1
|
Ditte M, Barborini M, Medrano Sandonas L, Tkatchenko A. Molecules in Environments: Toward Systematic Quantum Embedding of Electrons and Drude Oscillators. PHYSICAL REVIEW LETTERS 2023; 131:228001. [PMID: 38101380 DOI: 10.1103/physrevlett.131.228001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/26/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023]
Abstract
We develop a quantum embedding method that enables accurate and efficient treatment of interactions between molecules and an environment, while explicitly including many-body correlations. The molecule is composed of classical nuclei and quantum electrons, whereas the environment is modeled via charged quantum harmonic oscillators. We construct a general Hamiltonian and introduce a variational Ansatz for the correlated ground state of the fully interacting molecule-environment system. This wave function is optimized via the variational Monte Carlo method and the ground state energy is subsequently estimated through the diffusion Monte Carlo method. The proposed scheme allows an explicit many-body treatment of electrostatic, polarization, and dispersion interactions between the molecule and the environment. We study solvation energies and excitation energies of benzene derivatives, obtaining excellent agreement with explicit ab initio calculations and experiments.
Collapse
Affiliation(s)
- Matej Ditte
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Matteo Barborini
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Leonardo Medrano Sandonas
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
2
|
Otis L, Neuscamman E. Optimization Stability in Excited-State-Specific Variational Monte Carlo. J Chem Theory Comput 2023; 19:767-782. [PMID: 36662538 DOI: 10.1021/acs.jctc.2c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We investigate the issue of optimization stability in variance-based state-specific variational Monte Carlo, discussing the roles of the objective function, the complexity of wave function ansatz, the amount of sampling effort, and the choice of minimization algorithm. Using a small cyanine dye molecule as a test case, we systematically perform minimizations using variants of the linear method as both a standalone algorithm and in a hybrid combination with accelerated descent. We demonstrate that adaptive step control is crucial for maintaining the linear method's stability when optimizing complicated wave functions and that the hybrid method enjoys both greater stability and minimization performance.
Collapse
Affiliation(s)
- Leon Otis
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Otis L, Neuscamman E. A promising intersection of excited‐state‐specific methods from quantum chemistry and quantum Monte Carlo. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Leon Otis
- Department of Physics University of California Berkeley Berkeley California USA
| | - Eric Neuscamman
- Department of Chemistry University of California Berkeley Berkeley California USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley California USA
| |
Collapse
|
4
|
Shepard S, Panadés-Barrueta RL, Moroni S, Scemama A, Filippi C. Double Excitation Energies from Quantum Monte Carlo Using State-Specific Energy Optimization. J Chem Theory Comput 2022; 18:6722-6731. [DOI: 10.1021/acs.jctc.2c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stuart Shepard
- MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | | | - Saverio Moroni
- CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali and SISSA Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Claudia Filippi
- MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
5
|
Anstöter CS, Abou-Hatab S, Thodika M, Matsika S. Effective Fragment Potentials for Microsolvated Excited and Anionic States. J Phys Chem A 2022; 126:8508-8518. [DOI: 10.1021/acs.jpca.2c06122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cate S. Anstöter
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania19122, United States
| | - Salsabil Abou-Hatab
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania19122, United States
| | - Mushir Thodika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania19122, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania19122, United States
| |
Collapse
|
6
|
Amovilli C, Floris FM. Method to Compute the Solute-Solvent Dispersion Contribution to the Electronic Excitation Energy in Solution. J Chem Theory Comput 2022; 18:6816-6825. [PMID: 36191136 PMCID: PMC9648189 DOI: 10.1021/acs.jctc.2c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A method formulated
within the polarizable continuum model of the
solvent and a quantum Monte Carlo treatment of the electronic states
of the solute molecule is presented for the calculation of the solute–solvent
dispersion contribution to the electronic excitation energy in solution.
Variational quantum Monte Carlo is exploited to measure the fluctuations
of the electronic electric field of the solute molecule to compute
the London’s dispersion forces with the solvent. The method
previously applied to the ground state of the solute is here extended
to excited states. To perform the Casimir–Polder integration,
we introduce a positive parameter Ω whose value is properly
chosen for this purpose. We derive a general expression that for Ω
= 0 reduces to that already proposed for the ground state. For an
excited state, Ω must be less than the first transition electronic
energy of the solvent molecule but greater than the transition energy
from the ground to excited electronic state of the solute molecule.
Benchmark calculations were performed on the n → π* transition
for formaldehyde, acrolein, and acetone in six solvents, including
water, ethanol, cyclohexane, chloroform, carbon tetrachloride, and
toluene, and the π → π* transition of acrolein
in cyclohexane. Solvents are characterized by their ionization potential
and the refractive index at frequency Ω. In all cases, we found
that the dispersion solute–solvent interaction stabilizes the
excited state of the solutes leading to red (negative) solvatochromic
shifts.
Collapse
Affiliation(s)
- Claudio Amovilli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124Pisa, Italy
| | - Franca Maria Floris
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124Pisa, Italy
| |
Collapse
|
7
|
Abou-Hatab S, Carnevale V, Matsika S. Modeling solvation effects on absorption and fluorescence spectra of indole in aqueous solution. J Chem Phys 2021; 154:064104. [PMID: 33588532 PMCID: PMC7878019 DOI: 10.1063/5.0038342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/20/2021] [Indexed: 11/14/2022] Open
Abstract
Modeling the optical spectra of molecules in solution presents a challenge, so it is important to understand which of the solvation effects (i.e., electrostatics, mutual polarization, and hydrogen bonding interactions between solute and solvent molecules) are crucial in reproducing the various features of the absorption and fluorescence spectra and to identify a sufficient theoretical model that accurately captures these effects with minimal computational cost. In this study, we use various implicit and explicit solvation models, such as molecular dynamics coupled with non-polarizable and polarizable force fields, as well as Car-Parrinello molecular dynamics, to model the absorption and fluorescence spectra of indole in aqueous solution. The excited states are computed using the equation of motion coupled cluster with single and double excitations combined with the effective fragment potential to represent water molecules, which we found to be a computationally efficient approach for modeling large solute-solvent clusters at a high level of quantum theory. We find that modeling mutual polarization, compared to other solvation effects, is a dominating factor for accurately reproducing the position of the peaks and spectral line shape of the absorption spectrum of indole in solution. We present an in-depth analysis of the influence that different solvation models have on the electronic excited states responsible for the features of the absorption spectra. Modeling fluorescence is more challenging since it is hard to reproduce even the correct emitting state, and force field parameters need to be re-evaluated.
Collapse
Affiliation(s)
- Salsabil Abou-Hatab
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
8
|
Otis L, Craig I, Neuscamman E. A hybrid approach to excited-state-specific variational Monte Carlo and doubly excited states. J Chem Phys 2020; 153:234105. [PMID: 33353344 DOI: 10.1063/5.0024572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We extend our hybrid linear-method/accelerated-descent variational Monte Carlo optimization approach to excited states and investigate its efficacy in double excitations. In addition to showing a superior statistical efficiency when compared to the linear method, our tests on small molecules show good energetic agreement with benchmark methods. We also demonstrate the ability to treat double excitations in systems that are too large for a full treatment by using selected configuration interaction methods via an application to 4-aminobenzonitrile. Finally, we investigate the stability of state-specific variance optimization against collapse to other states' variance minima and find that symmetry, Ansatz quality, and sample size all have roles to play in achieving stability.
Collapse
Affiliation(s)
- Leon Otis
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
| | - Isabel Craig
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
9
|
Mai S, González L. Molecular Photochemistry: Recent Developments in Theory. Angew Chem Int Ed Engl 2020; 59:16832-16846. [PMID: 32052547 PMCID: PMC7540682 DOI: 10.1002/anie.201916381] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Photochemistry is a fascinating branch of chemistry that is concerned with molecules and light. However, the importance of simulating light-induced processes is reflected also in fields as diverse as biology, material science, and medicine. This Minireview highlights recent progress achieved in theoretical chemistry to calculate electronically excited states of molecules and simulate their photoinduced dynamics, with the aim of reaching experimental accuracy. We focus on emergent methods and give selected examples that illustrate the progress in recent years towards predicting complex electronic structures with strong correlation, calculations on large molecules, describing multichromophoric systems, and simulating non-adiabatic molecular dynamics over long time scales, for molecules in the gas phase or in complex biological environments.
Collapse
Affiliation(s)
- Sebastian Mai
- Photonics InstituteVienna University of TechnologyGusshausstrasse 27–291040ViennaAustria
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Strasse 171090ViennaAustria
| |
Collapse
|
10
|
Mai S, González L. Molekulare Photochemie: Moderne Entwicklungen in der theoretischen Chemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Mai
- Institut für Photonik Technische Universität Wien Gußhausstraße 27–29 1040 Wien Österreich
| | - Leticia González
- Institut für theoretische Chemie Fakultät für Chemie Universität Wien Währinger Straße 17 1090 Wien Österreich
| |
Collapse
|
11
|
Cuzzocrea A, Scemama A, Briels WJ, Moroni S, Filippi C. Variational Principles in Quantum Monte Carlo: The Troubled Story of Variance Minimization. J Chem Theory Comput 2020; 16:4203-4212. [PMID: 32419451 PMCID: PMC7365558 DOI: 10.1021/acs.jctc.0c00147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
We
investigate the use of different variational principles in quantum
Monte Carlo, namely, energy and variance minimization, prompted by
the interest in the robust and accurate estimation of electronic excited
states. For two prototypical, challenging molecules, we readily reach
the accuracy of the best available reference excitation energies using
energy minimization in a state-specific or state-average fashion for
states of different or equal symmetry, respectively. On the other
hand, in variance minimization, where the use of suitable functionals
is expected to target specific states regardless of the symmetry,
we encounter severe problems for a variety of wave functions: as the
variance converges, the energy drifts away from that of the selected
state. This unexpected behavior is sometimes observed even when the
target is the ground state and generally prevents the robust estimation
of total and excitation energies. We analyze this problem using a
very simple wave function and infer that the optimization finds little
or no barrier to escape from a local minimum or local plateau, eventually
converging to a lower-variance state instead of the target state.
For the increasingly complex systems becoming in reach of quantum
Monte Carlo simulations, variance minimization with current functionals
appears to be an impractical route.
Collapse
Affiliation(s)
- Alice Cuzzocrea
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Wim J Briels
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Saverio Moroni
- CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Via Bonomea 265, I-34136 Trieste, Italy.,SISSA Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
| | - Claudia Filippi
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
12
|
Influence of pseudopotentials on excitation energies from selected configuration interaction and diffusion Monte Carlo. RESULTS IN CHEMISTRY 2019. [DOI: 10.1016/j.rechem.2019.100002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
13
|
Scemama A, Benali A, Jacquemin D, Caffarel M, Loos PF. Excitation energies from diffusion Monte Carlo using selected configuration interaction nodes. J Chem Phys 2018; 149:034108. [DOI: 10.1063/1.5041327] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anouar Benali
- Computational Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Denis Jacquemin
- Laboratoire CEISAM—UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Michel Caffarel
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
14
|
Yanai K, Ishimura K, Nakayama A, Hasegawa JY. First-Order Interacting Space Approach to Excited-State Molecular Interaction: Solvatochromic Shift of p-Coumaric Acid and Retinal Schiff Base. J Chem Theory Comput 2018; 14:3643-3655. [DOI: 10.1021/acs.jctc.7b01089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazuma Yanai
- Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Kazuya Ishimura
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Akira Nakayama
- Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Jun-ya Hasegawa
- Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
15
|
Scemama A, Garniron Y, Caffarel M, Loos PF. Deterministic Construction of Nodal Surfaces within Quantum Monte Carlo: The Case of FeS. J Chem Theory Comput 2018; 14:1395-1402. [DOI: 10.1021/acs.jctc.7b01250] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 31013 Toulouse Cede, France
| | - Yann Garniron
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 31013 Toulouse Cede, France
| | - Michel Caffarel
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 31013 Toulouse Cede, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 31013 Toulouse Cede, France
| |
Collapse
|
16
|
Schröder H, Schwabe T. Corrected Polarizable Embedding: Improving the Induction Contribution to Perichromism for Linear Response Theory. J Chem Theory Comput 2018; 14:833-842. [DOI: 10.1021/acs.jctc.7b01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Heiner Schröder
- ZBH−Center for Bioinformatics
and Institute of Physical Chemistry, University of Hamburg, Bundesstraße
43, 20146 Hamburg, Germany
| | - Tobias Schwabe
- ZBH−Center for Bioinformatics
and Institute of Physical Chemistry, University of Hamburg, Bundesstraße
43, 20146 Hamburg, Germany
| |
Collapse
|
17
|
Yang X, Rees RJ, Conway W, Puxty G, Yang Q, Winkler DA. Computational Modeling and Simulation of CO2 Capture by Aqueous Amines. Chem Rev 2017; 117:9524-9593. [PMID: 28517929 DOI: 10.1021/acs.chemrev.6b00662] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Yang
- CSIRO Manufacturing, Bayview Avenue, Clayton 3169, Australia
- College
of Chemistry, Key Lab of Green Chemistry and Technology in Ministry
of Education, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Robert J. Rees
- Data61
- CSIRO, Door 34 Goods
Shed, Village Street, Docklands VIC 3008, Australia
| | | | | | - Qi Yang
- CSIRO Manufacturing, Bayview Avenue, Clayton 3169, Australia
| | - David A. Winkler
- CSIRO Manufacturing, Bayview Avenue, Clayton 3169, Australia
- Monash Institute of Pharmaceutical Sciences, 392 Royal Parade, Parkville 3052, Australia
- Latrobe Institute for Molecular Science, Bundoora 3046, Australia
- School
of
Chemical and Physical Science, Flinders University, Bedford Park 5042, Australia
| |
Collapse
|
18
|
Varsano D, Caprasecca S, Coccia E. Theoretical description of protein field effects on electronic excitations of biological chromophores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:013002. [PMID: 27830666 DOI: 10.1088/0953-8984/29/1/013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.
Collapse
Affiliation(s)
- Daniele Varsano
- S3 Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | | | | |
Collapse
|
19
|
Methylenecyclopropene: local vision of the first 1B 2 excited state. J Mol Model 2017; 23:22. [PMID: 28064374 DOI: 10.1007/s00894-016-3191-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
Abstract
The 1A1 ground and the first 1B2 excited states of the methylenecyclopropene (triafulvene) are described by localized wave functions, based on 20 structures valence bond structures. The results are compared to CASSCF(4,4) calculations for both the energetics and the dipole moment. Additional calculations with partial electronic delocalization are presented, and it is shown that the dipole moment modification does not correspond to a situation where the antiaromatic situation prevails (with 4n electrons in the cycle). Part of the analysis uses a "trust factor" that helps to decide if a wave function is appropriate to describe a given state. The trust factor compares the VB wave function to the CASSCF's with their overlap. Finally, the valence bond density is used to produce density maps that illustrate the electron transfer upon excitation. Graphical Abstract A projector-based method compares CASSCF wave functions to local wave functions, including Lewis structures as shown in the picture. A "trust factor" (τ) is obtained. Both the ground state and the first excited state of the methylenecyclopropene are discussed.
Collapse
|
20
|
Schwabe T. General theory for environmental effects on (vertical) electronic excitation energies. J Chem Phys 2016; 145:154105. [DOI: 10.1063/1.4964321] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|