1
|
Salem A, Wilson CJ, Rutledge BS, Dilliott A, Farhan S, Choy WY, Duennwald ML. Matrin3: Disorder and ALS Pathogenesis. Front Mol Biosci 2022; 8:794646. [PMID: 35083279 PMCID: PMC8784776 DOI: 10.3389/fmolb.2021.794646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of both upper and lower motor neurons in the brain and spinal cord. ALS is associated with protein misfolding and inclusion formation involving RNA-binding proteins, including TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS). The 125-kDa Matrin3 is a highly conserved nuclear DNA/RNA-binding protein that is implicated in many cellular processes, including binding and stabilizing mRNA, regulating mRNA nuclear export, modulating alternative splicing, and managing chromosomal distribution. Mutations in MATR3, the gene encoding Matrin3, have been identified as causal in familial ALS (fALS). Matrin3 lacks a prion-like domain that characterizes many other ALS-associated RNA-binding proteins, including TDP-43 and FUS, however, our bioinformatics analyses and preliminary studies document that Matrin3 contains long intrinsically disordered regions that may facilitate promiscuous interactions with many proteins and may contribute to its misfolding. In addition, these disordered regions in Matrin3 undergo numerous post-translational modifications, including phosphorylation, ubiquitination and acetylation that modulate the function and misfolding of the protein. Here we discuss the disordered nature of Matrin3 and review the factors that may promote its misfolding and aggregation, two elements that might explain its role in ALS pathogenesis.
Collapse
Affiliation(s)
- Ahmed Salem
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Carter J. Wilson
- Department of Applied Mathematics, Western University, London, ON, Canada
| | - Benjamin S. Rutledge
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Allison Dilliott
- Department of Neurology and Neurosurgery, McGill Universty, Montreal, QC, Canada
| | - Sali Farhan
- Department of Neurology and Neurosurgery, McGill Universty, Montreal, QC, Canada
- Department of Human Genetics, McGill Universty, Montreal, QC, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Martin L. Duennwald
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
2
|
Gong X, Zhang Y, Chen J. Advanced Sampling Methods for Multiscale Simulation of Disordered Proteins and Dynamic Interactions. Biomolecules 2021; 11:1416. [PMID: 34680048 PMCID: PMC8533332 DOI: 10.3390/biom11101416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are highly prevalent and play important roles in biology and human diseases. It is now also recognized that many IDPs remain dynamic even in specific complexes and functional assemblies. Computer simulations are essential for deriving a molecular description of the disordered protein ensembles and dynamic interactions for a mechanistic understanding of IDPs in biology, diseases, and therapeutics. Here, we provide an in-depth review of recent advances in the multi-scale simulation of disordered protein states, with a particular emphasis on the development and application of advanced sampling techniques for studying IDPs. These techniques are critical for adequate sampling of the manifold functionally relevant conformational spaces of IDPs. Together with dramatically improved protein force fields, these advanced simulation approaches have achieved substantial success and demonstrated significant promise towards the quantitative and predictive modeling of IDPs and their dynamic interactions. We will also discuss important challenges remaining in the atomistic simulation of larger systems and how various coarse-grained approaches may help to bridge the remaining gaps in the accessible time- and length-scales of IDP simulations.
Collapse
Affiliation(s)
- Xiping Gong
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; (X.G.); (Y.Z.)
| | - Yumeng Zhang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; (X.G.); (Y.Z.)
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; (X.G.); (Y.Z.)
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Smirnov MA, Tolmachev DA, Glova AD, Sokolova MP, Geydt PV, Lukasheva NV, Lyulin SV. Combined Use of Atomic Force Microscopy and Molecular Dynamics in the Study of Biopolymer Systems. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
4
|
Wang W. Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins. Phys Chem Chem Phys 2021; 23:777-784. [PMID: 33355572 DOI: 10.1039/d0cp05818a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intrinsically disordered proteins (IDPs) play important roles in cellular functions. The inherent structural heterogeneity of IDPs makes the high-resolution experimental characterization of IDPs extremely difficult. Molecular dynamics (MD) simulation could provide the atomic-level description of the structural and dynamic properties of IDPs. This perspective reviews the recent progress in atomic MD simulation studies of IDPs, including the development of force fields and sampling methods, as well as applications in IDP-involved protein-protein interactions. The employment of large-scale simulations and advanced sampling techniques allows more accurate estimation of the thermodynamics and kinetics of IDP-mediated protein interactions, and the holistic landscape of the binding process of IDPs is emerging.
Collapse
Affiliation(s)
- Wenning Wang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
5
|
Kopacz A, Kloska D, Forman HJ, Jozkowicz A, Grochot-Przeczek A. Beyond repression of Nrf2: An update on Keap1. Free Radic Biol Med 2020; 157:63-74. [PMID: 32234331 PMCID: PMC7732858 DOI: 10.1016/j.freeradbiomed.2020.03.023] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/04/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Nrf2 (NFE2L2 - nuclear factor (erythroid-derived 2)-like 2) is a transcription factor, which is repressed by interaction with a redox-sensitive protein Keap1 (Kelch-like ECH-associated protein 1). Deregulation of Nrf2 transcriptional activity has been described in the pathogenesis of multiple diseases, and the Nrf2/Keap1 axis has emerged as a crucial modulator of cellular homeostasis. Whereas the significance of Nrf2 in the modulation of biological processes has been well established and broadly discussed in detail, the focus on Keap1 rarely goes beyond the regulation of Nrf2 activity and redox sensing. However, recent studies and scrutinized analysis of available data point to Keap1 as an intriguing and potent regulator of cellular function. This review aims to shed more light on Keap1 structure, interactome, regulation and non-canonical functions, thereby enhancing its significance in cell biology. We also intend to highlight the impact of balance between Keap1 and Nrf2 in the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
6
|
Development of Charge-Augmented Three-Point Water Model (CAIPi3P) for Accurate Simulations of Intrinsically Disordered Proteins. Int J Mol Sci 2020; 21:ijms21176166. [PMID: 32859072 PMCID: PMC7504337 DOI: 10.3390/ijms21176166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/15/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) are molecules without a fixed tertiary structure, exerting crucial roles in cellular signalling, growth and molecular recognition events. Due to their high plasticity, IDPs are very challenging in experimental and computational structural studies. To provide detailed atomic insight in IDPs' dynamics governing their functional mechanisms, all-atom molecular dynamics (MD) simulations are widely employed. However, the current generalist force fields and solvent models are unable to generate satisfactory ensembles for IDPs when compared to existing experimental data. In this work, we present a new solvation model, denoted as the Charge-Augmented Three-Point Water Model for Intrinsically Disordered Proteins (CAIPi3P). CAIPi3P has been generated by performing a systematic scan of atomic partial charges assigned to the widely popular molecular scaffold of the three-point TIP3P water model. We found that explicit solvent MD simulations employing CAIPi3P solvation considerably improved the small-angle X-ray scattering (SAXS) scattering profiles for three different IDPs. Not surprisingly, this improvement was further enhanced by using CAIPi3P water in combination with the protein force field parametrized for IDPs. We also demonstrated the applicability of CAIPi3P to molecular systems containing structured as well as intrinsically disordered regions/domains. Our results highlight the crucial importance of solvent effects for generating molecular ensembles of IDPs which reproduce the experimental data available. Hence, we conclude that our newly developed CAIPi3P solvation model is a valuable tool for molecular simulations of intrinsically disordered proteins and assessing their molecular dynamics.
Collapse
|
7
|
Tolmachev D, Lukasheva N, Mamistvalov G, Karttunen M. Influence of Calcium Binding on Conformations and Motions of Anionic Polyamino Acids. Effect of Side Chain Length. Polymers (Basel) 2020; 12:E1279. [PMID: 32503199 PMCID: PMC7362111 DOI: 10.3390/polym12061279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 11/21/2022] Open
Abstract
Investigation of the effect of CaCl2 salt on conformations of two anionic poly(amino acids) with different side chain lengths, poly-(α-l glutamic acid) (PGA) and poly-(α-l aspartic acid) (PASA), was performed by atomistic molecular dynamics (MD) simulations. The simulations were performed using both unbiased MD and the Hamiltonian replica exchange (HRE) method. The results show that at low CaCl2 concentration adsorption of Ca2+ ions lead to a significant chain size reduction for both PGA and PASA. With the increase in concentration, the chains sizes partially recover due to electrostatic repulsion between the adsorbed Ca2+ ions. Here, the side chain length becomes important. Due to the longer side chain and its ability to distance the charged groups with adsorbed ions from both each other and the backbone, PGA remains longer in the collapsed state as the CaCl2 concentration is increased. The analysis of the distribution of the mineral ions suggests that both poly(amino acids) should induce the formation of mineral with the same structure of the crystal cell.
Collapse
Affiliation(s)
- Dmitry Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia;
| | - Natalia Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia;
| | - George Mamistvalov
- Faculty of Physics, St. Petersburg State University, Petrodvorets, 198504 St. Petersburg, Russia;
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia;
- Department of Chemistry, the University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Applied Mathematics, the University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, the University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
8
|
Kopacz A, Kloska D, Targosz-Korecka M, Zapotoczny B, Cysewski D, Personnic N, Werner E, Hajduk K, Jozkowicz A, Grochot-Przeczek A. Keap1 governs ageing-induced protein aggregation in endothelial cells. Redox Biol 2020; 34:101572. [PMID: 32487458 PMCID: PMC7327977 DOI: 10.1016/j.redox.2020.101572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/07/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023] Open
Abstract
The breach of proteostasis, leading to the accumulation of protein aggregates, is a hallmark of ageing and age-associated disorders, up to now well-established in neurodegeneration. Few studies have addressed the issue of dysfunctional cell response to protein deposition also for the cardiovascular system. However, the molecular basis of proteostasis decline in vascular cells, as well as its relation to ageing, are not understood. Recent studies have indicated the associations of Nrf2 transcription factor, the critical modulator of cellular stress-response, with ageing and premature senescence. In this report, we outline the significance of protein aggregation in physiological and premature ageing of murine and human endothelial cells (ECs). Our study shows that aged donor-derived and prematurely senescent Nrf2-deficient primary human ECs, but not those overexpressing dominant-negative Nrf2, exhibit increased accumulation of protein aggregates. Such phenotype is also found in the aortas of aged mice and young Nrf2 tKO mice. Ageing-related loss of proteostasis in ECs depends on Keap1, well-known repressor of Nrf2, recently perceived as a key independent regulator of EC function and protein S-nitrosation (SNO). Deposition of protein aggregates in ECs is associated with impaired autophagy. It can be counteracted by Keap1 depletion, S-nitrosothiol reductant or rapamycin treatment. Our results show that Keap1:Nrf2 protein balance and Keap1-dependent SNO predominate Nrf2 transcriptional activity-driven mechanisms in governing proteostasis in ageing ECs. Physiological and premature ageing facilitates aggregation of proteins in ECs. Loss of proteostasis depends on Keap1-driven S-nitrosation in ageing ECs. Keap1:Nrf2 ratio predominates Nrf2 transcriptional activity in proteostasis control. Keap1 or SNO depletion, or rapamycin treatment restore proteostasis in ageing ECs.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Marta Targosz-Korecka
- Department of Physics of Nanostructures and Nanotechnology, Institute of Physics, Jagiellonian University, 30-387, Krakow, Poland
| | | | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Nicolas Personnic
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Ewa Werner
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Karolina Hajduk
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
9
|
Zhang Y, Shi Z, Zhou Y, Xiao Q, Wang H, Peng Y. Emerging Substrate Proteins of Kelch-like ECH Associated Protein 1 (Keap1) and Potential Challenges for the Development of Small-Molecule Inhibitors of the Keap1-Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Protein–Protein Interaction. J Med Chem 2020; 63:7986-8002. [DOI: 10.1021/acs.jmedchem.9b01865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| | - Zeyu Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
- Department of Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yujun Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| | - Qiong Xiao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
- Department of Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongyue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| |
Collapse
|
10
|
Tran DP, Kitao A. Kinetic Selection and Relaxation of the Intrinsically Disordered Region of a Protein upon Binding. J Chem Theory Comput 2020; 16:2835-2845. [DOI: 10.1021/acs.jctc.9b01203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Duy Phuoc Tran
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
11
|
Zou R, Zhou Y, Wang Y, Kuang G, Ågren H, Wu J, Tu Y. Free Energy Profile and Kinetics of Coupled Folding and Binding of the Intrinsically Disordered Protein p53 with MDM2. J Chem Inf Model 2020; 60:1551-1558. [DOI: 10.1021/acs.jcim.9b00920] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Rongfeng Zou
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Yang Zhou
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Yong Wang
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Guanglin Kuang
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Hans Ågren
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- College of Chemistry and Chemical Engineering, Henan University, 475004 Kaifeng, Henan, P. R. China
| | - Junchen Wu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Yaoquan Tu
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| |
Collapse
|
12
|
Zhong M, Lynch A, Muellers SN, Jehle S, Luo L, Hall DR, Iwase R, Carolan JP, Egbert M, Wakefield A, Streu K, Harvey CM, Ortet PC, Kozakov D, Vajda S, Allen KN, Whitty A. Interaction Energetics and Druggability of the Protein-Protein Interaction between Kelch-like ECH-Associated Protein 1 (KEAP1) and Nuclear Factor Erythroid 2 Like 2 (Nrf2). Biochemistry 2020; 59:563-581. [PMID: 31851823 PMCID: PMC8177486 DOI: 10.1021/acs.biochem.9b00943] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Development of small molecule inhibitors of protein-protein interactions (PPIs) is hampered by our poor understanding of the druggability of PPI target sites. Here, we describe the combined application of alanine-scanning mutagenesis, fragment screening, and FTMap computational hot spot mapping to evaluate the energetics and druggability of the highly charged PPI interface between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2 like 2 (Nrf2), an important drug target. FTMap identifies four binding energy hot spots at the active site. Only two of these are exploited by Nrf2, which alanine scanning of both proteins shows to bind primarily through E79 and E82 interacting with KEAP1 residues S363, R380, R415, R483, and S508. We identify fragment hits and obtain X-ray complex structures for three fragments via crystal soaking using a new crystal form of KEAP1. Combining these results provides a comprehensive and quantitative picture of the origins of binding energy at the interface. Our findings additionally reveal non-native interactions that might be exploited in the design of uncharged synthetic ligands to occupy the same site on KEAP1 that has evolved to bind the highly charged DEETGE binding loop of Nrf2. These include π-stacking with KEAP1 Y525 and interactions at an FTMap-identified hot spot deep in the binding site. Finally, we discuss how the complementary information provided by alanine-scanning mutagenesis, fragment screening, and computational hot spot mapping can be integrated to more comprehensively evaluate PPI druggability.
Collapse
Affiliation(s)
| | | | | | | | | | - David R Hall
- Acpharis, Inc. , 160 North Mill Street , Holliston , Massachusetts 01746 , United States
| | | | | | | | | | | | | | | | - Dima Kozakov
- Department of Applied Mathematics , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Sandor Vajda
- Biomolecular Engineering Research Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Karen N Allen
- Biomolecular Engineering Research Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Adrian Whitty
- Biomolecular Engineering Research Center , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
13
|
Heightman TD, Callahan JF, Chiarparin E, Coyle JE, Griffiths-Jones C, Lakdawala AS, McMenamin R, Mortenson PN, Norton D, Peakman TM, Rich SJ, Richardson C, Rumsey WL, Sanchez Y, Saxty G, Willems HMG, Wolfe L, Woolford AJA, Wu Z, Yan H, Kerns JK, Davies TG. Structure–Activity and Structure–Conformation Relationships of Aryl Propionic Acid Inhibitors of the Kelch-like ECH-Associated Protein 1/Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1/NRF2) Protein–Protein Interaction. J Med Chem 2019; 62:4683-4702. [DOI: 10.1021/acs.jmedchem.9b00279] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tom D. Heightman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - James F. Callahan
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | | | - Joseph E. Coyle
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | | | - Ami S. Lakdawala
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Rachel McMenamin
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - Paul N. Mortenson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - David Norton
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - Torren M. Peakman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - Sharna J. Rich
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | | | - William L. Rumsey
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Yolanda Sanchez
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Gordon Saxty
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | | | - Lawrence Wolfe
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | | | - Zining Wu
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Hongxing Yan
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Jeffrey K. Kerns
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Thomas G. Davies
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| |
Collapse
|
14
|
Lincoff J, Sasmal S, Head-Gordon T. The combined force field-sampling problem in simulations of disordered amyloid-β peptides. J Chem Phys 2019; 150:104108. [PMID: 30876367 DOI: 10.1063/1.5078615] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular dynamics simulations of intrinsically disordered proteins (IDPs) can provide high resolution structural ensembles if the force field is accurate enough and if the simulation sufficiently samples the conformational space of the IDP with the correct weighting of sub-populations. Here, we investigate the combined force field-sampling problem by testing a standard force field as well as newer fixed charge force fields, the latter specifically motivated for better description of unfolded states and IDPs, and comparing them with a standard temperature replica exchange (TREx) protocol and a non-equilibrium Temperature Cool Walking (TCW) sampling algorithm. The force field and sampling combinations are used to characterize the structural ensembles of the amyloid-beta peptides Aβ42 and Aβ43, which both should be random coils as shown recently by experimental nuclear magnetic resonance (NMR) and 2D Förster resonance energy transfer (FRET) experiments. The results illustrate the key importance of the sampling algorithm: while the standard force field using TREx is in poor agreement with the NMR J-coupling and nuclear Overhauser effect and 2D FRET data, when using the TCW method, the standard and optimized protein-water force field combinations are in very good agreement with the same experimental data since the TCW sampling method produces qualitatively different ensembles than TREx. We also discuss the relative merit of the 2D FRET data when validating structural ensembles using the different force fields and sampling protocols investigated in this work for small IDPs such as the Aβ42 and Aβ43 peptides.
Collapse
Affiliation(s)
- James Lincoff
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Sukanya Sasmal
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Teresa Head-Gordon
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
15
|
Su X, Wang K, Liu N, Chen J, Li Y, Duan M. All‐atom structure ensembles of islet amyloid polypeptides determined by enhanced sampling and experiment data restraints. Proteins 2019; 87:541-550. [DOI: 10.1002/prot.25677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/22/2018] [Accepted: 02/17/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Xinyue Su
- CAS Key Laboratory of magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan China
- Department of PhysicsCentral China Normal University Wuhan China
| | - Ke Wang
- CAS Key Laboratory of magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing China
| | - Na Liu
- CAS Key Laboratory of magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing China
| | - Jiawen Chen
- CAS Key Laboratory of magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan China
| | - Yong Li
- Department of PhysicsCentral China Normal University Wuhan China
| | - Mojie Duan
- CAS Key Laboratory of magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan China
| |
Collapse
|
16
|
Hicks A, Zhou HX. Temperature-induced collapse of a disordered peptide observed by three sampling methods in molecular dynamics simulations. J Chem Phys 2018; 149:072313. [PMID: 30134733 DOI: 10.1063/1.5027409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The conformational ensembles of a disordered peptide, polyglutamine Q15, over a wide temperature range were sampled using multiple replicates of conventional molecular dynamics (cMD) simulations as well as two enhanced sampling methods, temperature replica exchange (TREMD) and replica exchange with solute tempering (REST). The radius of gyration, asphericity, secondary structure, and hydrogen bonding patterns were used for the comparison of the sampling methods. Overall, the three sampling methods generated similar conformational ensembles, with progressive collapse at higher temperatures. Although accumulating the longest simulation time (90 μs), cMD at room temperature missed a small subspace that was sampled by both TREMD and REST. This subspace was high in α-helical content and separated from the main conformational space by an energy barrier. REST used less simulation time than TREMD (36 μs versus 42 μs), and this gap is expected to widen significantly for larger disordered proteins. We conclude that REST is the method of choice for conformational sampling of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Alan Hicks
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
17
|
Georgakopoulos ND, Talapatra SK, Gatliff J, Kozielski F, Wells G. Modified Peptide Inhibitors of the Keap1-Nrf2 Protein-Protein Interaction Incorporating Unnatural Amino Acids. Chembiochem 2018; 19:1810-1816. [PMID: 29927029 PMCID: PMC6220877 DOI: 10.1002/cbic.201800170] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/12/2022]
Abstract
Noncovalent inhibitors of the Keap1-Nrf2 protein-protein interaction (PPI) have therapeutic potential in a range of disease states including neurodegenerative diseases (Parkinson's and Alzheimer's diseases), chronic obstructive pulmonary disease and various inflammatory conditions. By stalling Keap1-mediated ubiquitination of Nrf2, such compounds can enhance Nrf2 transcriptional activity and activate the expression of a range of genes with antioxidant response elements in their promoter regions. Keap1 inhibitors based on peptide and small-molecule templates have been identified. In this paper we develop the structure-activity relationships of the peptide series and identify a group of ligands incorporating unnatural amino acids that demonstrate improved binding affinity in fluorescence polarisation, differential scanning fluorimetry and isothermal titration calorimetry assays. These modified peptides have the potential for further development into peptidomimetic chemical probes to explore the role of Nrf2 in disease and as potential lead structures for drug development.
Collapse
Affiliation(s)
| | - Sandeep K Talapatra
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, UK
| | - Jemma Gatliff
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, UK
| | - Frank Kozielski
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, UK
| | - Geoff Wells
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, UK
| |
Collapse
|
18
|
Karttunen M, Choy WY, Cino EA. Prediction of Binding Energy of Keap1 Interaction Motifs in the Nrf2 Antioxidant Pathway and Design of Potential High-Affinity Peptides. J Phys Chem B 2018; 122:5851-5859. [PMID: 29745220 DOI: 10.1021/acs.jpcb.8b03295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor and principal regulator of the antioxidant pathway. The Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) binds to motifs in the N-terminal region of Nrf2, promoting its degradation. There is interest in developing ligands that can compete with Nrf2 for binding to Kelch, thereby activating its transcriptional activities and increasing antioxidant levels. Using experimental Δ Gbind values of Kelch-binding motifs determined previously, a revised hydrophobicity-based model was developed for estimating Δ Gbind from amino acid sequence and applied to rank potential uncharacterized Kelch-binding motifs identified from interaction databases and BLAST searches. Model predictions and molecular dynamics (MD) simulations suggested that full-length MAD2A binds Kelch more favorably than a high-affinity 20-mer Nrf2 E78P peptide, but that the motif in isolation is not a particularly strong binder. Endeavoring to develop shorter peptides for activating Nrf2, new designs were created based on the E78P peptide, some of which showed considerable propensity to form binding-competent structures in MD, and were predicted to interact with Kelch more favorably than the E78P peptide. The peptides could be promising new ligands for enhancing the oxidative stress response.
Collapse
Affiliation(s)
- Mikko Karttunen
- Department of Chemistry and Department of Applied Mathematics , The University of Western Ontario , London , Ontario , Canada N6A 5B7
| | - Wing-Yiu Choy
- Department of Biochemistry , The University of Western Ontario , London , Ontario , Canada N6A 5C1
| | - Elio A Cino
- Department of Biochemistry and Immunology , Federal University of Minas Gerais , Belo Horizonte 31270-901 , Brazil
| |
Collapse
|
19
|
Structural Properties of Human IAPP Dimer in Membrane Environment Studied by All-Atom Molecular Dynamics Simulations. Sci Rep 2017; 7:7915. [PMID: 28801684 PMCID: PMC5554177 DOI: 10.1038/s41598-017-08504-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022] Open
Abstract
The aggregation of human islet amyloid polypeptide (hIAPP) can damage the membrane of the β-cells in the pancreatic islets and induce type 2 diabetes (T2D). Growing evidences indicated that the major toxic species are small oligomers of IAPP. Due to the fast aggregation nature, it is hard to characterize the structures of IAPP oligomers by experiments, especially in the complex membrane environment. On the other side, molecular dynamics simulation can provide atomic details of the structure and dynamics of the aggregation of IAPP. In this study, all-atom bias-exchange metadynamics (BE-Meta) and unbiased molecular dynamics simulations were employed to study the structural properties of IAPP dimer in the membranes environments. A number of intermediates, including α-helical states, β-sheet states, and fully disordered states, are identified. The formation of N-terminal β-sheet structure is prior to the C-terminal β-sheet structure towards the final fibril-like structures. The α-helical intermediates have lower propensity in the dimeric hIAPP and are off-pathway intermediates. The simulations also demonstrate that the β-sheet intermediates induce more perturbation on the membrane than the α-helical and disordered states and thus pose higher disruption ability.
Collapse
|
20
|
Schor M, Mey ASJS, MacPhee CE. Analytical methods for structural ensembles and dynamics of intrinsically disordered proteins. Biophys Rev 2016; 8:429-439. [PMID: 28003858 PMCID: PMC5135723 DOI: 10.1007/s12551-016-0234-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/14/2016] [Indexed: 01/02/2023] Open
Abstract
Intrinsically disordered proteins, proteins that do not have a well-defined three-dimensional structure, make up a significant proportion of our proteome and are particularly prevalent in signaling and regulation. Although their importance has been realized for two decades, there is a lack of high-resolution experimental data. Molecular dynamics simulations have been crucial in reaching our current understanding of the dynamical structural ensemble sampled by intrinsically disordered proteins. In this review, we discuss enhanced sampling simulation methods that are particularly suitable to characterize the structural ensemble, along with examples of applications and limitations. The dynamics within the ensemble can be rigorously analyzed using Markov state models. We discuss recent developments that make Markov state modeling a viable approach for studying intrinsically disordered proteins. Finally, we briefly discuss challenges and future directions when applying molecular dynamics simulations to study intrinsically disordered proteins.
Collapse
Affiliation(s)
- Marieke Schor
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - Cait E. MacPhee
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
21
|
Lambrughi M, Lucchini M, Pignataro M, Sola M, Bortolotti CA. The dynamics of the β-propeller domain in Kelch protein KLHL40 changes upon nemaline myopathy-associated mutation. RSC Adv 2016. [DOI: 10.1039/c6ra06312h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nemaline myopathy-associated E528K mutation in the KLHL40 alters the communication between the Kelch propeller blades.
Collapse
Affiliation(s)
- Matteo Lambrughi
- Department of Life Sciences
- University of Modena and Reggio Emilia
- Modena
- Italy
| | - Matteo Lucchini
- Department of Life Sciences
- University of Modena and Reggio Emilia
- Modena
- Italy
| | - Marcello Pignataro
- Department of Chemical and Geological Sciences
- University of Modena and Reggio Emilia
- Modena
- Italy
| | - Marco Sola
- Department of Life Sciences
- University of Modena and Reggio Emilia
- Modena
- Italy
| | - Carlo Augusto Bortolotti
- Department of Life Sciences
- University of Modena and Reggio Emilia
- Modena
- Italy
- CNR-Nano Institute of Nanoscience
| |
Collapse
|
22
|
Yang C, Zhang S, Bai Z, Hou S, Wu D, Huang J, Zhou P. A two-step binding mechanism for the self-binding peptide recognition of target domains. MOLECULAR BIOSYSTEMS 2016; 12:1201-13. [DOI: 10.1039/c5mb00800j] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
By using state-of-the-art molecular dynamics to reconstruct the complete structural dynamics picture of self-binding peptides, a two-step binding mechanism was proposed, including a fast, nonspecific diffusive phase and a slow, specific organizational phase.
Collapse
Affiliation(s)
- Chao Yang
- Center of Bioinformatics (COBI)
- School of Life Science and Technology
- University of Electronic Science and Technology of China (UESTC)
- Chengdu 610054
- China
| | - Shilei Zhang
- Center of Bioinformatics (COBI)
- School of Life Science and Technology
- University of Electronic Science and Technology of China (UESTC)
- Chengdu 610054
- China
| | - Zhengya Bai
- Center of Bioinformatics (COBI)
- School of Life Science and Technology
- University of Electronic Science and Technology of China (UESTC)
- Chengdu 610054
- China
| | - Shasha Hou
- Center of Bioinformatics (COBI)
- School of Life Science and Technology
- University of Electronic Science and Technology of China (UESTC)
- Chengdu 610054
- China
| | - Di Wu
- Center of Bioinformatics (COBI)
- School of Life Science and Technology
- University of Electronic Science and Technology of China (UESTC)
- Chengdu 610054
- China
| | - Jian Huang
- Center of Bioinformatics (COBI)
- School of Life Science and Technology
- University of Electronic Science and Technology of China (UESTC)
- Chengdu 610054
- China
| | - Peng Zhou
- Center of Bioinformatics (COBI)
- School of Life Science and Technology
- University of Electronic Science and Technology of China (UESTC)
- Chengdu 610054
- China
| |
Collapse
|