1
|
Liu Y, Ghosh TK, Lin G, Chen M. Unbiasing Enhanced Sampling on a High-Dimensional Free Energy Surface with a Deep Generative Model. J Phys Chem Lett 2024; 15:3938-3945. [PMID: 38568182 DOI: 10.1021/acs.jpclett.3c03515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Biased enhanced sampling methods that utilize collective variables (CVs) are powerful tools for sampling conformational ensembles. Due to their large intrinsic dimensions, efficiently generating conformational ensembles for complex systems requires enhanced sampling on high-dimensional free energy surfaces. While temperature-accelerated molecular dynamics (TAMD) can trivially adopt many CVs in a simulation, unbiasing the simulation to generate unbiased conformational ensembles requires accurate modeling of a high-dimensional CV probability distribution, which is challenging for traditional density estimation techniques. Here we propose an unbiasing method based on the score-based diffusion model, a deep generative learning method that excels in density estimation across complex data landscapes. We demonstrate that this unbiasing approach, tested on multiple TAMD simulations, significantly outperforms traditional unbiasing methods and can generate accurate unbiased conformational ensembles. With the proposed approach, TAMD can adopt CVs that focus on improving sampling efficiency and the proposed unbiasing method enables accurate evaluation of ensemble averages of important chemical features.
Collapse
Affiliation(s)
- Yikai Liu
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Tushar K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Guang Lin
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ming Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
2
|
Alberini G, Alexis Paz S, Corradi B, Abrams CF, Benfenati F, Maragliano L. Molecular Dynamics Simulations of Ion Permeation in Human Voltage-Gated Sodium Channels. J Chem Theory Comput 2023; 19:2953-2972. [PMID: 37116214 DOI: 10.1021/acs.jctc.2c00990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The recent determination of cryo-EM structures of voltage-gated sodium (Nav) channels has revealed many details of these proteins. However, knowledge of ionic permeation through the Nav pore remains limited. In this work, we performed atomistic molecular dynamics (MD) simulations to study the structural features of various neuronal Nav channels based on homology modeling of the cryo-EM structure of the human Nav1.4 channel and, in addition, on the recently resolved configuration for Nav1.2. In particular, single Na+ permeation events during standard MD runs suggest that the ion resides in the inner part of the Nav selectivity filter (SF). On-the-fly free energy parametrization (OTFP) temperature-accelerated molecular dynamics (TAMD) was also used to calculate two-dimensional free energy surfaces (FESs) related to single/double Na+ translocation through the SF of the homology-based Nav1.2 model and the cryo-EM Nav1.2 structure, with different realizations of the DEKA filter domain. These additional simulations revealed distinct mechanisms for single and double Na+ permeation through the wild-type SF, which has a charged lysine in the DEKA ring. Moreover, the configurations of the ions in the SF corresponding to the metastable states of the FESs are specific for each SF motif. Overall, the description of these mechanisms gives us new insights into ion conduction in human Nav cryo-EM-based and cryo-EM configurations that could advance understanding of these systems and how they differ from potassium and bacterial Nav channels.
Collapse
Affiliation(s)
- Giulio Alberini
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Sergio Alexis Paz
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisicoquímica de Córdoba (INFIQC), X5000HUA Córdoba, Argentina
| | - Beatrice Corradi
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department of Experimental Medicine, Università degli Studi di Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Cameron F Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
3
|
Identifying hydrophobic protein patches to inform protein interaction interfaces. Proc Natl Acad Sci U S A 2021; 118:2018234118. [PMID: 33526682 DOI: 10.1073/pnas.2018234118] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interactions between proteins lie at the heart of numerous biological processes and are essential for the proper functioning of the cell. Although the importance of hydrophobic residues in driving protein interactions is universally accepted, a characterization of protein hydrophobicity, which informs its interactions, has remained elusive. The challenge lies in capturing the collective response of the protein hydration waters to the nanoscale chemical and topographical protein patterns, which determine protein hydrophobicity. To address this challenge, here, we employ specialized molecular simulations wherein water molecules are systematically displaced from the protein hydration shell; by identifying protein regions that relinquish their waters more readily than others, we are then able to uncover the most hydrophobic protein patches. Surprisingly, such patches contain a large fraction of polar/charged atoms and have chemical compositions that are similar to the more hydrophilic protein patches. Importantly, we also find a striking correspondence between the most hydrophobic protein patches and regions that mediate protein interactions. Our work thus establishes a computational framework for characterizing the emergent hydrophobicity of amphiphilic solutes, such as proteins, which display nanoscale heterogeneity, and for uncovering their interaction interfaces.
Collapse
|
4
|
Damjanovic J, Miao J, Huang H, Lin YS. Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations. Chem Rev 2021; 121:2292-2324. [PMID: 33426882 DOI: 10.1021/acs.chemrev.0c01087] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein-protein interactions are vital to biological processes, but the shape and size of their interfaces make them hard to target using small molecules. Cyclic peptides have shown promise as protein-protein interaction modulators, as they can bind protein surfaces with high affinity and specificity. Dozens of cyclic peptides are already FDA approved, and many more are in various stages of development as immunosuppressants, antibiotics, antivirals, or anticancer drugs. However, most cyclic peptide drugs so far have been natural products or derivatives thereof, with de novo design having proven challenging. A key obstacle is structural characterization: cyclic peptides frequently adopt multiple conformations in solution, which are difficult to resolve using techniques like NMR spectroscopy. The lack of solution structural information prevents a thorough understanding of cyclic peptides' sequence-structure-function relationship. Here we review recent development and application of molecular dynamics simulations with enhanced sampling to studying the solution structures of cyclic peptides. We describe novel computational methods capable of sampling cyclic peptides' conformational space and provide examples of computational studies that relate peptides' sequence and structure to biological activity. We demonstrate that molecular dynamics simulations have grown from an explanatory technique to a full-fledged tool for systematic studies at the forefront of cyclic peptide therapeutic design.
Collapse
Affiliation(s)
- Jovan Damjanovic
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - He Huang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
5
|
Zhang H, Zhang H, Chen C. Investigating the folding mechanism of the N-terminal domain of ribosomal protein L9. Proteins 2021; 89:832-844. [PMID: 33576138 DOI: 10.1002/prot.26062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/04/2021] [Accepted: 01/31/2021] [Indexed: 11/10/2022]
Abstract
Protein folding is a popular topic in the life science. However, due to the limited sampling ability of experiments and simulations, the general folding mechanism is not yet clear to us. In this work, we study the folding of the N-terminal domain of ribosomal protein L9 (NTL9) in detail by a mixing replica exchange molecular dynamics method. The simulation results are close to previous experimental observations. According to the Markov state model, the folding of the protein follows a nucleation-condensation path. Moreover, after the comparison to its 39-residue β-α-β motif, we find that the helix at the C-terminal has a great influence on the folding process of the intact protein, including the nucleation of the key residues in the transition state ensemble and the packing of the hydrophobic residues in the native state.
Collapse
Affiliation(s)
- Haozhe Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Haomiao Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Gossert ST, Parajuli B, Chaiken I, Abrams CF. Roles of variable linker length in dual acting virucidal entry inhibitors on HIV-1 potency via on-the-fly free energy molecular simulations. Protein Sci 2020; 29:2304-2310. [PMID: 32926485 PMCID: PMC7586904 DOI: 10.1002/pro.3949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 01/03/2023]
Abstract
The Dual-Acting Virolytic Entry Inhibitors, or DAVEI's, are a class of recombinant chimera fusion proteins consisting of a lectin, a flexible polypeptide linker, and a fragment of the membrane-proximal external region (MPER) of HIV-1 gp41. DAVEIs trigger virolysis of HIV-1 virions through interactions with the trimeric envelope glycoprotein complex (Env), though the details of these interactions are not fully determined as yet. The purpose of this work was to use structural modeling to rationalize a dependence of DAVEI potency on the molecular length of the linker connecting the two components. We used temperature accelerated molecular dynamics and on-the-fly parameterization to compute free energy versus end-to-end distance for two different linker lengths, DAVEI L0 (His6 ) and DAVEI L2 ([Gly4 Ser]2 His6 ). Additionally, an envelope model was created based on a cryo-electron microscopy-derived structure of a cleaved, soluble Env construct, with high-mannose glycans added which served as putative docking locations for the lectin, along with MPER added that served as a putative docking location for the MPER region of DAVEI (MPERDAVEI ). Using MD simulation, distances between the lectin C-terminus and Env gp41 MPER were measured. We determined that none of the glycans were close enough to gp41 MPER to allow DAVEI L0 to function, while one, N448, will allow DAVEI L2 to function. These findings are consistent with the previously determined dependence of lytic function on DAVEI linker lengths. This supports the hypothesis that DAVEI's engage Env at both glycans and the Env MPER in causing membrane poration and lysis.
Collapse
Affiliation(s)
- Steven T. Gossert
- Department of Chemical and Biological EngineeringDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Bibek Parajuli
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaPennsylvaniaUSA
| | - Irwin Chaiken
- Department of Chemical and Biological EngineeringDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Cameron F. Abrams
- Department of Chemical and Biological EngineeringDrexel UniversityPhiladelphiaPennsylvaniaUSA
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
7
|
Xu Z, Liu H, Wang S, Zhang Q, Yao X, Zhou S, Liu H. Unraveling the Molecular Mechanism of Prion H2 C-Terminus Misfolding by Metadynamics Simulations. ACS Chem Neurosci 2020; 11:772-782. [PMID: 32023408 DOI: 10.1021/acschemneuro.9b00679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Conformational transition from the normal cellular form of prion protein (PrPC) to the pathogenic "scrapie" form (PrPSc) is considered to be a key event in the occurrence of prion disease. Additionally, the H2 C-terminus is widely considered to be a vital site for PrP conformational transition, which can be used as an important region to explore the potential mechanism of PrP misfolding. Therefore, to study the misfolding mechanism of PrP, 500 ns well-tempered metadynamics simulations were performed by focusing on the H2 C-terminus of PrP. For comparison, three systems were designed in total, including PrP in neutral and acidic conditions, as well as H187R mutant. The resulting free energy surfaces (FESs) obtained from metadynamics simulations reveal that acidic conditions and H187R mutation can facilitate PrP misfolding by decreasing free energy barriers for conformational transition and forming energy stable conformational states. Further analyses aimed at H2 C-terminus show that due to the increase of positive charge on residue 187 in both acidic and H187R systems, the electrostatic repulsion of residue 187 and R136/R156 increases greatly, which disrupts the electrostatic interaction network around H2 C-terminus and exposes the hydrophobic core to the solvent. Taken together, acidic conditions and H187R mutation can accelerate PrP misfolding mainly by forming more energetically stable metastable conformations with lower free energy barriers, and electrostatic network disruption involving residue 187 drives the initial misfolding of H2 C-terminus. This study provides quantitative insight into the related function of the H2 C-terminus in the PrP misfolding process, which may guide H2 C-terminus mediated drug design in the future.
Collapse
Affiliation(s)
- Zerong Xu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hongli Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shuo Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qianqian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Shuangyan Zhou
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Zhang H, Gong Q, Zhang H, Chen C. Combining the biased and unbiased sampling strategy into one convenient free energy calculation method. J Comput Chem 2019; 40:1806-1815. [PMID: 30942500 DOI: 10.1002/jcc.25834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/14/2022]
Abstract
Constructing a free energy landscape for a large molecule is difficult. One has to use either a high temperature or a strong driving force to enhance the sampling on the free energy barriers. In this work, we propose a mixed method that combines these two kinds of acceleration strategies into one simulation. First, it applies an adaptive biasing potential to some replicas of the molecule. These replicas are particularly accelerated in a collective variable space. Second, it places some unbiased and exchangeable replicas at various temperature levels. These replicas generate unbiased sampling data in the canonical ensemble. To improve the sampling efficiency, biased replicas transfer their state variables to the unbiased replicas after equilibrium by Monte Carlo trial moves. In comparison to previous integrated methods, it is more convenient for users. It does not need an initial reference biasing potential to guide the sampling of the molecule. And it is also unnecessary to insert many replicas for the requirement of passing the free energy barriers. The free energy calculation is accomplished in a single stage. It samples the data as fast as a biased simulation and it processes the data as simple as an unbiased simulation. The method provides a minimalist approach to the construction of the free energy landscape. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Haomiao Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Qiankun Gong
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Haozhe Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
9
|
Paz SA, Maragliano L, Abrams CF. Effect of Intercalated Water on Potassium Ion Transport through Kv1.2 Channels Studied via On-the-Fly Free-Energy Parametrization. J Chem Theory Comput 2018; 14:2743-2750. [DOI: 10.1021/acs.jctc.8b00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- S. Alexis Paz
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- INFIQC, CONICET, X5000HUA, Córdoba, Argentina
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132 Genoa, Italy
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Testing Convergence of Different Free-Energy Methods in a Simple Analytical System with Hidden Barriers. COMPUTATION 2018. [DOI: 10.3390/computation6020027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Farigliano LM, Paz SA, Leiva EPM, Villarreal MA. Coalescence of Nanoclusters Analyzed by Well-Tempered Metadynamics. Comparison with Straightforward Molecular Dynamics. J Chem Theory Comput 2017; 13:3874-3880. [DOI: 10.1021/acs.jctc.7b00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucas M. Farigliano
- Departamento de Química
Teórica y Computacional, Instituto de Fisicoquímica
de Córdoba (INFICQ-CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Sergio A. Paz
- Departamento de Química
Teórica y Computacional, Instituto de Fisicoquímica
de Córdoba (INFICQ-CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Ezequiel P. M. Leiva
- Departamento de Química
Teórica y Computacional, Instituto de Fisicoquímica
de Córdoba (INFICQ-CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Marcos A. Villarreal
- Departamento de Química
Teórica y Computacional, Instituto de Fisicoquímica
de Córdoba (INFICQ-CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
12
|
Paz SA, Vanden-Eijnden E, Abrams CF. Polymorphism at 129 dictates metastable conformations of the human prion protein N-terminal β-sheet. Chem Sci 2017; 8:1225-1232. [PMID: 28451263 PMCID: PMC5369536 DOI: 10.1039/c6sc03275c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/30/2016] [Indexed: 12/16/2022] Open
Abstract
We study the thermodynamic stability of the native state of the human prion protein using a new free-energy method, replica-exchange on-the-fly parameterization. This method is designed to overcome hidden-variable sampling limitations to yield nearly error-free free-energy profiles along a conformational coordinate. We confirm that all four (M129V, D178N) polymorphs have a ground-state conformation with three intact β-sheet hydrogen bonds. Additionally, they are observed to have distinct metastabilities determined by the side-chain at position 129. We rationalize these findings with reference to the prion "strain" hypothesis, which links the variety of transmissible spongiform encephalopathy phenotypes to conformationally distinct infectious prion forms and classifies distinct phenotypes of sporadic Creutzfeldt-Jakob disease based solely on the 129 polymorphism. Because such metastable structures are not easily observed in structural experiments, our approach could potentially provide new insights into the conformational origins of prion diseases and other pathologies arising from protein misfolding and aggregation.
Collapse
Affiliation(s)
- S Alexis Paz
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , PA 19104 , USA .
| | - Eric Vanden-Eijnden
- Courant Institute of Mathematical Sciences , New York University , New York , NY 10012 , USA
| | - Cameron F Abrams
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , PA 19104 , USA .
| |
Collapse
|
13
|
Singh RK, Chamachi NG, Chakrabarty S, Mukherjee A. Mechanism of Unfolding of Human Prion Protein. J Phys Chem B 2017; 121:550-564. [PMID: 28030950 DOI: 10.1021/acs.jpcb.6b11416] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Misfolding and aggregation of prion proteins are associated with several neurodegenerative diseases. Therefore, understanding the mechanism of the misfolding process is of enormous interest in the scientific community. It has been speculated and widely discussed that the native cellular prion protein (PrPC) form needs to undergo substantial unfolding to a more stable PrPC* state, which may further oligomerize into the toxic scrapie (PrPSc) form. Here, we have studied the mechanism of the unfolding of the human prion protein (huPrP) using a set of extensive well-tempered metadynamics simulations. Through multiple microsecond-long metadynamics simulations, we find several possible unfolding pathways. We show that each pathway leads to an unfolded state of lower free energy than the native state. Thus, our study may point to the signature of a PrPC* form that corresponds to a global minimum on the conformational free-energy landscape. Moreover, we find that these global minima states do not involve an increased β-sheet content, as was assumed to be a signature of PrPSc formation in previous simulation studies. We have further analyzed the origin of metastability of the PrPC form through free-energy surfaces of the chopped helical segments to show that the helices, particularly H2 and H3 of the prion protein, have the tendency to form either a random coil or a β-structure. Therefore, the secondary structural elements of the prion protein are only weakly stabilized by tertiary contacts and solvation forces so that relatively weak perturbations induced by temperature, pressure, pH, and so forth can lead to substantial unfolding with characteristics of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Reman K Singh
- Department of Chemistry, Indian Institute of Science Education and Research , Pune 411008, Maharashtra, India
| | - Neharika G Chamachi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Pune 411008, Maharashtra, India
| | - Suman Chakrabarty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Pune 411008, Maharashtra, India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research , Pune 411008, Maharashtra, India
| |
Collapse
|
14
|
Chen C. Calculation of the Local Free Energy Landscape in the Restricted Region by the Modified Tomographic Method. J Phys Chem B 2016; 120:3061-71. [PMID: 26974860 DOI: 10.1021/acs.jpcb.5b11892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The free energy landscape is the most important information in the study of the reaction mechanisms of the molecules. However, it is difficult to calculate. In a large collective variable space, a molecule must take a long time to obtain the sufficient sampling during the simulation. To save the calculation quantity, decreasing the sampling region and constructing the local free energy landscape is required in practice. However, the restricted region in the collective variable space may have an irregular shape. Simply restricting one or more collective variables of the molecule cannot satisfy the requirement. In this paper, we propose a modified tomographic method to perform the simulation. First, it divides the restricted region by some hyperplanes and connects the centers of hyperplanes together by a curve. Second, it forces the molecule to sample on the curve and the hyperplanes in the simulation and calculates the free energy data on them. Finally, all the free energy data are combined together to form the local free energy landscape. Without consideration of the area outside the restricted region, this free energy calculation can be more efficient. By this method, one can further optimize the path quickly in the collective variable space.
Collapse
Affiliation(s)
- Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology , Wuhan 430074, Hubei, China
| |
Collapse
|
15
|
Neale C, Pomès R. Sampling errors in free energy simulations of small molecules in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2539-2548. [PMID: 26952019 DOI: 10.1016/j.bbamem.2016.03.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/14/2022]
Abstract
Free energy simulations are a powerful tool for evaluating the interactions of molecular solutes with lipid bilayers as mimetics of cellular membranes. However, these simulations are frequently hindered by systematic sampling errors. This review highlights recent progress in computing free energy profiles for inserting molecular solutes into lipid bilayers. Particular emphasis is placed on a systematic analysis of the free energy profiles, identifying the sources of sampling errors that reduce computational efficiency, and highlighting methodological advances that may alleviate sampling deficiencies. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Chris Neale
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th St, Troy, New York 12180-3590, USA
| | - Régis Pomès
- Molecular Structure and Function, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|