central importance to their biophysical applications. In this study, we develop the Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps (EE-GMFCC) method for quantitatively characterizing properties of covalently bonded systems with localized excitations (i.e., involving a single chromophore), such as fluorescent proteins. The excitation energy, transition dipole moment, and oscillator strength of wild-type Green Fluorescent Protein (wt-GFP) calculated by EE-GMFCC are found to be in excellent agreement with full system time-dependent density functional theory results. We also applied the Polarized Protein-Specific Charge model to wt-GFP, and found that electronic polarization of the protein is critical in stabilizing hydrogen bonding interactions in wt-GFP, which influences its absorption spectrum. The predicted absorption spectra of wt-GFP in the A and B states qualitatively agree with experiment. The fragmentation approach further allows a straightforward per residue decomposition of the excitation which reveals the influence of the protein environment on the absorption spectra of wt-GFP A and B states. Our results demonstrate that the EE-GMFCC method is both accurate and efficient for excited-state property calculations on proteins.
Collapse
Affiliation(s)
- Xinsheng Jin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - William J Glover
- NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Department of Chemistry, New York University, New York, New York 10003, United States
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
20
|
Ricard TC, Iyengar SS. Efficient and Accurate Approach To Estimate Hybrid Functional and Large Basis-Set Contributions to Condensed-Phase Systems and Molecule–Surface Interactions. J Chem Theory Comput 2020; 16:4790-4812. [DOI: 10.1021/acs.jctc.9b01089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Timothy C. Ricard
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S. Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
21
|
Sylvetsky N. Toward Simple, Predictive Understanding of Protein-Ligand Interactions: Electronic Structure Calculations on Torpedo Californica Acetylcholinesterase Join Forces with the Chemist's Intuition. Sci Rep 2020; 10:9218. [PMID: 32513975 PMCID: PMC7280257 DOI: 10.1038/s41598-020-65984-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/13/2020] [Indexed: 11/09/2022] Open
Abstract
Contemporary efforts for empirically-unbiased modeling of protein-ligand interactions entail a painful tradeoff - as reliable information on both noncovalent binding factors and the dynamic behavior of a protein-ligand complex is often beyond practical limits. We demonstrate that information drawn exclusively from static molecular structures can be used for reproducing and predicting experimentally-measured binding affinities for protein-ligand complexes. In particular, inhibition constants (Ki) were calculated for seven different competitive inhibitors of Torpedo californica acetylcholinesterase using a multiple-linear-regression-based model. The latter, incorporating five independent variables - drawn from QM cluster, DLPNO-CCSD(T) calculations and LED analyses on the seven complexes, each containing active amino-acid residues found within interacting distance (3.5 Å) from the corresponding ligand - is shown to recover 99.9% of the sum of squares for measured Ki values, while having no statistically-significant residual errors. Despite being fitted to a small number of data points, leave-one-out cross-validation statistics suggest that it possesses surprising predictive value (Q2LOO=0.78, or 0.91 upon removal of a single outlier). This thus challenges ligand-invariant definitions of active sites, such as implied in the lock-key binding theory, as well as in alternatives highlighting shape-complementarity without taking electronic effects into account. Broader implications of the current work are discussed in dedicated appendices.
Collapse
Affiliation(s)
- Nitai Sylvetsky
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
22
|
Liu J, He X. Fragment-based quantum mechanical approach to biomolecules, molecular clusters, molecular crystals and liquids. Phys Chem Chem Phys 2020; 22:12341-12367. [PMID: 32459230 DOI: 10.1039/d0cp01095b] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To study large molecular systems beyond the system size that the current state-of-the-art ab initio electronic structure methods could handle, fragment-based quantum mechanical (QM) approaches have been developed over the past years, and proved to be efficient in dealing with large molecular systems at various ab initio levels. According to the fragmentation approach, a large molecular system can be divided into subsystems (fragments), and subsequently the property of the whole system can be approximately obtained by taking a proper combination of the corresponding terms of individual fragments. Therefore, the standard QM calculation of a large system could be circumvented by carrying out a series of calculations on small fragments, which significantly promotes computational efficiency. The electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method is one of the fragment-based QM approaches which has been developed by our research group in recent years. This Perspective presents the theoretical framework of this fragmentation method and its applications in biomolecules, molecular clusters, molecular crystals and liquids, including total energy calculation, protein-ligand/protein binding affinity prediction, geometry optimization, vibrational spectrum simulation, ab initio molecular dynamics simulation, and prediction of excited-state properties.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | | |
Collapse
|
23
|
The Impact of Electron Correlation on Describing QM/MM Interactions in the Attendant Molecular Dynamics Simulations of CO in Myoglobin. Sci Rep 2020; 10:8539. [PMID: 32444817 PMCID: PMC7244521 DOI: 10.1038/s41598-020-65475-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/05/2020] [Indexed: 01/10/2023] Open
Abstract
The impact of the dispersion and electron correlation effects on describing quantum mechanics/molecular mechanics (QM/MM) interactions in QM/MM molecular dynamics (MD) simulations was explored by performing a series of up to 2 ns QM/MM MD simulations on the B states of the myoglobin-carbon monoxide (MbCO) system. The results indicate that both dispersion and electron correlations play significant roles in the simulation of the ratios of two B states (B1/B2), which suggests that the inclusion of the electron correlation effects is essential for accurately modeling the interactions between QM and MM subsystems. We found that the QM/MM interaction energies between the CO and the surroundings statistically present a linear correlation with the electric fields along the CO bond. This indicates that QM/MM interactions can be described by a simple physical model of a dipole with constant moment under the action of the electric fields. The treatment provides us with an accurate and effective approach to account for the electron correlation effects in QM/MM MD simulations.
Collapse
|
24
|
Zhang W, Liu J, Jin X, Gu X, Zeng XC, He X, Li H. Quantitative Prediction of Aggregation‐Induced Emission: A Full Quantum Mechanical Approach to the Optical Spectra. Angew Chem Int Ed Engl 2020; 59:11550-11555. [DOI: 10.1002/anie.202003326] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Wei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Department of Chemistry University of Nebraska Lincoln NE 68588 USA
| | - Jinfeng Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
- Department of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xinsheng Jin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xiao Cheng Zeng
- Department of Chemistry University of Nebraska Lincoln NE 68588 USA
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai Shanghai 200062 China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
25
|
Zhang W, Liu J, Jin X, Gu X, Zeng XC, He X, Li H. Quantitative Prediction of Aggregation‐Induced Emission: A Full Quantum Mechanical Approach to the Optical Spectra. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Department of Chemistry University of Nebraska Lincoln NE 68588 USA
| | - Jinfeng Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
- Department of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xinsheng Jin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xiao Cheng Zeng
- Department of Chemistry University of Nebraska Lincoln NE 68588 USA
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai Shanghai 200062 China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
26
|
Wang Z, Han Y, Li J, He X. Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy. J Phys Chem B 2020; 124:3027-3035. [PMID: 32208716 DOI: 10.1021/acs.jpcb.0c01370] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accurate and efficient all-atom quantum mechanical (QM) calculations for biomolecules still present a challenge to computational physicists and chemists. In this study, an extensible generalized molecular fractionation with a conjugate caps method combined with neural networks (NN-GMFCC) is developed for efficient QM calculation of protein energy. In the NN-GMFCC scheme, the total energy of a given protein is calculated by taking a proper combination of the high-precision neural network potential energies of all capped residues and overlapping conjugate caps. In addition, the two-body interaction energies of residue pairs are calculated by molecular mechanics (MM). With reference to the GMFCC/MM calculation at the ωB97XD/6-31G* level, the overall mean unsigned errors of the energy deviations and atomic force root-mean-squared errors calculated by NN-GMFCC are only 2.01 kcal/mol and 0.68 kcal/mol/Å, respectively, for 14 proteins (containing up to 13,728 atoms). Meanwhile, the NN-GMFCC approach is about 4 orders of magnitude faster than the GMFCC/MM method. The NN-GMFCC method could be systematically improved by inclusion of two-body QM interaction and multibody electronic polarization effect. Moreover, the NN-GMFCC approach can also be applied to other macromolecular systems such as DNA/RNA, and it is capable of providing a powerful and efficient approach for exploration of structures and functions of proteins with QM accuracy.
Collapse
Affiliation(s)
- Zhilong Wang
- Key Laboratory of Thin Film and Micro Fabrication, Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanqiang Han
- Key Laboratory of Thin Film and Micro Fabrication, Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinjin Li
- Key Laboratory of Thin Film and Micro Fabrication, Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
27
|
QM Implementation in Drug Design: Does It Really Help? Methods Mol Biol 2020. [PMID: 32016884 DOI: 10.1007/978-1-0716-0282-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Computational chemistry allows one to characterize the structure, dynamics, and energetics of protein-ligand interactions, which makes it a valuable tool in drug discovery in both academic research and pharmaceutical industry. Molecular mechanics (MM)-based approaches are widely utilized to assist the discovery of new drug candidates. However, the complexity of protein-ligand interactions challenges the accuracy and efficiency of the commonly used empirical methods. Aiming to provide better accuracy in the description of protein-ligand interactions, quantum mechanics (QM)-based approaches are becoming increasingly explored. In principle, QM calculation includes all contributions to the energy, accounting for terms usually missing in empirical force fields, and provides a greater degree of transferability. The usefulness of QM in drug design cannot be overemphasized. In this chapter, we present recent developments and applications of fragment-based QM method in studying the protein-ligand and protein-protein interactions. We critically discuss the performance of the fragment-based QM method at different ab initio levels while trying to answer a critical question: do QM-based methods really help in drug design?
Collapse
|
28
|
Sagiv L, Hirshberg B, Gerber RB. Hydrogenic Stretch Spectroscopy of Glycine–Water Complexes: Anharmonic Ab Initio Classical Separable Potential Calculations. J Phys Chem A 2019; 123:8377-8384. [DOI: 10.1021/acs.jpca.9b05378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lior Sagiv
- Institute of Chemistry and the Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 9190401, Israel
| | - Barak Hirshberg
- Institute of Chemistry and the Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 9190401, Israel
| | - R. Benny Gerber
- Institute of Chemistry and the Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 9190401, Israel
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
29
|
Kumar A, Iyengar SS. Fragment-Based Electronic Structure for Potential Energy Surfaces Using a Superposition of Fragmentation Topologies. J Chem Theory Comput 2019; 15:5769-5786. [DOI: 10.1021/acs.jctc.9b00608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anup Kumar
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana-47405, United States
| | - Srinivasan S. Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana-47405, United States
| |
Collapse
|
30
|
Liu J, Sun H, Glover WJ, He X. Prediction of Excited-State Properties of Oligoacene Crystals Using Fragment-Based Quantum Mechanical Method. J Phys Chem A 2019; 123:5407-5417. [PMID: 31187994 DOI: 10.1021/acs.jpca.8b12552] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A fundamental understanding of the excited-state properties of molecular crystals is of central importance for their optoelectronics applications. In this study, we developed the electrostatically embedded generalized molecular fractionation (EE-GMF) method for the quantitative characterization of the excited-state properties of locally excited molecular clusters. The accuracy of the EE-GMF method is systematically assessed for oligoacene crystals. Our result demonstrates that the EE-GMF method is capable of providing the lowest vertical singlet (S1) and triplet excitation energies (T1), in excellent agreement with the full-system quantum mechanical calculations. Using this method, we also investigated the performance of different density functionals in predicting the excited-state properties of the oligoacene crystals. Among the 13 tested functionals, B3LYP and MN15 give the two lowest overall mean unsigned errors with reference to the experimental S1 and T1 excitation energies. The EE-GMF approach can be readily utilized for studying the excited-state properties of large-scale organic solids at diverse ab initio levels.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | | | - William J Glover
- NYU Shanghai , Shanghai 200122 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062 , China.,Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Xiao He
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062 , China
| |
Collapse
|
31
|
Xu M, He X, Zhu T, Zhang JZH. A Fragment Quantum Mechanical Method for Metalloproteins. J Chem Theory Comput 2019; 15:1430-1439. [PMID: 30620584 DOI: 10.1021/acs.jctc.8b00966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An accurate energy calculation of metalloprotein is of crucial importance and also a theoretical challenge. In this work, a metal molecular fractionation with conjugate caps (metal-MFCC) approach is developed for efficient linear-scaling quantum calculation of potential energy and atomic forces of metalloprotein. In this approach, the potential energy of a given protein is calculated by a linear combination of potential energies of the neighboring residues, two-body interaction energy between non-neighboring residues that are spatially in close contact and the potential energy of the metal binding group. The calculation of each fragment is embedded in a field of point charges representing the remaining protein environment. Numerical studies were carried out to check the performance of this method, and the calculated potential energies and atomic forces all show excellent agreement with the full system calculations at the M06-2X/6-31G(d) level. By combining the energy calculation with molecular dynamic simulation, we performed an ab initio structural optimization for a zinc finger protein with high efficiency. The present metal-MFCC approach is linear-scaling with a low prefactor and trivially parallelizable. The individual fragment typically contains about 50 atoms, and it is thus possible to be calculated at higher levels of the quantum chemistry method. This fragment method can be routinely applied to perform structural optimization and ab initio molecular dynamic simulation for metalloproteins of any size.
Collapse
Affiliation(s)
- Mingyuan Xu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai , 200062 , China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai , 200062 , China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai , 200062 , China.,Department of Chemistry , New York University , New York 10003 , United States
| |
Collapse
|
32
|
Wang H, Yang W. Toward Building Protein Force Fields by Residue-Based Systematic Molecular Fragmentation and Neural Network. J Chem Theory Comput 2019; 15:1409-1417. [PMID: 30550274 DOI: 10.1021/acs.jctc.8b00895] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accurate force fields are crucial for molecular dynamics investigation of complex biological systems. Building accurate protein force fields from quantum mechanical (QM) calculations is challenging due to the complexity of proteins and high computational costs of QM methods. In order to overcome these two difficulties, here we developed the residue-based systematic molecular fragmentation method to partition general proteins into only 20 types of amino acid dipeptides and one type of peptide bond at level 1. The total energy of proteins is the combination of the energies of these fragments. Each type of the fragments is then parametrized using neural network (NN) representation of the QM reference. Adopting NN representation can circumvent the limitation of the analytic form of classical molecular mechanics (MM) force fields. Using MM force fields as the baseline, our method adds NN representation of QM corrections at the length scale of amino acid dipeptides. We tested our force fields for both homogeneous and heterogeneous polypeptides. Energy and forces predicted by our force fields compare favorably with full QM calculations from tripeptides to decapeptides. Our development provides an efficient and accurate method of building protein force fields fully from ab initio QM calculations.
Collapse
Affiliation(s)
- Hao Wang
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Weitao Yang
- Department of Chemistry and Department of Physics , Duke University , Durham , North Carolina 27708 , United States.,Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , China
| |
Collapse
|
33
|
Liu J, Zhang JZH, He X. Probing the Ion-Specific Effects at the Water/Air Interface and Water-Mediated Ion Pairing in Sodium Halide Solution with Ab Initio Molecular Dynamics. J Phys Chem B 2018; 122:10202-10209. [PMID: 30351119 DOI: 10.1021/acs.jpcb.8b09513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ion-specific effects at the water/air interface represent a fundamentally essential topic of research, and high-level ab initio simulations are still demanding to reveal the microscopic picture of the interactions between ions and water at the solvation interface. In this work, we present a fragment-based ab initio molecular dynamics (AIMD) simulation of sodium halide solution droplet (in a neutral mixture of Na+, F-, Cl-, and Br- ions) at the MP2/aug-cc-pVDZ level. We show that the studied halide ions exhibit surface preference in the order (F- < Cl- < Br-) which is in accordance with the experimental observation. The resulting potential of mean force (PMF) for Br- produces a distinct minimum at the water/air interface, while the minimum of the PMF for F- appears in the bulk region. The ion-pairing interactions between halide anions and Na+ cations are characterized, and it reveals that the specific solvent-separated ion pairs (SIPs) are more preferred than the direct contact ion pairs (CIPs). The transition between different types of SIPs is observed. Other structural and dynamical properties of ions and ion-hydration shells are investigated. These results provide broader and new physical insights for understanding the ion-specific behavior in interfacial solvation at the atomistic level.
Collapse
Affiliation(s)
- Jinfeng Liu
- State Key Laboratory of Natural Medicines, Department of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing , 210009 , China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai , 200062 , China.,Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai , 200062 , China
| |
Collapse
|
34
|
Ricard TC, Iyengar SS. Efficiently Capturing Weak Interactions in ab Initio Molecular Dynamics with on-the-Fly Basis Set Extrapolation. J Chem Theory Comput 2018; 14:5535-5552. [DOI: 10.1021/acs.jctc.8b00803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Timothy C. Ricard
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S. Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
35
|
An Ab Initio QM/MM Study of the Electrostatic Contribution to Catalysis in the Active Site of Ketosteroid Isomerase. Molecules 2018; 23:molecules23102410. [PMID: 30241317 PMCID: PMC6222312 DOI: 10.3390/molecules23102410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 01/28/2023] Open
Abstract
The electric field in the hydrogen-bond network of the active site of ketosteroid isomerase (KSI) has been experimentally measured using vibrational Stark effect (VSE) spectroscopy, and utilized to study the electrostatic contribution to catalysis. A large gap was found in the electric field between the computational simulation based on the Amber force field and the experimental measurement. In this work, quantum mechanical (QM) calculations of the electric field were performed using an ab initio QM/MM molecular dynamics (MD) simulation and electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. Our results demonstrate that the QM-derived electric field based on the snapshots from QM/MM MD simulation could give quantitative agreement with the experiment. The accurate calculation of the electric field inside the protein requires both the rigorous sampling of configurations, and a QM description of the electrostatic field. Based on the direct QM calculation of the electric field, we theoretically confirmed that there is a linear correlation relationship between the activation free energy and the electric field in the active site of wild-type KSI and its mutants (namely, D103N, Y16S, and D103L). Our study presents a computational protocol for the accurate simulation of the electric field in the active site of the protein, and provides a theoretical foundation that supports the link between electric fields and enzyme catalysis.
Collapse
|
36
|
Xu M, Zhu T, Zhang JZH. A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein. Front Chem 2018; 6:189. [PMID: 29900167 PMCID: PMC5989690 DOI: 10.3389/fchem.2018.00189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC) method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA)9-NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.
Collapse
Affiliation(s)
- Mingyuan Xu
- State Key Lab of Precision Spectroscopy, Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Tong Zhu
- State Key Lab of Precision Spectroscopy, Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at New York University Shanghai, Shanghai, China
| | - John Z H Zhang
- State Key Lab of Precision Spectroscopy, Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at New York University Shanghai, Shanghai, China.,Department of Chemistry, New York University, New York, NY, United States.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| |
Collapse
|
37
|
Ricard TC, Haycraft C, Iyengar SS. Adaptive, Geometric Networks for Efficient Coarse-Grained Ab Initio Molecular Dynamics with Post-Hartree–Fock Accuracy. J Chem Theory Comput 2018; 14:2852-2866. [DOI: 10.1021/acs.jctc.8b00186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Timothy C. Ricard
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Cody Haycraft
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S. Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
38
|
Wang Y, Liu J, Li J, He X. Fragment-based quantum mechanical calculation of protein-protein binding affinities. J Comput Chem 2018; 39:1617-1628. [PMID: 29707784 DOI: 10.1002/jcc.25236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/02/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
Abstract
The electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method has been successfully utilized for efficient linear-scaling quantum mechanical (QM) calculation of protein energies. In this work, we applied the EE-GMFCC method for calculation of binding affinity of Endonuclease colicin-immunity protein complex. The binding free energy changes between the wild-type and mutants of the complex calculated by EE-GMFCC are in good agreement with experimental results. The correlation coefficient (R) between the predicted binding energy changes and experimental values is 0.906 at the B3LYP/6-31G*-D level, based on the snapshot whose binding affinity is closest to the average result from the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) calculation. The inclusion of the QM effects is important for accurate prediction of protein-protein binding affinities. Moreover, the self-consistent calculation of PB solvation energy is required for accurate calculations of protein-protein binding free energies. This study demonstrates that the EE-GMFCC method is capable of providing reliable prediction of relative binding affinities for protein-protein complexes. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yaqian Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jinfeng Liu
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinjin Li
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao He
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,National Engineering Research Centre for Nanotechnology, Shanghai, 200241, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| |
Collapse
|
39
|
A quantum mechanical computational method for modeling electrostatic and solvation effects of protein. Sci Rep 2018; 8:5475. [PMID: 29615707 PMCID: PMC5882933 DOI: 10.1038/s41598-018-23783-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
An efficient computational approach for modeling protein electrostatic is developed according to static point-charge model distributions based on the linear-scaling EE-GMFCC (electrostatically embedded generalized molecular fractionation with conjugate caps) quantum mechanical (QM) method. In this approach, the Electrostatic-Potential atomic charges are obtained from ab initio calculation of protein, both polarization and charge transfer effect are taken into consideration. This approach shows a significant improvement in the description of electrostatic potential and solvation energy of proteins comparing with current popular molecular mechanics (MM) force fields. Therefore, it has gorgeous prospect in many applications, including accurate calculations of electric field or vibrational Stark spectroscopy in proteins and predicting protein-ligand binding affinity. It can also be applied in QM/MM calculations or electronic embedding method of ONIOM to provide a better electrostatic environment.
Collapse
|
40
|
Liu J, He X, Zhang JZH. Structure of liquid water - a dynamical mixture of tetrahedral and 'ring-and-chain' like structures. Phys Chem Chem Phys 2018; 19:11931-11936. [PMID: 28440370 DOI: 10.1039/c7cp00667e] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nature of the dynamical hydrogen-bond network of liquid water under ambient conditions has challenged both experimental and theoretical researchers for decades and remains a topic of intense debate. In this work, we addressed the structural issue of the hydrogen-bond network of liquid water based on an accurate ab initio molecular dynamics simulation. The present work showed clearly that liquid water is neither accurately described by a static picture of mostly tetrahedral water molecules nor dominated by "ring-and-chain" like structures. Instead, the structure of water is a dynamical mixture of tetrahedral and 'ring-and-chain' like structures with a slight bias toward the former. On average, each water molecule forms about three hydrogen bonds with the surrounding water molecules. The present accurate ab initio molecular dynamics simulation of liquid water was made possible by using a fragment-based second-order Møller-Plesset perturbation theory (MP2) with a large basis set to treat a large body of water molecules. This level of ab initio theory is sufficiently accurate for describing water interactions, and the simulated structural and dynamical properties of liquid water, including radial distribution functions, diffusion coefficient, dipole moment, etc., are uniformly in excellent agreement with experimental observations.
Collapse
Affiliation(s)
- Jinfeng Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | | | | |
Collapse
|
41
|
DeGregorio N, Iyengar SS. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions. J Chem Theory Comput 2017; 14:30-47. [DOI: 10.1021/acs.jctc.7b00927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nicole DeGregorio
- Department of Chemistry and
Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S. Iyengar
- Department of Chemistry and
Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
42
|
|
43
|
Giese TJ, York DM. Quantum mechanical force fields for condensed phase molecular simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:383002. [PMID: 28817382 PMCID: PMC5821073 DOI: 10.1088/1361-648x/aa7c5c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.
Collapse
|
44
|
Liu J, Qi LW, Zhang JZH, He X. Fragment Quantum Mechanical Method for Large-Sized Ion–Water Clusters. J Chem Theory Comput 2017; 13:2021-2034. [DOI: 10.1021/acs.jctc.7b00149] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jinfeng Liu
- State
Key Laboratory of Natural Medicines, Department of Basic Medicine
and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lian-Wen Qi
- State
Key Laboratory of Natural Medicines, Department of Basic Medicine
and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - John Z. H. Zhang
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Xiao He
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| |
Collapse
|
45
|
Haycraft C, Li J, Iyengar SS. Efficient, “On-the-Fly”, Born–Oppenheimer and Car–Parrinello-type Dynamics with Coupled Cluster Accuracy through Fragment Based Electronic Structure. J Chem Theory Comput 2017; 13:1887-1901. [DOI: 10.1021/acs.jctc.6b01107] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Cody Haycraft
- Department of Chemistry and
Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Junjie Li
- Department of Chemistry and
Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S. Iyengar
- Department of Chemistry and
Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
46
|
Jin X, Zhang JZH, He X. Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method. J Phys Chem A 2017; 121:2503-2514. [PMID: 28264557 DOI: 10.1021/acs.jpca.7b00859] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, the electrostatically embedded generalized molecular fractionation with conjugate caps (concaps) method (EE-GMFCC) was employed for efficient linear-scaling quantum mechanical (QM) calculation of total energies of RNAs. In the EE-GMFCC approach, the total energy of RNA is calculated by taking a proper combination of the QM energy of each nucleotide-centric fragment with large caps or small caps (termed EE-GMFCC-LC and EE-GMFCC-SC, respectively) deducted by the energies of concaps. The two-body QM interaction energy between non-neighboring ribonucleotides which are spatially in close contact are also taken into account for the energy calculation. Numerical studies were carried out to calculate the total energies of a number of RNAs using the EE-GMFCC-LC and EE-GMFCC-SC methods at levels of the Hartree-Fock (HF) method, density functional theory (DFT), and second-order many-body perturbation theory (MP2), respectively. The results show that the efficiency of the EE-GMFCC-SC method is about 3 times faster than the EE-GMFCC-LC method with minimal accuracy sacrifice. The EE-GMFCC-SC method is also applied for relative energy calculations of 20 different conformers of two RNA systems using HF and DFT, respectively. Both single-point and relative energy calculations demonstrate that the EE-GMFCC method has deviations from the full system results of only a few kcal/mol.
Collapse
Affiliation(s)
- Xinsheng Jin
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, China
| | - John Z H Zhang
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China.,Department of Chemistry, New York University , New York, New York 10003, United States
| | - Xiao He
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China
| |
Collapse
|
47
|
Qi YJ, Lu HN, Zhao YM, Jin NZ. Probing the influence of carboxyalkyl groups on the molecular flexibility and the charge density of apigenin derivatives. J Mol Model 2017; 23:70. [PMID: 28197841 DOI: 10.1007/s00894-017-3221-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/11/2017] [Indexed: 12/11/2022]
Abstract
Apigenin is an important flavonoids due to its antidiabetic bioactivity. It was reported experimentally that the 7-substituent derivative of apigenin has higher biological activity than 4'- and 5-substituted derivatives while introducing sole carboxyalkyl group -(CH2)7COOH into the parent structure. Molecular docking studies indicated that the other two derivatives have lower binding affinities than the 7-substituent derivative (-7.52 kcal mol-1), which is considered to be a better inhibitor than the parent molecule. Almost all of the carbon atoms and oxygen atoms are coplaner for all three molecules in solution phase, however, all carboxyalkyl groups bend inside into the parent molecules in the active site, and the jagged geometries of the carbon chains are destroyed correspondingly. In addition, most of the electron densities of the chemical bonds for all molecules are decreased, especially the 7-substituent derivative. In contrast, most of the Laplacian values for three molecules are increased in the active site, which suggests that the charge densities at the bond critical point (bcp) are much more depleted than the solution phase. Dipole moments of derivatives are all increased in the active site, suggesting strong intermolecular interactions. After interacting with the S. cerevisiae α-glucosidase, only the 7-substituent derivative has the lowest energy gap ΔE HOMO-LUMO, which indicates the lowest stability and the highest inhibition activity. Graphical abstract Probing the influence of carboxyalkyl groups on the molecular flexibility and the charge density of apigenin derivatives.
Collapse
Affiliation(s)
- Y J Qi
- Department of Chemical Engineering, Northwest University for Nationalities, Lanzhou, 730124, People's Republic of China.
| | - H N Lu
- Department of Life Sciences and Biological Engineering, Northwest University for Nationalities, Lanzhou, 730124, People's Republic of China
| | - Y M Zhao
- Department of Chemical Engineering, Northwest University for Nationalities, Lanzhou, 730124, People's Republic of China
| | - N Z Jin
- Gansu Province Computing Center, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
48
|
Aguirre NF, Díaz-Tendero S, Hervieux PA, Alcamí M, Martín F. M 3C: A Computational Approach To Describe Statistical Fragmentation of Excited Molecules and Clusters. J Chem Theory Comput 2017; 13:992-1009. [PMID: 28005371 DOI: 10.1021/acs.jctc.6b00984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Microcanonical Metropolis Monte Carlo method, based on a random sampling of the density of states, is revisited for the study of molecular fragmentation in the gas phase (isolated molecules, atomic and molecular clusters, complex biomolecules, etc.). A random walk or uniform random sampling in the configurational space (atomic positions) and a uniform random sampling of the relative orientation, vibrational energy, and chemical composition of the fragments is used to estimate the density of states of the system, which is continuously updated as the random sampling populates individual states. The validity and usefulness of the method is demonstrated by applying it to evaluate the caloric curve of a weakly bound rare gas cluster (Ar13), to interpret the fragmentation of highly excited small neutral and singly positively charged carbon clusters (Cn, n = 5,7,9 and Cn+, n = 4,5) and to simulate the mass spectrum of the acetylene molecule (C2H2).
Collapse
Affiliation(s)
- Néstor F Aguirre
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid , 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Paul-Antoine Hervieux
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg , 67000 Strasbourg, France
| | - Manuel Alcamí
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid , 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencias (IMDEA-Nanociencia) , 28049 Madrid, Spain
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid , 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid , 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencias (IMDEA-Nanociencia) , 28049 Madrid, Spain
| |
Collapse
|
49
|
Liu J, He X. Accurate prediction of energetic properties of ionic liquid clusters using a fragment-based quantum mechanical method. Phys Chem Chem Phys 2017; 19:20657-20666. [DOI: 10.1039/c7cp03356g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate prediction of physicochemical properties of ionic liquids (ILs) is of great significance to understand and design novel ILs with unique properties.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy
- China Pharmaceutical University
- Nanjing
- China
| | - Xiao He
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai
| |
Collapse
|
50
|
Mills JD, Ben-Nun M, Rollin K, Bromley MWJ, Li J, Hinde RJ, Winstead CL, Sheehy JA, Boatz JA, Langhoff PW. Atomic Spectral Methods for Ab Initio Molecular Electronic Energy Surfaces: Transitioning From Small-Molecule to Biomolecular-Suitable Approaches. J Phys Chem B 2016; 120:8321-37. [PMID: 27232159 DOI: 10.1021/acs.jpcb.6b02021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Continuing attention has addressed incorportation of the electronically dynamical attributes of biomolecules in the largely static first-generation molecular-mechanical force fields commonly employed in molecular-dynamics simulations. We describe here a universal quantum-mechanical approach to calculations of the electronic energy surfaces of both small molecules and large aggregates on a common basis which can include such electronic attributes, and which also seems well-suited to adaptation in ab initio molecular-dynamics applications. In contrast to the more familiar orbital-product-based methodologies employed in traditional small-molecule computational quantum chemistry, the present approach is based on an "ex-post-facto" method in which Hamiltonian matrices are evaluated prior to wave function antisymmetrization, implemented here in the support of a Hilbert space of orthonormal products of many-electron atomic spectral eigenstates familiar from the van der Waals theory of long-range interactions. The general theory in its various forms incorporates the early semiempirical atoms- and diatomics-in-molecules approaches of Moffitt, Ellison, Tully, Kuntz, and others in a comprehensive mathematical setting, and generalizes the developments of Eisenschitz, London, Claverie, and others addressing electron permutation symmetry adaptation issues, completing these early attempts to treat van der Waals and chemical forces on a common basis. Exact expressions are obtained for molecular Hamiltonian matrices and for associated energy eigenvalues as sums of separate atomic and interaction-energy terms, similar in this respect to the forms of classical force fields. The latter representation is seen to also provide a long-missing general definition of the energies of individual atoms and of their interactions within molecules and matter free from subjective additional constraints. A computer code suite is described for calculations of the many-electron atomic eigenspectra and the pairwise-atomic Hamiltonian matrices required for practical applications. These matrices can be retained as functions of scalar atomic-pair separations and employed in assembling aggregate Hamiltonian matrices, with Wigner rotation matrices providing analytical representations of their angular degrees of freedom. In this way, ab initio potential energy surfaces are obtained in the complete absence of repeated evaluations and transformations of the one- and two-electron integrals at different molecular geometries required in most ab inito molecular calculations, with large Hamiltonian matrix assembly simplified and explicit diagonalizations avoided employing partitioning and Brillouin-Wigner or Rayleigh-Schrödinger perturbation theory. Illustrative applications of the important components of the formalism, selected aspects of the scaling of the approach, and aspects of "on-the-fly" interfaces with Monte Carlo and molecular-dynamics methods are described in anticipation of subsequent applications to biomolecules and other large aggregates.
Collapse
Affiliation(s)
- Jeffrey D Mills
- Air Force Research Laboratory , 10 East Saturn Boulevard, Edwards AFB, California 93524-7680, United States
| | - Michal Ben-Nun
- Predictive Science, Inc. , 9990 Mesa Rim Road #170, San Diego, California 92121, United States
| | - Kyle Rollin
- Northrup Grumman Corporation , 1 Rancho Carmel Drive, San Diego, California 92128, United States
| | - Michael W J Bromley
- School of Mathematics and Physics, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Jiabo Li
- Accelrys Inc. , 10188 Telesis Court #100, San Diego, California 92121-4779, United States
| | - Robert J Hinde
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996-1600, United States
| | - Carl L Winstead
- A.A. Noyes Laboratory of Chemical Physics, California Institute of Technology , Pasadena, California 91125, United States
| | - Jeffrey A Sheehy
- NASA Headquarters , 300 E Street SW, Suite 5R30, Washington, DC 201546, United States
| | - Jerry A Boatz
- Air Force Research Laboratory , 10 East Saturn Boulevard, Edwards AFB, California 93524-7680, United States
| | - Peter W Langhoff
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, MS 0365, La Jolla, California 92093-0365, United States
| |
Collapse
|