• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4673863)   Today's Articles (7)
For: Olsson S, Cavalli A. Quantification of Entropy-Loss in Replica-Averaged Modeling. J Chem Theory Comput 2015;11:3973-7. [DOI: 10.1021/acs.jctc.5b00579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Number Cited by Other Article(s)
1
Pasarkar AP, Bencomo GM, Olsson S, Dieng AB. Vendi sampling for molecular simulations: Diversity as a force for faster convergence and better exploration. J Chem Phys 2023;159:144108. [PMID: 37823459 DOI: 10.1063/5.0166172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]  Open
2
Xu H. Molecular simulations minimally restrained by experimental data. J Chem Phys 2019;150:154121. [PMID: 31005120 DOI: 10.1063/1.5089924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]  Open
3
Using the Maximum Entropy Principle to Combine Simulations and Solution Experiments. COMPUTATION 2018. [DOI: 10.3390/computation6010015] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
4
Combining experimental and simulation data of molecular processes via augmented Markov models. Proc Natl Acad Sci U S A 2017;114:8265-8270. [PMID: 28716931 DOI: 10.1073/pnas.1704803114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]  Open
5
Antonov LD, Olsson S, Boomsma W, Hamelryck T. Bayesian inference of protein ensembles from SAXS data. Phys Chem Chem Phys 2017;18:5832-8. [PMID: 26548662 DOI: 10.1039/c5cp04886a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA