1
|
Kidder KM, Noid WG. Analysis of mapping atomic models to coarse-grained resolution. J Chem Phys 2024; 161:134113. [PMID: 39365018 DOI: 10.1063/5.0220989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
Low-resolution coarse-grained (CG) models provide significant computational and conceptual advantages for simulating soft materials. However, the properties of CG models depend quite sensitively upon the mapping, M, that maps each atomic configuration, r, to a CG configuration, R. In particular, M determines how the configurational information of the atomic model is partitioned between the mapped ensemble of CG configurations and the lost ensemble of atomic configurations that map to each R. In this work, we investigate how the mapping partitions the atomic configuration space into CG and intra-site components. We demonstrate that the corresponding coordinate transformation introduces a nontrivial Jacobian factor. This Jacobian factor defines a labeling entropy that corresponds to the uncertainty in the atoms that are associated with each CG site. Consequently, the labeling entropy effectively transfers configurational information from the lost ensemble into the mapped ensemble. Moreover, our analysis highlights the possibility of resonant mappings that separate the atomic potential into CG and intra-site contributions. We numerically illustrate these considerations with a Gaussian network model for the equilibrium fluctuations of actin. We demonstrate that the spectral quality, Q, provides a simple metric for identifying high quality representations for actin. Conversely, we find that neither maximizing nor minimizing the information content of the mapped ensemble results in high quality representations. However, if one accounts for the labeling uncertainty, Q(M) correlates quite well with the adjusted configurational information loss, Îmap(M), that results from the mapping.
Collapse
Affiliation(s)
- Katherine M Kidder
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
2
|
Zhu Y, Zhao X, Xiang C, Liu X, Li J. Evaluation of Essential Dynamics and Fixed-Length Coarse Graining for Multidomain Proteins. J Phys Chem B 2024; 128:5147-5156. [PMID: 38758598 DOI: 10.1021/acs.jpcb.3c08198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
For multiscale modeling of biomolecules, reliable coarse-grained (CG) models can offer great potential to simulate larger temporal and spatial scales than traditional all-atom (AA) models. In this study, we explore the essential dynamics coarse graining (EDCG) and fixed-length coarse graining (FLCG) approaches for constructing highly coarse-grained models for multidomain proteins (MDPs), with 1 to 10 amino acid residues per CG site. In the studies of 13 MDPs, our data indicate that both EDCG and FLCG can preserve the protein dynamics of MDPs. FLCG, which restricts an equal number of residues in each CG site, represents an excellent approximation to EDCG and a straightforward approach for coarse-graining MDPs. Furthermore, FLCG is tested with a class B G-protein-coupled receptor protein, and the agreement with prior experiments suggests its general application to various MDPs in different environments or conditions. Finally, we demonstrate another application of FLCG through progressive backmapping, showcasing the ability to recover from lower-resolution CG models (6 residues/CG site) to higher-resolution ones (1 residue/CG site). These promising outcomes underscore the broad applicability of FLCG to construct highly or ultra-coarse-grained models of complex biomolecules for multiscale simulations.
Collapse
Affiliation(s)
- Yu Zhu
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaochuan Zhao
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| | - Chijian Xiang
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xianshi Liu
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianing Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
3
|
Kidder KM, Shell MS, Noid WG. Surveying the energy landscape of coarse-grained mappings. J Chem Phys 2024; 160:054105. [PMID: 38310476 DOI: 10.1063/5.0182524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/05/2024] Open
Abstract
Simulations of soft materials often adopt low-resolution coarse-grained (CG) models. However, the CG representation is not unique and its impact upon simulated properties is poorly understood. In this work, we investigate the space of CG representations for ubiquitin, which is a typical globular protein with 72 amino acids. We employ Monte Carlo methods to ergodically sample this space and to characterize its landscape. By adopting the Gaussian network model as an analytically tractable atomistic model for equilibrium fluctuations, we exactly assess the intrinsic quality of each CG representation without introducing any approximations in sampling configurations or in modeling interactions. We focus on two metrics, the spectral quality and the information content, that quantify the extent to which the CG representation preserves low-frequency, large-amplitude motions and configurational information, respectively. The spectral quality and information content are weakly correlated among high-resolution representations but become strongly anticorrelated among low-resolution representations. Representations with maximal spectral quality appear consistent with physical intuition, while low-resolution representations with maximal information content do not. Interestingly, quenching studies indicate that the energy landscape of mapping space is very smooth and highly connected. Moreover, our study suggests a critical resolution below which a "phase transition" qualitatively distinguishes good and bad representations.
Collapse
Affiliation(s)
- Katherine M Kidder
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
4
|
Wu J, Xue W, Voth GA. K-Means Clustering Coarse-Graining (KMC-CG): A Next Generation Methodology for Determining Optimal Coarse-Grained Mappings of Large Biomolecules. J Chem Theory Comput 2023; 19:8987-8997. [PMID: 37957028 PMCID: PMC10720621 DOI: 10.1021/acs.jctc.3c01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023]
Abstract
Coarse-grained (CG) molecular dynamics (MD) has become a method of choice for simulating various large scale biomolecular processes; therefore, the systematic definition of the CG mappings for biomolecules remains an important topic. Appropriate CG mappings can significantly enhance the representability of a CG model and improve its ability to capture critical features of large biomolecules. In this work, we present a systematic and more generalized method called K-means clustering coarse-graining (KMC-CG), which builds on the earlier approach of essential dynamics coarse-graining (ED-CG). KMC-CG removes the sequence-dependent constraints of ED-CG, allowing it to explore a more extensive space and thus enabling the discovery of more physically optimal CG mappings. Furthermore, the implementation of the K-means clustering algorithm can variationally optimize the CG mapping with efficiency and stability. This new method is tested in three cases: ATP-bound G-actin, the HIV-1 CA pentamer, and the Arp2/3 complex. In these examples, the CG models generated by KMC-CG are seen to better capture the structural, dynamic, and functional domains. KMC-CG therefore provides a robust and consistent approach to generating CG models of large biomolecules that can then be more accurately parametrized by either bottom-up or top-down CG force fields.
Collapse
Affiliation(s)
| | | | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, The James Franck Institute,
and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Zha J, Xia F. Developing Hybrid All-Atom and Ultra-Coarse-Grained Models to Investigate Taxol-Binding and Dynein Interactions on Microtubules. J Chem Theory Comput 2023; 19:5621-5632. [PMID: 37489636 DOI: 10.1021/acs.jctc.3c00275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Simulating the conformations and functions of biological macromolecules by using all-atom (AA) models is a challenging task due to expensive computational costs. One possible strategy to solve this problem is to develop hybrid all-atom and ultra-coarse-grained (AA/UCG) models of the biological macromolecules. In the AA/UCG scheme, the interest regions are described by AA models, while the other regions are described in the UCG representation. In this study, we develop the hybrid AA/UCG models and apply them to investigate the conformational changes of microtubule-bound tubulins. The simulation results of the hybrid models elucidated the mechanism of why the taxol molecules selectively bound microtubules but not tubulin dimers. In addition, we also explore the interactions of the microtubules and dyneins. Our study shows that the hybrid AA/UCG model has great application potential in studying the function of complex biological systems.
Collapse
Affiliation(s)
- Jinyin Zha
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| |
Collapse
|
6
|
Jin J, Pak AJ, Durumeric AEP, Loose TD, Voth GA. Bottom-up Coarse-Graining: Principles and Perspectives. J Chem Theory Comput 2022; 18:5759-5791. [PMID: 36070494 PMCID: PMC9558379 DOI: 10.1021/acs.jctc.2c00643] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/14/2023]
Abstract
Large-scale computational molecular models provide scientists a means to investigate the effect of microscopic details on emergent mesoscopic behavior. Elucidating the relationship between variations on the molecular scale and macroscopic observable properties facilitates an understanding of the molecular interactions driving the properties of real world materials and complex systems (e.g., those found in biology, chemistry, and materials science). As a result, discovering an explicit, systematic connection between microscopic nature and emergent mesoscopic behavior is a fundamental goal for this type of investigation. The molecular forces critical to driving the behavior of complex heterogeneous systems are often unclear. More problematically, simulations of representative model systems are often prohibitively expensive from both spatial and temporal perspectives, impeding straightforward investigations over possible hypotheses characterizing molecular behavior. While the reduction in resolution of a study, such as moving from an atomistic simulation to that of the resolution of large coarse-grained (CG) groups of atoms, can partially ameliorate the cost of individual simulations, the relationship between the proposed microscopic details and this intermediate resolution is nontrivial and presents new obstacles to study. Small portions of these complex systems can be realistically simulated. Alone, these smaller simulations likely do not provide insight into collectively emergent behavior. However, by proposing that the driving forces in both smaller and larger systems (containing many related copies of the smaller system) have an explicit connection, systematic bottom-up CG techniques can be used to transfer CG hypotheses discovered using a smaller scale system to a larger system of primary interest. The proposed connection between different CG systems is prescribed by (i) the CG representation (mapping) and (ii) the functional form and parameters used to represent the CG energetics, which approximate potentials of mean force (PMFs). As a result, the design of CG methods that facilitate a variety of physically relevant representations, approximations, and force fields is critical to moving the frontier of systematic CG forward. Crucially, the proposed connection between the system used for parametrization and the system of interest is orthogonal to the optimization used to approximate the potential of mean force present in all systematic CG methods. The empirical efficacy of machine learning techniques on a variety of tasks provides strong motivation to consider these approaches for approximating the PMF and analyzing these approximations.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander J. Pak
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksander E. P. Durumeric
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Timothy D. Loose
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Giulini M, Rigoli M, Mattiotti G, Menichetti R, Tarenzi T, Fiorentini R, Potestio R. From System Modeling to System Analysis: The Impact of Resolution Level and Resolution Distribution in the Computer-Aided Investigation of Biomolecules. Front Mol Biosci 2021; 8:676976. [PMID: 34164432 PMCID: PMC8215203 DOI: 10.3389/fmolb.2021.676976] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
The ever increasing computer power, together with the improved accuracy of atomistic force fields, enables researchers to investigate biological systems at the molecular level with remarkable detail. However, the relevant length and time scales of many processes of interest are still hardly within reach even for state-of-the-art hardware, thus leaving important questions often unanswered. The computer-aided investigation of many biological physics problems thus largely benefits from the usage of coarse-grained models, that is, simplified representations of a molecule at a level of resolution that is lower than atomistic. A plethora of coarse-grained models have been developed, which differ most notably in their granularity; this latter aspect determines one of the crucial open issues in the field, i.e. the identification of an optimal degree of coarsening, which enables the greatest simplification at the expenses of the smallest information loss. In this review, we present the problem of coarse-grained modeling in biophysics from the viewpoint of system representation and information content. In particular, we discuss two distinct yet complementary aspects of protein modeling: on the one hand, the relationship between the resolution of a model and its capacity of accurately reproducing the properties of interest; on the other hand, the possibility of employing a lower resolution description of a detailed model to extract simple, useful, and intelligible information from the latter.
Collapse
Affiliation(s)
- Marco Giulini
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Marta Rigoli
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Giovanni Mattiotti
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Roberto Menichetti
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Thomas Tarenzi
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaele Fiorentini
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaello Potestio
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| |
Collapse
|
8
|
Zhang C, Huang J. Interactions Between Nucleosomes: From Atomistic Simulation to Polymer Model. Front Mol Biosci 2021; 8:624679. [PMID: 33912585 PMCID: PMC8072053 DOI: 10.3389/fmolb.2021.624679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/09/2021] [Indexed: 11/23/2022] Open
Abstract
The organization of genomes in space and time dimension plays an important role in gene expression and regulation. Chromatin folding occurs in a dynamic, structured way that is subject to biophysical rules and biological processes. Nucleosomes are the basic unit of chromatin in living cells, and here we report on the effective interactions between two nucleosomes in physiological conditions using explicit-solvent all-atom simulations. Free energy landscapes derived from umbrella sampling simulations agree well with recent experimental and simulation results. Our simulations reveal the atomistic details of the interactions between nucleosomes in solution and can be used for constructing the coarse-grained model for chromatin in a bottom-up manner.
Collapse
Affiliation(s)
- Chengwei Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jing Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
9
|
Zha J, Zhang Y, Xia K, Gräter F, Xia F. Coarse-Grained Simulation of Mechanical Properties of Single Microtubules With Micrometer Length. Front Mol Biosci 2021; 7:632122. [PMID: 33659274 PMCID: PMC7917235 DOI: 10.3389/fmolb.2020.632122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023] Open
Abstract
Microtubules are one of the most important components in the cytoskeleton and play a vital role in maintaining the shape and function of cells. Because single microtubules are some micrometers long, it is difficult to simulate such a large system using an all-atom model. In this work, we use the newly developed convolutional and K-means coarse-graining (CK-CG) method to establish an ultra-coarse-grained (UCG) model of a single microtubule, on the basis of the low electron microscopy density data of microtubules. We discuss the rationale of the micro-coarse-grained microtubule models of different resolutions and explore microtubule models up to 12-micron length. We use the devised microtubule model to quantify mechanical properties of microtubules of different lengths. Our model allows mesoscopic simulations of micrometer-level biomaterials and can be further used to study important biological processes related to microtubule function.
Collapse
Affiliation(s)
- Jinyin Zha
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yuwei Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Frauke Gräter
- Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.,Heidelberg Institute for Theoretical Studies (HITS), Schloβ-Wolfsbrunnenweg 35, Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraβe 29, Heidelberg, Germany
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| |
Collapse
|
10
|
Foley TT, Kidder KM, Shell MS, Noid WG. Exploring the landscape of model representations. Proc Natl Acad Sci U S A 2020; 117:24061-24068. [PMID: 32929015 PMCID: PMC7533877 DOI: 10.1073/pnas.2000098117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena. Here we develop a statistical physics framework for exploring and quantitatively characterizing the space of order parameters for representing physical systems. Specifically, we examine the space of low-resolution representations that correspond to particle-based coarse-grained (CG) models for a simple microscopic model of protein fluctuations. We employ Monte Carlo (MC) methods to sample this space and determine the density of states for CG representations as a function of their ability to preserve the configurational information, I, and large-scale fluctuations, Q, of the microscopic model. These two metrics are uncorrelated in high-resolution representations but become anticorrelated at lower resolutions. Moreover, our MC simulations suggest an emergent length scale for coarse-graining proteins, as well as a qualitative distinction between good and bad representations of proteins. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks.
Collapse
Affiliation(s)
- Thomas T Foley
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
- Department of Physics, The Pennsylvania State University, University Park, PA 16802
| | - Katherine M Kidder
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802;
| |
Collapse
|
11
|
Zhang Y, Cao Z, Zhang JZ, Xia F. Double-Well Ultra-Coarse-Grained Model to Describe Protein Conformational Transitions. J Chem Theory Comput 2020; 16:6678-6689. [PMID: 32926616 DOI: 10.1021/acs.jctc.0c00551] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The double-well model is usually used to describe the conformational transition between two states of a protein. Since conformational changes usually occur within a relatively large time scale, coarse-grained models are often used to accelerate the dynamic process due to their inexpensive computational cost. In this work, we develop a double-well ultra-coarse-grained (DW-UCG) model to describe the conformational transitions of the adenylate kinase, glutamine-binding protein, and lactoferrin. The coarse-grained simulation results show that the DW-UCG model of adenylate kinase captures the crucial intermediate states in the LID-closing and NMP-closing pathways, reflecting the key secondary structural changes in the conformational transition. A comparison of the different DW-UCG models of adenylate kinase indicates that an appropriate choice of bead resolution could generate the free energy landscape that is comparable to that from the residue-based model. The coarse-grained simulations for the glutamine-binding protein and lactoferrin also demonstrate that the DW-UCG model is valid in reproducing the correct two-state behavior for their functional study, which indicates the potential application of the DW-UCG model in investigating the mechanism of conformational changes of large proteins.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005, China.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005, China
| | - John Zenghui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
12
|
Li Z, Wellawatte GP, Chakraborty M, Gandhi HA, Xu C, White AD. Graph neural network based coarse-grained mapping prediction. Chem Sci 2020; 11:9524-9531. [PMID: 34123175 PMCID: PMC8161155 DOI: 10.1039/d0sc02458a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The selection of coarse-grained (CG) mapping operators is a critical step for CG molecular dynamics (MD) simulation. It is still an open question about what is optimal for this choice and there is a need for theory. The current state-of-the art method is mapping operators manually selected by experts. In this work, we demonstrate an automated approach by viewing this problem as supervised learning where we seek to reproduce the mapping operators produced by experts. We present a graph neural network based CG mapping predictor called Deep Supervised Graph Partitioning Model (DSGPM) that treats mapping operators as a graph segmentation problem. DSGPM is trained on a novel dataset, Human-annotated Mappings (HAM), consisting of 1180 molecules with expert annotated mapping operators. HAM can be used to facilitate further research in this area. Our model uses a novel metric learning objective to produce high-quality atomic features that are used in spectral clustering. The results show that the DSGPM outperforms state-of-the-art methods in the field of graph segmentation. Finally, we find that predicted CG mapping operators indeed result in good CG MD models when used in simulation. We propose a scalable graph neural network-based method for automating coarse-grained mapping prediction for molecules.![]()
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Computer Science, University of Rochester USA
| | | | | | - Heta A Gandhi
- Department of Chemical Engineering, University of Rochester USA
| | - Chenliang Xu
- Department of Computer Science, University of Rochester USA
| | - Andrew D White
- Department of Chemical Engineering, University of Rochester USA
| |
Collapse
|
13
|
Wu Z, Zhang Y, Zhang JZ, Xia K, Xia F. Determining Optimal Coarse-Grained Representation for Biomolecules Using Internal Cluster Validation Indexes. J Comput Chem 2019; 41:14-20. [PMID: 31568566 DOI: 10.1002/jcc.26070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
The development of ultracoarse-grained models for large biomolecules needs to derive the optimal number of coarse-grained (CG) sites to represent the targets. In this work, we propose to use the statistical internal cluster validation indexes to determine the optimal number of CG sites that are optimized based on the essential dynamics coarse-graining method. The calculated curves of Calinski-Harabasz and Silhouette Coefficient indexes exhibit the extrema corresponding to the similar CG numbers. The calculated ratios of the optimal CG numbers to the residue numbers of fine-grained models are in the range from 4 to 2. The comparison of the stability of index results indicates that Calinski-Harabasz index is the better choice to determine the optimal CG representation in coarse-graining. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhenliang Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yuwei Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - John Zenghui Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.,School of Biological Sciences, Nanyang Technological University, 637371, Singapore
| | - Fei Xia
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| |
Collapse
|
14
|
Zhang Y, Xia K, Cao Z, Gräter F, Xia F. A new method for the construction of coarse-grained models of large biomolecules from low-resolution cryo-electron microscopy data. Phys Chem Chem Phys 2019; 21:9720-9727. [PMID: 31025999 DOI: 10.1039/c9cp01370a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The rapid development of cryo-electron microscopy (cryo-EM) has led to the generation of significant low-resolution electron density data of biomolecules. However, the atomistic details of huge biomolecules usually cannot be obtained because it is very difficult to construct all-atom models for MD simulations. Thus, it is still a challenge to make use of the rich low-resolution cryo-EM data for computer simulation and functional study. In this study, we proposed a new method called Convolutional and K-means Coarse-Graining (CK-CG) for the efficient coarse-graining of large biological systems. Using the CK-CG method, we could directly map the cryo-EM data into coarse-grained (CG) beads. Furthermore, the CG beads were parameterized with an empirical harmonic potential to construct a new CG model. We subjected the CK-CG models of the fibrillar protein assemblies F-actin and collagen to external forces in pulling dynamic simulations to assess their mechanical response. The agreement between the estimated tensile stiffness between CG models and experiments demonstrates the validity of the CK-CG method. Thus, our method provides a practical strategy for the direct construction of a structural model from low-resolution data for biological function studies.
Collapse
Affiliation(s)
- Yuwei Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | | | | | | | | |
Collapse
|
15
|
Peng J, Yuan C, Ma R, Zhang Z. Backmapping from Multiresolution Coarse-Grained Models to Atomic Structures of Large Biomolecules by Restrained Molecular Dynamics Simulations Using Bayesian Inference. J Chem Theory Comput 2019; 15:3344-3353. [PMID: 30908042 DOI: 10.1021/acs.jctc.9b00062] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coarse-grained (CG) simulations have allowed access to larger length scales and longer time scales in the study of the dynamic processes of large biomolecules than all-atom (AA) molecular dynamics (MD) simulations. Backmapping from CG models to AA structures has long been studied because it enables us to gain detailed structure insights from CG simulations. Many methods first construct an AA structure from the CG model by fragments, random placement, or geometrical rules and subsequently optimize the solution via energy minimization, simulated annealing or position-restrained simulations. However, such methods may only work well on residue-level CG models and cannot consider the deviations of CG models. In this work, we describe, to the best of our knowledge, a new backmapping method based on Bayesian inference and restrained MD simulations. Restraints with log harmonic energy terms are defined according to the target CG model using the Bayesian inference in which the CG deviations can be estimated. From an initial AA structure obtained from either high-resolution experiments or homology modeling, a MD simulation with the aforementioned restraints is performed to obtain a final AA structure that is a backmapping of the target CG model. The method was validated using multiresolution CG models of the soluble extracellular region of the human epidermal growth factor receptor and was further applied to construct AA structures from CG simulations of the nucleosome core particle. The results demonstrate that our method can generate accurate AA structures of different types of biomolecules from multiple CG models with either residue-level resolution or much lower resolution than one-site-per-residue.
Collapse
Affiliation(s)
- Junhui Peng
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Chuang Yuan
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Rongsheng Ma
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| |
Collapse
|
16
|
Webb MA, Delannoy JY, de Pablo JJ. Graph-Based Approach to Systematic Molecular Coarse-Graining. J Chem Theory Comput 2018; 15:1199-1208. [PMID: 30557028 DOI: 10.1021/acs.jctc.8b00920] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel methodology is introduced here to generate coarse-grained (CG) representations of molecular models for simulations. The proposed strategy relies on basic graph-theoretic principles and is referred to as graph-based coarse-graining (GBCG). It treats a given system as a molecular graph and derives a corresponding CG representation by using edge contractions to combine nodes in the graph, which correspond to atoms in the molecule, into CG sites. A key element of this methodology is that the nodes are combined according to well-defined protocols that rank-order nodes based on the underlying chemical connectivity. By iteratively performing these operations, successively coarser representations of the original atomic system can be produced to yield a systematic set of CG mappings with hierarchical resolution in an automated fashion. These capabilities are demonstrated in the context of several test systems, including toluene, pentadecane, a polysaccharide dimer, and a rhodopsin protein. In these examples, GBCG yields multiple, intuitive structures that naturally preserve the chemical topology of the system. Importantly, these representations are rendered from algorithmic implementation rather than an arbitrary ansatz, which, until now, has been the conventional approach for defining CG mapping schemes. Overall, the results presented here indicate that GBCG is efficient, robust, and unambiguous in its application, making it a valuable tool for future CG modeling.
Collapse
Affiliation(s)
- Michael A Webb
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Jean-Yves Delannoy
- Simulation, Modeling and Artificial Intelligence team , Solvay , Bristol , Pennsylvania 19007 , United States
| | - Juan J de Pablo
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States.,Institute for Molecular Engineering and Materials Science Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| |
Collapse
|
17
|
Advances in coarse-grained modeling of macromolecular complexes. Curr Opin Struct Biol 2018; 52:119-126. [PMID: 30508766 DOI: 10.1016/j.sbi.2018.11.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/05/2018] [Accepted: 11/17/2018] [Indexed: 01/12/2023]
Abstract
Recent progress in coarse-grained (CG) molecular modeling and simulation has facilitated an influx of computational studies on biological macromolecules and their complexes. Given the large separation of length-scales and time-scales that dictate macromolecular biophysics, CG modeling and simulation are well-suited to bridge the microscopic and mesoscopic or macroscopic details observed from all-atom molecular simulations and experiments, respectively. In this review, we first summarize recent innovations in the development of CG models, which broadly include structure-based, knowledge-based, and dynamics-based approaches. We then discuss recent applications of different classes of CG models to explore various macromolecular complexes. Finally, we conclude with an outlook for the future in this ever-growing field of biomolecular modeling.
Collapse
|
18
|
Chen YL, Habeck M. Data-driven coarse graining of large biomolecular structures. PLoS One 2017; 12:e0183057. [PMID: 28817608 PMCID: PMC5560709 DOI: 10.1371/journal.pone.0183057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/29/2017] [Indexed: 11/18/2022] Open
Abstract
Advances in experimental and computational techniques allow us to study the structure and dynamics of large biomolecular assemblies at increasingly higher resolution. However, with increasing structural detail it can be challenging to unravel the mechanism underlying the function of molecular machines. One reason is that atomistic simulations become computationally prohibitive. Moreover it is difficult to rationalize the functional mechanism of systems composed of tens of thousands to millions of atoms by following each atom’s movements. Coarse graining (CG) allows us to understand biological structures from a hierarchical perspective and to gradually zoom into the adequate level of structural detail. This article introduces a Bayesian approach for coarse graining biomolecular structures. We develop a probabilistic model that aims to represent the shape of an experimental structure as a cloud of bead particles. The particles interact via a pairwise potential whose parameters are estimated along with the bead positions and the CG mapping between atoms and beads. Our model can also be applied to density maps obtained by cryo-electron microscopy. We illustrate our approach on various test systems.
Collapse
Affiliation(s)
- Yi-Ling Chen
- Statistical Inverse Problems in Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Department of NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Habeck
- Statistical Inverse Problems in Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Felix Bernstein Institute for Mathematical Statistics in the Biosciences, Georg August University Göttingen, Goldschmidtstrasse 7, 37077 Göttingen, Germany
- * E-mail:
| |
Collapse
|
19
|
Zhang Y, Cao Z, Xia F. Construction of ultra-coarse-grained model of protein with a Gō-like potential. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Madsen J, Sinitskiy AV, Li J, Voth GA. Highly Coarse-Grained Representations of Transmembrane Proteins. J Chem Theory Comput 2017; 13:935-944. [PMID: 28043122 PMCID: PMC5312841 DOI: 10.1021/acs.jctc.6b01076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Indexed: 01/04/2023]
Abstract
Numerous biomolecules and biomolecular complexes, including transmembrane proteins (TMPs), are symmetric or at least have approximate symmetries. Highly coarse-grained models of such biomolecules, aiming at capturing the essential structural and dynamical properties on resolution levels coarser than the residue scale, must preserve the underlying symmetry. However, making these models obey the correct physics is in general not straightforward, especially at the highly coarse-grained resolution where multiple (∼3-30 in the current study) amino acid residues are represented by a single coarse-grained site. In this paper, we propose a simple and fast method of coarse-graining TMPs obeying this condition. The procedure involves partitioning transmembrane domains into contiguous segments of equal length along the primary sequence. For the coarsest (lowest-resolution) mappings, it turns out to be most important to satisfy the symmetry in a coarse-grained model. As the resolution is increased to capture more detail, however, it becomes gradually more important to match modular repeats in the secondary structure (such as helix-loop repeats) instead. A set of eight TMPs of various complexity, functionality, structural topology, and internal symmetry, representing different classes of TMPs (ion channels, transporters, receptors, adhesion, and invasion proteins), has been examined. The present approach can be generalized to other systems possessing exact or approximate symmetry, allowing for reliable and fast creation of multiscale, highly coarse-grained mappings of large biomolecular assemblies.
Collapse
Affiliation(s)
| | | | | | - Gregory A. Voth
- Department of Chemistry,
Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
21
|
Zhang Y, Cao Z, Zhang JZ, Xia F. Performance Comparison of Systematic Methods for Rigorous Definition of Coarse-Grained Sites of Large Biomolecules. J Chem Inf Model 2017; 57:214-222. [PMID: 28128949 DOI: 10.1021/acs.jcim.6b00683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Construction of coarse-grained (CG) models for large biomolecules used for multiscale simulations demands a rigorous definition of CG sites for them. Several coarse-graining methods such as the simulated annealing and steepest descent (SASD) based on the essential dynamics coarse-graining (ED-CG) or the stepwise local iterative optimization (SLIO) based on the fluctuation maximization coarse-graining (FM-CG), were developed to do it. However, the practical applications of these methods such as SASD based on ED-CG are subject to limitations because they are too expensive. In this work, we extend the applicability of ED-CG by combining it with the SLIO algorithm. A comprehensive comparison of optimized results and accuracy of various algorithms based on ED-CG show that SLIO is the fastest as well as the most accurate algorithm among them. ED-CG combined with SLIO could give converged results as the number of CG sites increases, which demonstrates that it is another efficient method for coarse-graining large biomolecules. The construction of CG sites for Ras protein by using MD fluctuations demonstrates that the CG sites derived from FM-CG can reflect the fluctuation properties of secondary structures in Ras accurately.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University , Xiamen 361005, China.,School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University , Xiamen 361005, China
| | - John Zenghui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry, NYU Shanghai , Shanghai 200062, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry, NYU Shanghai , Shanghai 200062, China
| |
Collapse
|