1
|
Schreder L, Luber S. Propagated (fragment) Pipek-Mezey Wannier functions in real-time time-dependent density functional theory. J Chem Phys 2024; 160:214117. [PMID: 38832736 DOI: 10.1063/5.0203442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Localization procedures are an important tool for analysis of complex systems in quantum chemistry, since canonical molecular orbitals are delocalized and can, therefore, be difficult to align with chemical intuition and obscure information at the local level of the system. This especially applies to calculations obeying periodic boundary conditions. The most commonly used approach to localization is Foster-Boys Wannier functions, which use a unitary transformation to jointly minimize the second moment of the orbitals. This procedure has proven to be robust and fast but has a side effect of often mixing σ- and π-type orbitals. σ/π-separation is achieved by the Pipek-Mezey Wannier function (PMWF) approach [Lehtola and Jónsson, J. Chem. Theory Comput. 10, 642 (2014) and Jónsson et al., J. Chem. Theory Comput. 13, 460 (2017)], which defines the spread functional in terms of partial charges instead. We have implemented a PMWF algorithm in the CP2K software package using the Cardoso-Souloumiac algorithm to enable their application to real-time time-dependent density functional theory. The method is demonstrated on stacked CO2 molecules, linear acetylenic carbon, boron and nitrogen co-doped graphene, and nitrogen-vacancy doped diamond. Finally, we discuss its computational scaling and recent efforts to improve it with fragment approaches.
Collapse
Affiliation(s)
- Lukas Schreder
- University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
2
|
Fuemmeler EG, Damle A, DiStasio RA. Selected Columns of the Density Matrix in an Atomic Orbital Basis I: An Intrinsic and Non-iterative Orbital Localization Scheme for the Occupied Space. J Chem Theory Comput 2023. [PMID: 37944142 DOI: 10.1021/acs.jctc.1c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In this work, we extend the selected columns of the density matrix (SCDM) methodology [J. Chem. Theory Comput. 2015, 11, 1463-1469]─a non-iterative and real-space procedure for generating localized occupied orbitals for condensed-phase systems─to the construction of local molecular orbitals (LMOs) in systems described using non-orthogonal atomic orbital (AO) basis sets. In particular, we introduce three different theoretical and algorithmic variants of SCDM (referred to as SCDM-M, SCDM-L, and SCDM-G) that can be used in conjunction with the AO basis sets used in standard quantum chemistry codebases. The SCDM-M and SCDM-L variants are based on a pivoted QR factorization of the Mulliken and Löwdin representations of the density matrix and are tantamount to selecting a well-conditioned set of projected atomic orbitals (PAOs) and projected (symmetrically-) orthogonalized atomic orbitals, respectively, as proto-LMOs that can be orthogonalized to exactly span the occupied space. The SCDM-G variant is based on a real-space (grid) representation of the wavefunction, and therefore has the added flexibility of considering a large number of grid points (or δ functions) when selecting a set of well-conditioned proto-LMOs. A detailed comparative analysis across molecular systems of varying size, dimensionality, and saturation level reveals that the LMOs generated by these three non-iterative/direct SCDM variants are robust, comparable in orbital locality to those produced with the iterative Boys or Pipek-Mezey (PM) localization schemes, and completely agnostic toward any single orbital locality metric. Although all three SCDM variants are based on the density matrix, we find that the character of the generated LMOs can differ significantly between SCDM-M, SCDM-L, and SCDM-G. In this regard, only the grid-based SCDM-G procedure (like PM) generates LMOs that qualitatively preserve σ-π symmetry (in systems such as s-trans alkenes), and are well-aligned with chemical (i.e., Lewis structure) intuition. While the direct and standalone use of SCDM-generated LMOs should suffice for most chemical applications, our findings also suggest that the use of these orbitals as an unbiased and cost-effective (initial) guess also has the potential to improve the convergence of iterative orbital localization schemes, in particular for large-scale and/or pathological molecular systems.
Collapse
Affiliation(s)
- Eric G Fuemmeler
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Anil Damle
- Department of Computer Science, Cornell University, Ithaca, New York 14853, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Wang Z, Aldossary A, Head-Gordon M. Sparsity of the electron repulsion integral tensor using different localized virtual orbital representations in local second-order Møller-Plesset theory. J Chem Phys 2023; 158:064105. [PMID: 36792513 DOI: 10.1063/5.0134764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Utilizing localized orbitals, local correlation theory can reduce the unphysically high system-size scaling of post-Hartree-Fock (post-HF) methods to linear scaling in insulating molecules. The sparsity of the four-index electron repulsion integral (ERI) tensor is central to achieving this reduction. For second-order Møller-Plesset theory (MP2), one of the simplest post-HF methods, only the (ia|jb) ERIs are needed, coupling occupied orbitals i, j and virtuals a, b. In this paper, we compare the numerical sparsity (called the "ragged list") and two other approaches revealing the low-rank sparsity of the ERI. The ragged list requires only one set of (localized) virtual orbitals, and we find that the orthogonal valence virtual-hard virtual set of virtuals originally proposed by Subotnik et al. gives the sparsest ERI tensor. To further compress the ERI tensor, the pair natural orbital (PNO) type representation uses different sets of virtual orbitals for different occupied orbital pairs, while the occupied-specific virtual (OSV) approach uses different virtuals for each occupied orbital. Our results indicate that while the low-rank PNO representation achieves significant rank reduction, it also requires more memory than the ragged list. The OSV approach requires similar memory to that of the ragged list, but it involves greater algorithmic complexity. An approximation (called the "fixed sparsity pattern") for solving the local MP2 equations using the numerically sparse ERI tensor is proposed and tested to be sufficiently accurate and to have highly controllable error. A low-scaling local MP2 algorithm based on the ragged list and the fixed sparsity pattern is therefore promising.
Collapse
Affiliation(s)
- Zhenling Wang
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Abdulrahman Aldossary
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Weng G, Romanova M, Apelian A, Song H, Vlček V. Reduced Scaling of Optimal Regional Orbital Localization via Sequential Exhaustion of the Single-Particle Space. J Chem Theory Comput 2022; 18:4960-4972. [PMID: 35817013 PMCID: PMC9367006 DOI: 10.1021/acs.jctc.2c00315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Wannier functions have become a powerful tool in the
electronic
structure calculations of extended systems. The generalized Pipek-Mezey
Wannier functions exhibit appealing characteristics (e.g., reaching
an optimal localization and the separation of the σ–π
orbitals) compared with other schemes. However, when applied to giant
nanoscale systems, the orbital localization suffers from a large computational
cost overhead if one is interested in localized states in a small
fragment of the system. Herein, we present a swift, efficient, and
robust approach for obtaining regionally localized orbitals of a subsystem
within the generalized Pipek-Mezey scheme. The proposed algorithm
introduces a reduced work space and sequentially exhausts the entire
orbital space until the convergence of the localization functional.
It tackles systems with ∼10000 electrons within 0.5 h with
no loss in localization quality compared to the traditional approach.
Regionally localized orbitals with a higher extent of localization
are obtained via judiciously extending the subsystem’s size.
Exemplifying on large bulk and a 4 nm wide slab of diamond with an
NV– center, we demonstrate the methodology and discuss
how the choice of the localization region affects the excitation energy
of the defect. Furthermore, we show how the sequential algorithm is
easily extended to stochastic methodologies that do not provide individual
single-particle eigenstates. It is thus a promising tool to obtain
regionally localized states for solving the electronic structure problems
of a subsystem embedded in giant condensed systems.
Collapse
Affiliation(s)
- Guorong Weng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Mariya Romanova
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Arsineh Apelian
- Department of Materials, University of California, Santa Barbara, California 93106-9510, United States
| | - Hanbin Song
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Vojtěch Vlček
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
5
|
Jordaan MA, Ebenezer O, Mthiyane K, Damoyi N, Shapi M. Amide imidic prototropic tautomerization of efavirenz, NBO analysis, hyperpolarizability, polarizability and HOMO–LUMO calculations using density functional theory. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Francisco E, Costales A, Menéndez-Herrero M, Pendás ÁM. Lewis Structures from Open Quantum Systems Natural Orbitals: Real Space Adaptive Natural Density Partitioning. J Phys Chem A 2021; 125:4013-4025. [PMID: 33909423 PMCID: PMC8900138 DOI: 10.1021/acs.jpca.1c01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Building chemical models from state-of-the-art electronic structure calculations is not an easy task, since the high-dimensional information contained in the wave function needs to be compressed and read in terms of the accepted chemical language. We have already shown ( Phys. Chem. Chem. Phys. 2018, 20, 21368) how to access Lewis structures from general wave functions in real space by reformulating the adaptive natural density partitioning (AdNDP) method proposed by Zubarev and Boldyrev ( Phys. Chem. Chem. Phys. 2008, 10, 5207). This provides intuitive Lewis descriptions from fully orbital invariant position space descriptors but depends on not immediately accessible higher order cumulant density matrices. By using an open quantum systems (OQS) perspective, we here show that the rigorously defined OQS fragment natural orbitals can be used to build a consistent real space adaptive natural density partitioning based only on spatial information and the system's one-particle density matrix. We show that this rs-AdNDP approach is a cheap, efficient, and robust technique that immerses electron counting arguments fully in the real space realm.
Collapse
Affiliation(s)
- Evelio Francisco
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Aurora Costales
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain
| | - María Menéndez-Herrero
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ángel Martín Pendás
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
7
|
Senjean B, Sen S, Repisky M, Knizia G, Visscher L. Generalization of Intrinsic Orbitals to Kramers-Paired Quaternion Spinors, Molecular Fragments, and Valence Virtual Spinors. J Chem Theory Comput 2021; 17:1337-1354. [PMID: 33555866 DOI: 10.1021/acs.jctc.0c00964] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Localization of molecular orbitals finds its importance in the representation of chemical bonding (and antibonding) and in the local correlation treatments beyond mean-field approximation. In this paper, we generalize the intrinsic atomic and bonding orbitals [G. Knizia, J. Chem. Theory Comput. 2013, 9, 11, 4834-4843] to relativistic applications using complex and quaternion spinors, as well as to molecular fragments instead of atomic fragments only. By performing a singular value decomposition, we show how localized valence virtual orbitals can be expressed on this intrinsic minimal basis. We demonstrate our method on systems of increasing complexity, starting from simple cases such as benzene, acrylic acid, and ferrocene molecules, and then demonstrate the use of molecular fragments and inclusion of relativistic effects for complexes containing heavy elements such as tellurium, iridium, and astatine. The aforementioned scheme is implemented into a standalone program interfaced with several different quantum chemistry packages.
Collapse
Affiliation(s)
- Bruno Senjean
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| | - Souloke Sen
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Gerald Knizia
- Department of Chemistry, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - Lucas Visscher
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
Patel P, Wilson AK. Domain-based local pair natural orbital methods within the correlation consistent composite approach. J Comput Chem 2019; 41:800-813. [PMID: 31891196 DOI: 10.1002/jcc.26129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/29/2019] [Accepted: 12/01/2019] [Indexed: 01/15/2023]
Abstract
Ab initio composite approaches have been utilized to model and predict main group thermochemistry within 1 kcal mol-1 , on average, from well-established reliable experiments, primarily for molecules with less than 30 atoms. For molecules of increasing size and complexity, such as biomolecular complexes, composite methodologies have been limited in their application. Therefore, the domain-based local pair natural orbital (DLPNO) methods have been implemented within the correlation consistent composite approach (ccCA) framework, namely DLPNO-ccCA, to reduce the computational cost (disk space, CPU (central processing unit) time, memory) and predict energetic properties such as enthalpies of formation, noncovalent interactions, and conformation energies for organic biomolecular complexes including one of the largest molecules examined via composite strategies, within 1 kcal mol-1 , after calibration with 119 molecules and a set of linear alkanes. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Prajay Patel
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
9
|
Random phase approximation in projected oscillator orbitals. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Martín Pendás A, Francisco E. From quantum fragments to Lewis structures: electron counting in position space. Phys Chem Chem Phys 2018; 20:21368-21380. [DOI: 10.1039/c8cp04090g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From quantum atoms to electron counting the rs-AdNCP strategy: a Lewis structure through (nc,2e) functions.
Collapse
Affiliation(s)
- A. Martín Pendás
- Departamento de Química Física y Analítica
- Universidad de Oviedo
- Oviedo
- Spain
| | - E. Francisco
- Departamento de Química Física y Analítica
- Universidad de Oviedo
- Oviedo
- Spain
| |
Collapse
|
11
|
Grimme S, Bannwarth C, Caldeweyher E, Pisarek J, Hansen A. A general intermolecular force field based on tight-binding quantum chemical calculations. J Chem Phys 2017; 147:161708. [DOI: 10.1063/1.4991798] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, D-53115 Bonn,
Germany
| | - Christoph Bannwarth
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, D-53115 Bonn,
Germany
| | - Eike Caldeweyher
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, D-53115 Bonn,
Germany
| | - Jana Pisarek
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, D-53115 Bonn,
Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, D-53115 Bonn,
Germany
| |
Collapse
|
12
|
Heßelmann A. Low scaling random-phase approximation electron correlation method including exchange interactions using localised orbitals. J Chem Phys 2017; 146:174110. [DOI: 10.1063/1.4981817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andreas Heßelmann
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| |
Collapse
|
13
|
Kjærgaard T. The Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-LT-RIMP2) theory method. J Chem Phys 2017; 146:044103. [PMID: 28147513 DOI: 10.1063/1.4973710] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-RI-MP2) theory method introduced in Baudin et al. [J. Chem. Phys. 144, 054102 (2016)] is significantly improved by introducing the Laplace transform of the orbital energy denominator in order to construct the double amplitudes directly in the local basis. Furthermore, this paper introduces the auxiliary reduction procedure, which reduces the set of the auxiliary functions employed in the individual fragments. The resulting Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation method is applied to the insulin molecule where we obtain a factor 9.5 speedup compared to the DEC-RI-MP2 method.
Collapse
Affiliation(s)
- Thomas Kjærgaard
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Jónsson EÖ, Lehtola S, Puska M, Jónsson H. Theory and Applications of Generalized Pipek–Mezey Wannier Functions. J Chem Theory Comput 2017; 13:460-474. [DOI: 10.1021/acs.jctc.6b00809] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Elvar Ö. Jónsson
- COMP
Centre of Excellence and Department of Applied Physics, Aalto University School of Science, P.O. Box 11100, FI-00076 Aalto,
Espoo, Finland
| | - Susi Lehtola
- COMP
Centre of Excellence and Department of Applied Physics, Aalto University School of Science, P.O. Box 11100, FI-00076 Aalto,
Espoo, Finland
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martti Puska
- COMP
Centre of Excellence and Department of Applied Physics, Aalto University School of Science, P.O. Box 11100, FI-00076 Aalto,
Espoo, Finland
| | - Hannes Jónsson
- COMP
Centre of Excellence and Department of Applied Physics, Aalto University School of Science, P.O. Box 11100, FI-00076 Aalto,
Espoo, Finland
- Faculty
of Physical Sciences, University of Iceland, 107 Reykjavík, Iceland
| |
Collapse
|