1
|
Kovtun M, Lambros E, Liu A, Tang D, Williams-Young DB, Li X. Accelerating Relativistic Exact-Two-Component Density Functional Theory Calculations with Graphical Processing Units. J Chem Theory Comput 2024. [PMID: 39226542 DOI: 10.1021/acs.jctc.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Numerical integration of the exchange-correlation potential is an inherently parallel problem that can be significantly accelerated by graphical processing units (GPUs). In this Letter, we present the first implementation of GPU-accelerated exchange-correlation potential in the GauXC library for relativistic, 2-component density functional theory. By benchmarking against copper, silver, and gold coinage metal clusters, we demonstrate the speed and efficiency of our implementation, achieving significant speedup compared to CPU-based calculations. One GPU card provides computational power equivalent to roughly 400 CPU cores in the context of this work. The speedup further increases for larger systems, highlighting the potential of our approach for future, more computationally demanding simulations. Our implementation supports arbitrary angular momentum basis functions, enabling the simulation of systems with heavy elements and providing substantial speedup to relativistic electronic structure calculations. This advancement paves the way for more efficient and extensive computational studies in the field of density functional theory.
Collapse
Affiliation(s)
- Mikael Kovtun
- Department of Chemistry, University of Washington Seattle, Washington 98115, United States
| | - Eleftherios Lambros
- Department of Chemistry, University of Washington Seattle, Washington 98115, United States
| | - Aodong Liu
- Department of Chemistry, University of Washington Seattle, Washington 98115, United States
| | - Diandong Tang
- Department of Chemistry, University of Washington Seattle, Washington 98115, United States
| | - David B Williams-Young
- Applied Mathematics and Computational Research Division Lawrence Berkeley National Laboratory Berkeley, California 94720, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington Seattle, Washington 98115, United States
| |
Collapse
|
2
|
Yuwono SH, Li RR, Zhang T, Surjuse KA, Valeev EF, Li X, Eugene DePrince A. Relativistic Coupled Cluster with Completely Renormalized and Perturbative Triples Corrections. J Phys Chem A 2024. [PMID: 39074123 DOI: 10.1021/acs.jpca.4c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
We have implemented noniterative triples corrections to the energy from coupled-cluster with single and double excitations (CCSD) within the 1-electron exact two-component (1eX2C) relativistic framework. The effectiveness of both the CCSD(T) and the completely renormalized (CR) CC(2,3) approaches are demonstrated by performing all-electron computations of the potential energy curves and spectroscopic constants of copper, silver, and gold dimers in their ground electronic states. Spin-orbit coupling effects captured via the 1eX2C framework are shown to be crucial for recovering the correct shape of the potential energy curves, and the correlation effects due to triples in these systems change the dissociation energies by about 0.1-0.2 eV or about 4-7%. We also demonstrate that relativistic effects and basis set size and contraction scheme are significantly more important in Au2 than in Ag2 or Cu2.
Collapse
Affiliation(s)
- Stephen H Yuwono
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Run R Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
3
|
Zhang T, Banerjee S, Koulias LN, Valeev EF, DePrince AE, Li X. Dirac-Coulomb-Breit Molecular Mean-Field Exact-Two-Component Relativistic Equation-of-Motion Coupled-Cluster Theory. J Phys Chem A 2024; 128:3408-3418. [PMID: 38651293 DOI: 10.1021/acs.jpca.3c08167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We present a relativistic equation-of-motion coupled-cluster with single and double excitation formalism within the exact two-component framework (X2C-EOM-CCSD), where both scalar relativistic effects and spin-orbit coupling are variationally included at the reference level. Three different molecular mean-field treatments of relativistic corrections, including the one-electron, Dirac-Coulomb, and Dirac-Coulomb-Breit Hamiltonian, are considered in this work. Benchmark calculations include atomic excitations and fine-structure splittings arising from spin-orbit coupling. Comparison with experimental values and relativistic time-dependent density functional theory is also carried out. The computation of the oscillator strength using the relativistic X2C-EOM-CCSD approach allows for studies of spin-orbit-driven processes, such as the spontaneous phosphorescence lifetime.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Samragni Banerjee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lauren N Koulias
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Shumilov KD, Jenkins AJ, La Pierre HS, Vlaisavljevich B, Li X. Overdestabilization vs Overstabilization in the Theoretical Analysis of f-Orbital Covalency. J Am Chem Soc 2024; 146:12030-12039. [PMID: 38648269 DOI: 10.1021/jacs.4c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The complex nature of the f-orbital electronic structures and their interaction with the chemical environment pose significant computational challenges. Advanced computational techniques that variationally include scalar relativities and spin-orbit coupling directly at the molecular orbital level have been developed to address this complexity. Among these, variational relativistic multiconfigurational multireference methods stand out for their high accuracy and systematic improvement in studies of f-block complexes. Additionally, these advanced methods offer the potential for calibrating low-scaling electronic structure methods such as density functional theory. However, studies on the Cl K-edge X-ray absorption spectra of the [Ce(III)Cl6]3- and [Ce(IV)Cl6]2- complexes show that time-dependent density functional theory with approximate exchange-correlation kernels can lead to inaccuracies, resulting in an overstabilization of 4f orbitals and incorrect assessments of covalency. In contrast, approaches utilizing small active space wave function methods may understate the stability of these orbitals. The results herein demonstrate the need for large active space, multireference, and variational relativistic methods in studying f-block complexes.
Collapse
Affiliation(s)
- Kirill D Shumilov
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Henry S La Pierre
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Nuclear and Radiological Engineering and Medical Physics Program, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Ehrman J, Shumilov K, Jenkins AJ, Kasper JM, Vitova T, Batista ER, Yang P, Li X. Unveiling Hidden Shake-Up Features in the Uranyl M 4-Edge Spectrum. JACS AU 2024; 4:1134-1141. [PMID: 38559711 PMCID: PMC10976573 DOI: 10.1021/jacsau.3c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
The M4,5-edge high energy resolution X-ray absorption near-edge structure (HR-XANES) spectra of actinyls offer valuable insights into the electronic structure and bonding properties of heavy-element complexes. To conduct a comprehensive spectral analysis, it is essential to employ computational methods that accurately account for relativistic effects and electron correlation. In this work, we utilize variational relativistic multireference configurational interaction methods to compute and analyze the X-ray M4-edge absorption spectrum of uranyl. By employing these advanced computational techniques, we achieve excellent agreement between the calculated spectral features and experimental observations. Moreover, the calculations unveil significant shake-up features, which arise from the intricate interplay between strongly correlated 3d core-electron and ligand excitations. This research provides important theoretical insights into the spectral characteristics of heavy-element complexes. Furthermore, it establishes the foundation for utilizing M4,5-edge spectroscopy as a means to investigate the chemical activities of such complexes. By leveraging this technique, we can gain a deeper understanding of the bonding behavior and reactivity of heavy-element compounds.
Collapse
Affiliation(s)
- Jordan
N. Ehrman
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Kirill Shumilov
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J. Jenkins
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Joseph M. Kasper
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tonya Vitova
- Institute
for Nuclear Waste Disposal (INE), Karlsruhe
Institute of Technology, P.O. Box 3640, Karlsruhe D-76021, Germany
| | - Enrique R. Batista
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xiaosong Li
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Liao C, Hoyer CE, Banerjee Ghosh R, Jenkins AJ, Knecht S, Frisch MJ, Li X. Comparison of Variational and Perturbative Spin-Orbit Coupling within Two-Component CASSCF. J Phys Chem A 2024. [PMID: 38489510 DOI: 10.1021/acs.jpca.3c08031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The modeling of spin-orbit coupling (SOC) remains a challenge in computational chemistry due to the high computational cost. With the rising popularity of spin-driven processes and f-block metals in chemistry and materials science, it is incumbent on the community to develop accurate multiconfigurational SOC methods that scale to large systems and understand the limits of different treatments of SOC. Herein, we introduce an implementation of perturbative SOC in scalar-relativistic two-component CASSCF (srX2C-CASSCF-SO). Perspectives on the limitations and accuracy of srX2C-CASSCF-SO are presented via benchmark calculations.
Collapse
Affiliation(s)
- Can Liao
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chad E Hoyer
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rahoul Banerjee Ghosh
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Stefan Knecht
- Algorithmiq Ltd, Kanavakatu 3C, FI-00160 Helsinki, Finland
- ETH Zürich, Department of Chemistry and Applied Life Sciences, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Michael J Frisch
- Gaussian Inc., 340 Quinnipiac Street, Bldg 40, Wallingford, Connecticut 06492, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Ehrman J, Martinez-Baez E, Jenkins AJ, Li X. Improving One-Electron Exact-Two-Component Relativistic Methods with the Dirac-Coulomb-Breit-Parameterized Effective Spin-Orbit Coupling. J Chem Theory Comput 2023; 19:5785-5790. [PMID: 37589436 DOI: 10.1021/acs.jctc.3c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
In photochemical processes, spin-orbit coupling plays a crucial role in determining the outcome of the reaction. However, the exact treatment of the Dirac-Coulomb-Breit two-electron operator required for rigorous inclusion of spin-orbit coupling is computationally prohibitive. To address this challenge, we present a Dirac-Coulomb-Breit-parameterized screened-nuclear spin-orbit factor to approximate two-electron spin-orbit couplings in the effective one-electron spin-orbit Hamiltonian. We propose two schemes, the universal and row-dependent parameterizations, to further improve the accuracy of the method. Benchmark calculations on both atomic and molecular systems are performed and compared to results from the computationally expensive four-component Dirac-Coulomb-Breit method. The Dirac-Coulomb-Breit-parameterized approach offers a more computationally feasible method for accurate spin-orbit coupling calculations.
Collapse
Affiliation(s)
- Jordan Ehrman
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ernesto Martinez-Baez
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Ofstad BS, Kristiansen HE, Aurbakken E, Schøyen ØS, Kvaal S, Pedersen TB. Adiabatic extraction of nonlinear optical properties from real-time time-dependent electronic-structure theory. J Chem Phys 2023; 158:2882246. [PMID: 37093994 DOI: 10.1063/5.0145521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
Real-time simulations of laser-driven electron dynamics contain information about molecular optical properties through all orders in response theory. These properties can be extracted by assuming convergence of the power series expansion of induced electric and magnetic multipole moments. However, the accuracy relative to analytical results from response theory quickly deteriorates for higher-order responses due to the presence of high-frequency oscillations in the induced multipole moment in the time domain. This problem has been ascribed to missing higher-order corrections. We here demonstrate that the deviations are caused by nonadiabatic effects arising from the finite-time ramping from zero to full strength of the external laser field. Three different approaches, two using a ramped wave and one using a pulsed wave, for extracting electrical properties from real-time time-dependent electronic-structure simulations are investigated. The standard linear ramp is compared to a quadratic ramp, which is found to yield highly accurate results for polarizabilities, and first and second hyperpolarizabilities, at roughly half the computational cost. Results for the third hyperpolarizability are presented along with a simple, computable measure of reliability.
Collapse
Affiliation(s)
- Benedicte Sverdrup Ofstad
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | - Håkon Emil Kristiansen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | - Einar Aurbakken
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | - Thomas Bondo Pedersen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Liao C, Kasper JM, Jenkins AJ, Yang P, Batista ER, Frisch MJ, Li X. State Interaction Linear Response Time-Dependent Density Functional Theory with Perturbative Spin-Orbit Coupling: Benchmark and Perspectives. JACS AU 2023; 3:358-367. [PMID: 36873704 PMCID: PMC9975852 DOI: 10.1021/jacsau.2c00659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Spin-orbit coupling (SOC) is an important driving force in photochemistry. In this work, we develop a perturbative spin-orbit coupling method within the linear response time-dependent density function theory framework (TDDFT-SO). A full state interaction scheme, including singlet-triplet and triplet-triplet coupling, is introduced to describe not only the coupling between the ground and excited states, but also between excited states with all couplings between spin microstates. In addition, expressions to compute spectral oscillator strengths are presented. Scalar relativity is included variationally using the second-order Douglas-Kroll-Hess Hamiltonian, and the TDDFT-SO method is validated against variational SOC relativistic methods for atomic, diatomic, and transition metal complexes to determine the range of applicability and potential limitations. To demonstrate the robustness of TDDFT-SO for large-scale chemical systems, the UV-Vis spectrum of Au25(SR)18 - is computed and compared to experiment. Perspectives on the limitation, accuracy, and capability of perturbative TDDFT-SO are presented via analyses of benchmark calculations. Additionally, an open-source Python software package (PyTDDFT-SO) is developed and released to interface with the Gaussian 16 quantum chemistry software package to perform this calculation.
Collapse
Affiliation(s)
- Can Liao
- Department
of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Joseph M. Kasper
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Andrew J. Jenkins
- Department
of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Ping Yang
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Enrique R. Batista
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Michael J. Frisch
- Gaussian
Inc., 340 Quinnipiac Street, Bldg 40, Wallingford, Connecticut06492, United States
| | - Xiaosong Li
- Department
of Chemistry, University of Washington, Seattle, Washington98195, United States
| |
Collapse
|
10
|
Moitra T, Konecny L, Kadek M, Rubio A, Repisky M. Accurate Relativistic Real-Time Time-Dependent Density Functional Theory for Valence and Core Attosecond Transient Absorption Spectroscopy. J Phys Chem Lett 2023; 14:1714-1724. [PMID: 36757216 PMCID: PMC9940299 DOI: 10.1021/acs.jpclett.2c03599] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
First principles theoretical modeling of out-of-equilibrium processes observed in attosecond pump-probe transient absorption spectroscopy (TAS) triggering pure electron dynamics remains a challenging task, especially for heavy elements and/or core excitations containing fingerprints of scalar and spin-orbit relativistic effects. To address this, we formulate a methodology for simulating TAS within the relativistic real-time, time-dependent density functional theory (RT-TDDFT) framework, for both the valence and core energy regimes. Especially for TAS, full four-component (4c) RT simulations are feasible but computationally demanding. Therefore, in addition to the 4c approach, we also introduce the atomic mean-field exact two-component (amfX2C) Hamiltonian accounting for one- and two-electron picture-change corrections within RT-TDDFT. amfX2C preserves the accuracy of the parent 4c method at a fraction of its computational cost. Finally, we apply the methodology to study valence and near-L2,3-edge TAS processes of experimentally relevant systems and provide additional physical insights using relativistic nonequilibrium response theory.
Collapse
Affiliation(s)
- Torsha Moitra
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Lukas Konecny
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Max
Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Marius Kadek
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Department
of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Algorithmiq
Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics (CCQ), The Flatiron Institute, 162 Fifth Avenue, New York New York 10010, United States
- Nano-Bio
Spectroscopy Group, Departamento de Física de Materiales, Universidad del País Vasco, 20018 San Sebastian, Spain
| | - Michal Repisky
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, 84104 Bratislava, Slovakia
| |
Collapse
|
11
|
Konecny L, Komorovsky S, Vicha J, Ruud K, Repisky M. Exact Two-Component TDDFT with Simple Two-Electron Picture-Change Corrections: X-ray Absorption Spectra Near L- and M-Edges of Four-Component Quality at Two-Component Cost. J Phys Chem A 2023; 127:1360-1376. [PMID: 36722848 PMCID: PMC9923756 DOI: 10.1021/acs.jpca.2c08307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/13/2023] [Indexed: 02/02/2023]
Abstract
X-ray absorption spectroscopy (XAS) has gained popularity in recent years as it probes matter with high spatial and elemental sensitivities. However, the theoretical modeling of XAS is a challenging task since XAS spectra feature a fine structure due to scalar (SC) and spin-orbit (SO) relativistic effects, in particular near L and M absorption edges. While full four-component (4c) calculations of XAS are nowadays feasible, there is still interest in developing approximate relativistic methods that enable XAS calculations at the two-component (2c) level while maintaining the accuracy of the parent 4c approach. In this article we present theoretical and numerical insights into two simple yet accurate 2c approaches based on an (extended) atomic mean-field exact two-component Hamiltonian framework, (e)amfX2C, for the calculation of XAS using linear eigenvalue and damped response time-dependent density functional theory (TDDFT). In contrast to the commonly used one-electron X2C (1eX2C) Hamiltonian, both amfX2C and eamfX2C account for the SC and SO two-electron and exchange-correlation picture-change (PC) effects that arise from the X2C transformation. As we demonstrate on L- and M-edge XAS spectra of transition metal and actinide compounds, the absence of PC corrections in the 1eX2C approximation results in a substantial overestimation of SO splittings, whereas (e)amfX2C Hamiltonians reproduce all essential spectral features such as shape, position, and SO splitting of the 4c references in excellent agreement, while offering significant computational savings. Therefore, the (e)amfX2C PC correction models presented here constitute reliable relativistic 2c quantum-chemical approaches for modeling XAS.
Collapse
Affiliation(s)
- Lukas Konecny
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037Tromsø, Norway
- Center
for Free Electron Laser Science, Max Planck
Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Stanislav Komorovsky
- Institute
of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536Bratislava, Slovakia
| | - Jan Vicha
- Centre
of Polymer Systems, University Institute,
Tomas Bata University in Zlín, CZ-76001Zlín, Czech Republic
| | - Kenneth Ruud
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037Tromsø, Norway
- Norwegian
Defence Research Establishment, P.O.
Box 25, 2027Kjeller, Norway
| | - Michal Repisky
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037Tromsø, Norway
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, SK-84215Bratislava, Slovakia
| |
Collapse
|
12
|
Majumder R, Sokolov AY. Simulating Spin-Orbit Coupling with Quasidegenerate N-Electron Valence Perturbation Theory. J Phys Chem A 2023; 127:546-559. [PMID: 36599072 DOI: 10.1021/acs.jpca.2c07952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We present the first implementation of spin-orbit coupling effects in fully internally contracted second-order quasidegenerate N-electron valence perturbation theory (SO-QDNEVPT2). The SO-QDNEVPT2 approach enables the computations of ground- and excited-state energies and oscillator strengths combining the description of static electron correlation with an efficient treatment of dynamic correlation and spin-orbit coupling. In addition to SO-QDNEVPT2 with the full description of one- and two-body spin-orbit interactions at the level of two-component Breit-Pauli Hamiltonian, our implementation also features a simplified approach that takes advantage of spin-orbit mean-field approximation (SOMF-QDNEVPT2). The accuracy of these methods is tested for the group 14 and 16 hydrides, 3d and 4d transition metal ions, and two actinide dioxides (neptunyl and plutonyl dications). The zero-field splittings of group 14 and 16 molecules computed using SO-QDNEVPT2 and SOMF-QDNEVPT2 are in good agreement with the available experimental data. For the 3d transition metal ions, the SO-QDNEVPT2 method is significantly more accurate than SOMF-QDNEVPT2, while no substantial difference in the performance of two methods is observed for the 4d ions. Finally, we demonstrate that for the actinide dioxides the results of SO-QDNEVPT2 and SOMF-QDNEVPT2 are in good agreement with the data from previous theoretical studies of these systems. Overall, our results demonstrate that SO-QDNEVPT2 and SOMF-QDNEVPT2 are promising multireference methods for treating spin-orbit coupling with a relatively low computational cost.
Collapse
Affiliation(s)
- Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|
13
|
Knecht S, Repisky M, Jensen HJA, Saue T. Exact two-component Hamiltonians for relativistic quantum chemistry: Two-electron picture-change corrections made simple. J Chem Phys 2022; 157:114106. [PMID: 36137811 DOI: 10.1063/5.0095112] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Based on self-consistent field (SCF) atomic mean-field (amf) quantities, we present two simple yet computationally efficient and numerically accurate matrix-algebraic approaches to correct both scalar-relativistic and spin-orbit two-electron picture-change effects (PCEs) arising within an exact two-component (X2C) Hamiltonian framework. Both approaches, dubbed amfX2C and e(xtended)amfX2C, allow us to uniquely tailor PCE corrections to mean-field models, viz. Hartree-Fock or Kohn-Sham DFT, in the latter case also avoiding the need for a point-wise calculation of exchange-correlation PCE corrections. We assess the numerical performance of these PCE correction models on spinor energies of group 18 (closed-shell) and group 16 (open-shell) diatomic molecules, achieving a consistent ≈10-5 Hartree accuracy compared to reference four-component data. Additional tests include SCF calculations of molecular properties such as absolute contact density and contact density shifts in copernicium fluoride compounds (CnFn, n = 2,4,6), as well as equation-of-motion coupled-cluster calculations of x-ray core-ionization energies of 5d- and 6d-containing molecules, where we observe an excellent agreement with reference data. To conclude, we are confident that our (e)amfX2C PCE correction models constitute a fundamental milestone toward a universal and reliable relativistic two-component quantum-chemical approach, maintaining the accuracy of the parent four-component one at a fraction of its computational cost.
Collapse
Affiliation(s)
- Stefan Knecht
- Algorithmiq Ltd, Kanavakatu 3C, FI-00160 Helsinki, Finland
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Trond Saue
- Laboratoire de Chimie et Physique Quantiques (CNRS UMR 5626), Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| |
Collapse
|
14
|
Hoyer CE, Hu H, Lu L, Knecht S, Li X. Relativistic Kramers-Unrestricted Exact-Two-Component Density Matrix Renormalization Group. J Phys Chem A 2022; 126:5011-5020. [PMID: 35881436 DOI: 10.1021/acs.jpca.2c02150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work we develop a variational relativistic density matrix renormalization group (DMRG) approach within the exact-two-component (X2C) framework (X2C-DMRG), using spinor orbitals optimized with the two-component relativistic complete active space self-consistent field. We investigate fine-structure splittings of p- (Ga, In, Tl) and d-block (Sc, Y, La) atoms and excitation energies of monohydride molecules (GeH, SnH, and TlH) with X2C-DMRG calculations using an all-electron relativistic Hamiltonian in a Kramers-unrestricted basis. We find that X2C-DMRG yields accurate 2P and 2D splittings compared to multireference configuration interaction with singles and doubles (MRCISD). We also investigated the degree of symmetry breaking in the atomic multiplets and convergence of electron correlation in the total energies. Symmetry breaking can be large in some cases (∼30 meV); however, increasing the number of renormalized block states m for the DMRG optimization recovers the symmetry breaking by several orders of magnitude. Encouragingly, we find the convergence of electron correlation to be close to MRCISDTQ5 quality. Relativistic X2C-DMRG approaches are important for cases where spin-orbit coupling is significant and the underlying reference wave function requires a large determinantal space. We are able to obtain quantitatively correct fine-structure splittings for systems up to 1019 number of determinants with traditional CI approaches, which are currently unfeasible to converge for the field.
Collapse
Affiliation(s)
- Chad E Hoyer
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hang Hu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lixin Lu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Stefan Knecht
- Algorithmiq Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland.,Abteilung SHE Chemie, GSI Helmholtzzentrum für Schwerionenforschung, DE-64291 Darmstadt, Germany.,Department Chemie, Johannes-Gutenberg Universität Mainz, DE-55128 Mainz, Germany
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
15
|
Ye L, Wang H, Zhang Y, Liu W. Self-Adaptive Real-Time Time-Dependent Density Functional Theory for X-ray Absorptions. J Chem Phys 2022; 157:074106. [DOI: 10.1063/5.0106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Real-time time-dependent density functional theory (RT-TDDFT) can in principle access the whole absorption spectrum of a many-electron system exposed to a narrow pulse. However, this requires an accurate and efficient propagator for the numerical integration of the time-dependent Kohn-Sham equation. While a low-order time propagator is already sufficient for the low-lying valence absorption spectra, it is no longer the case for the X-ray absorption spectra (XAS) of systems composed even only of light elements, for which the use of a high-order propagator is indispensable. It is then crucial to choose a largest possible time step and a shortest possible simulation time, so as to minimize the computational cost. To this end, we propose here a robust AutoPST approach to determine automatically (Auto) the propagator (P), step (S), and time (T) for relativistic RT-TDDFT simulations of XAS.
Collapse
Affiliation(s)
| | - Hao Wang
- Shandong University - Qingdao Campus, China
| | | | - Wenjian Liu
- Qingdao Institue for Theoretical and Computational Sciences, Shandong University, China
| |
Collapse
|
16
|
Grofe A, Li X. Relativistic nonorthogonal configuration interaction: application to L 2,3-edge X-ray spectroscopy. Phys Chem Chem Phys 2022; 24:10745-10756. [PMID: 35451435 DOI: 10.1039/d2cp01127a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this article, we develop a relativistic exact-two-component nonorthogonal configuration interaction (X2C-NOCI) for computing L-edge X-ray spectra. This article to our knowledge is the first time NOCI has been used for relativistic wave functions. A set of molecular complexes, including SF6, SiCl4 and [FeCl6]3-, are used to demonstrate the accuracy and computational scaling of the X2C-NOCI method. Our results suggest that X2C-NOCI is able to satisfactorily capture the main features of the L2,3-edge X-ray absorption spectra. Excitations from the core require a large amount of orbital relaxation to yield reasonable energies and X2C-NOCI allows us to treat orbital optimization explicitly. However, the cost of computing the nonorthogonal coupling is higher than in conventional CI. Here, we propose an improved integral screening using overlap-scaled density combined with a continuous measure of the generalized Slater-Condon rules that allows us to estimate if an element is zero before attempting a two-electron integral contraction.
Collapse
Affiliation(s)
- Adam Grofe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
17
|
Lu L, Hu H, Jenkins AJ, Li X. Exact-Two-Component Relativistic Multireference Second-Order Perturbation Theory. J Chem Theory Comput 2022; 18:2983-2992. [PMID: 35481362 DOI: 10.1021/acs.jctc.2c00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As the relativistic corrections become stronger for late-row elements, the fully perturbative treatment of spin-orbit coupling and dynamic correlation may become inadequate for accurate descriptions of chemical properties. In this work, we introduce a determinant-based Kramers-unrestricted exact-two-component multireference second-order perturbation (X2C-MRPT2) method which variationally includes relativistic corrections with a perturbative dynamic correlation. The restricted active space partitioning scheme is employed to provide an adjustable correlation space for the second-order perturbation treatment. The multistate perturbation theory is also developed to improve the descriptions of ground and excited states. Benchmark studies of atomic fine-structure splittings and spectroscopic constants of molecular monohydrides using X2C-MRPT2 are compared to the other perturbative and variational approaches. The results suggest that X2C-MRPT2 is a highly accurate alternative to the fully variational multireference configuration interaction method at only a small fraction of the computational cost.
Collapse
Affiliation(s)
- Lixin Lu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hang Hu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
18
|
Abstract
Intersystem crossing (ISC), a vital component of the electronic and nuclear transitions that compose photophysics, has been successfully simulated in light elements and transition metal complexes. Derived from the Z-dependent spin-orbit coupling (SOC), ISC is expected to be of greater importance in heavier elements, but few attempts have been made at the simulation of ISC in lanthanides or actinides. In this work, we explore several of the challenges that will need to be overcome in order to treat ISC in late-row elements, including the loss of spin as a good quantum number, the need to include SOC variationally via two- or four-component electronic structure, and the high density of states present in late-row complexes. Density functional theory (DFT) calculations are used to illustrate several of these effects, while a model Hamiltonian is used to illustrate the importance of momentum rescaling in surface hopping simulations of strongly coupled states.
Collapse
Affiliation(s)
- Andrew J S Valentine
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
19
|
Sharma P, Jenkins AJ, Scalmani G, Frisch MJ, Truhlar DG, Gagliardi L, Li X. Exact-Two-Component Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2022; 18:2947-2954. [PMID: 35384665 DOI: 10.1021/acs.jctc.2c00062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecules containing late-row elements exhibit large relativistic effects. To account for both relativistic effects and electron correlation in a computationally inexpensive way, we derived a formulation of multiconfiguration pair-density functional theory with the relativistic exact-two-component Hamiltonian (X2C-MC-PDFT). In this new method, relativistic effects are included during variational optimization of a reference wave function by exact-two-component complete active-space self-consistent-field (X2C-CASSCF) theory, followed by an energy evaluation using pair-density functional theory. Benchmark studies of excited-state and ground-state fine-structure splitting of atomic species show that X2C-MC-PDFT can significantly improve the X2C-CASSCF results by introducing additional state-specific electron correlation.
Collapse
Affiliation(s)
- Prachi Sharma
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Giovanni Scalmani
- Gaussian Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Michael J Frisch
- Gaussian Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
20
|
Konecny L, Vicha J, Komorovsky S, Ruud K, Repisky M. Accurate X-ray Absorption Spectra near L- and M-Edges from Relativistic Four-Component Damped Response Time-Dependent Density Functional Theory. Inorg Chem 2022; 61:830-846. [PMID: 34958215 PMCID: PMC8767545 DOI: 10.1021/acs.inorgchem.1c02412] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Indexed: 11/27/2022]
Abstract
The simulation of X-ray absorption spectra requires both scalar and spin-orbit (SO) relativistic effects to be taken into account, particularly near L- and M-edges where the SO splitting of core p and d orbitals dominates. Four-component Dirac-Coulomb Hamiltonian-based linear damped response time-dependent density functional theory (4c-DR-TDDFT) calculates spectra directly for a selected frequency region while including the relativistic effects variationally, making the method well suited for X-ray applications. In this work, we show that accurate X-ray absorption spectra near L2,3- and M4,5-edges of closed-shell transition metal and actinide compounds with different central atoms, ligands, and oxidation states can be obtained by means of 4c-DR-TDDFT. While the main absorption lines do not change noticeably with the basis set and geometry, the exchange-correlation functional has a strong influence with hybrid functionals performing the best. The energy shift compared to the experiment is shown to depend linearly on the amount of Hartee-Fock exchange with the optimal value being 60% for spectral regions above 1000 eV, providing relative errors below 0.2% and 2% for edge energies and SO splittings, respectively. Finally, the methodology calibrated in this work is used to reproduce the experimental L2,3-edge X-ray absorption spectra of [RuCl2(DMSO)2(Im)2] and [WCl4(PMePh2)2], and resolve the broad bands into separated lines, allowing an interpretation based on ligand field theory and double point groups. These results support 4c-DR-TDDFT as a reliable method for calculating and analyzing X-ray absorption spectra of chemically interesting systems, advance the accuracy of state-of-the art relativistic DFT approaches, and provide a reference for benchmarking more approximate techniques.
Collapse
Affiliation(s)
- Lukas Konecny
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø − The Arctic University
of Norway, 9037 Tromsø, Norway
| | - Jan Vicha
- Centre
of Polymer Systems, Tomas Bata University, tř. Tomáše
Bati 5678, 760 01 Zlín, Czech Republic
| | - Stanislav Komorovsky
- Institute
of Inorganic Chemistry, Slovak Academy of
Sciences, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia
| | - Kenneth Ruud
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø − The Arctic University
of Norway, 9037 Tromsø, Norway
| | - Michal Repisky
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø − The Arctic University
of Norway, 9037 Tromsø, Norway
| |
Collapse
|
21
|
Jenkins AJ, Hu H, Lu L, Frisch MJ, Li X. Two-Component Multireference Restricted Active Space Configuration Interaction for the Computation of L-Edge X-ray Absorption Spectra. J Chem Theory Comput 2021; 18:141-150. [PMID: 34908414 DOI: 10.1021/acs.jctc.1c00564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
X-ray absorption spectroscopy is a powerful probe of local electronic and nuclear structures, providing insights into chemical processes. The theoretical prediction and interpretation of metal L-edge X-ray absorption spectra are complicated by both relativistic effects, including spin-orbit coupling and the multiconfigurational nature of the states involved. This work details an exact two-component multireference restricted active space (RAS) configuration interaction scheme that uses an exact two-component state-averaged complete active space self-consistent-field method, which includes the spin-orbit coupling in a variational manner, for the accurate description of the electronic structure before using a RAS configuration interaction method to describe the core excited states of the X-ray spectrum. Benchmark calculations are presented for a series of iron-containing complexes, with results showing key features of the spectrum being reproduced, including ligand-to-metal charge transfer and shake-up excitations.
Collapse
Affiliation(s)
- Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hang Hu
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Lixin Lu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Michael J Frisch
- Gaussian Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
22
|
Pototschnig JV, Dyall KG, Visscher L, Gomes ASP. Electronic spectra of ytterbium fluoride from relativistic electronic structure calculations. Phys Chem Chem Phys 2021; 23:22330-22343. [PMID: 34596656 PMCID: PMC8514048 DOI: 10.1039/d1cp03701c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022]
Abstract
We report an investigation of the low-lying excited states of the YbF molecule-a candidate molecule for experimental measurements of the electron electric dipole moment-with 2-component based multi-reference configuration interaction (MRCI), equation of motion coupled cluster (EOM-CCSD) and the extrapolated intermediate Hamiltonian Fock-space coupled cluster (XIHFS-CCSD). Specifically, we address the question of the nature of these low-lying states in terms of configurations containing filled or partially-filled Yb 4f shells. We show that while it does not appear possible to carry out calculations with both kinds of configurations contained in the same active space, reliable information can be extracted from different sectors of Fock space-that is, by performing electron attachment and detachment IHFS-CCSD and EOM-CCSD calculation on the closed-shell YbF+ and YbF- species, respectively. From these calculations we predict Ω = 1/2, 3/2 states, arising from the 4f13σ26s, 4f145d1/6p1, and 4f135d1σ16s configurations to be able to interact as they appear in the same energy range around the ground-state equilibrium geometry. As these states are generated from different sectors of Fock space, they are almost orthogonal and provide complementary descriptions of parts of the excited state manifold. To obtain a comprehensive picture, we introduce a simple adiabatization model to extract energies of interacting Ω = 1/2, 3/2 states that can be compared to experimental observations.
Collapse
Affiliation(s)
- Johann V Pototschnig
- Institut für Experimentalphysik, Technische Universität Graz, Petersgasse 16, 8010 Graz, Austria.
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands.
| | - Kenneth G Dyall
- Dirac Solutions, 10527 NW Lost Park Drive, Portland, OR 97229, USA.
| | - Lucas Visscher
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands.
| | - André Severo Pereira Gomes
- Université de Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, F-59000 Lille, France.
| |
Collapse
|
23
|
Pototschnig JV, Papadopoulos A, Lyakh DI, Repisky M, Halbert L, Severo Pereira Gomes A, Jensen HJA, Visscher L. Implementation of Relativistic Coupled Cluster Theory for Massively Parallel GPU-Accelerated Computing Architectures. J Chem Theory Comput 2021; 17:5509-5529. [PMID: 34370471 PMCID: PMC8444343 DOI: 10.1021/acs.jctc.1c00260] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we report reimplementation of the core algorithms of relativistic coupled cluster theory aimed at modern heterogeneous high-performance computational infrastructures. The code is designed for parallel execution on many compute nodes with optional GPU coprocessing, accomplished via the new ExaTENSOR back end. The resulting ExaCorr module is primarily intended for calculations of molecules with one or more heavy elements, as relativistic effects on the electronic structure are included from the outset. In the current work, we thereby focus on exact two-component methods and demonstrate the accuracy and performance of the software. The module can be used as a stand-alone program requiring a set of molecular orbital coefficients as the starting point, but it is also interfaced to the DIRAC program that can be used to generate these. We therefore also briefly discuss an improvement of the parallel computing aspects of the relativistic self-consistent field algorithm of the DIRAC program.
Collapse
Affiliation(s)
- Johann V Pototschnig
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Anastasios Papadopoulos
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Dmitry I Lyakh
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Loïc Halbert
- Universite de Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molecules, F-59000 Lille, France
| | - André Severo Pereira Gomes
- Universite de Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molecules, F-59000 Lille, France
| | - Hans Jørgen Aa Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Lucas Visscher
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
24
|
Grofe A, Gao J, Li X. Exact-two-component block-localized wave function: A simple scheme for the automatic computation of relativistic ΔSCF. J Chem Phys 2021; 155:014103. [PMID: 34241404 DOI: 10.1063/5.0054227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Block-localized wave function is a useful method for optimizing constrained determinants. In this article, we extend the generalized block-localized wave function technique to a relativistic two-component framework. Optimization of excited state determinants for two-component wave functions presents a unique challenge because the excited state manifold is often quite dense with degenerate states. Furthermore, we test the degree to which certain symmetries result naturally from the ΔSCF optimization such as time-reversal symmetry and symmetry with respect to the total angular momentum operator on a series of atomic systems. Variational optimizations may often break the symmetry in order to lower the overall energy, just as unrestricted Hartree-Fock breaks spin symmetry. Overall, we demonstrate that time-reversal symmetry is roughly maintained when using Hartree-Fock, but less so when using Kohn-Sham density functional theory. Additionally, maintaining total angular momentum symmetry appears to be system dependent and not guaranteed. Finally, we were able to trace the breaking of total angular momentum symmetry to the relaxation of core electrons.
Collapse
Affiliation(s)
- Adam Grofe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China; Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA; and Beijing University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
25
|
De Santis M, Belpassi L, Jacob CR, Severo Pereira Gomes A, Tarantelli F, Visscher L, Storchi L. Environmental Effects with Frozen-Density Embedding in Real-Time Time-Dependent Density Functional Theory Using Localized Basis Functions. J Chem Theory Comput 2020; 16:5695-5711. [PMID: 32786918 PMCID: PMC8009524 DOI: 10.1021/acs.jctc.0c00603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Frozen-density embedding (FDE) represents a versatile embedding scheme to describe the environmental effect on electron dynamics in molecular systems. The extension of the general theory of FDE to the real-time time-dependent Kohn-Sham method has previously been presented and implemented in plane waves and periodic boundary conditions [Pavanello, M.; J. Chem. Phys. 2015, 142, 154116]. In the current paper, we extend our recent formulation of the real-time time-dependent Kohn-Sham method based on localized basis set functions and developed within the Psi4NumPy framework to the FDE scheme. The latter has been implemented in its "uncoupled" flavor (in which the time evolution is only carried out for the active subsystem, while the environment subsystems remain at their ground state), using and adapting the FDE implementation already available in the PyEmbed module of the scripting framework PyADF. The implementation was facilitated by the fact that both Psi4NumPy and PyADF, being native Python API, provided an ideal framework of development using the Python advantages in terms of code readability and reusability. We employed this new implementation to investigate the stability of the time-propagation procedure, which is based on an efficient predictor/corrector second-order midpoint Magnus propagator employing an exact diagonalization, in combination with the FDE scheme. We demonstrate that the inclusion of the FDE potential does not introduce any numerical instability in time propagation of the density matrix of the active subsystem, and in the limit of the weak external field, the numerical results for low-lying transition energies are consistent with those obtained using the reference FDE calculations based on the linear-response TDDFT. The method is found to give stable numerical results also in the presence of a strong external field inducing nonlinear effects. Preliminary results are reported for high harmonic generation (HHG) of a water molecule embedded in a small water cluster. The effect of the embedding potential is evident in the HHG spectrum reducing the number of the well-resolved high harmonics at high energy with respect to the free water. This is consistent with a shift toward lower ionization energy passing from an isolated water molecule to a small water cluster. The computational burden for the propagation step increases approximately linearly with the size of the surrounding frozen environment. Furthermore, we have also shown that the updating frequency of the embedding potential may be significantly reduced, much less than one per time step, without jeopardizing the accuracy of the transition energies.
Collapse
Affiliation(s)
- Matteo De Santis
- Dipartimento di
Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Istituto di Scienze
e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche
c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Leonardo Belpassi
- Istituto di Scienze
e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche
c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Christoph R. Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| | | | - Francesco Tarantelli
- Dipartimento di
Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Lucas Visscher
- Theoretical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Loriano Storchi
- Istituto di Scienze
e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche
c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Dipartimento di Farmacia, Università
degli Studi ‘G. D’Annunzio’, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
26
|
Hoyer CE, Li X. Relativistic two-component projection-based quantum embedding for open-shell systems. J Chem Phys 2020; 153:094113. [DOI: 10.1063/5.0012433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Chad E. Hoyer
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
27
|
Kasper JM, Jenkins AJ, Sun S, Li X. Perspective on Kramers symmetry breaking and restoration in relativistic electronic structure methods for open-shell systems. J Chem Phys 2020; 153:090903. [DOI: 10.1063/5.0015279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joseph M. Kasper
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Andrew J. Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Shichao Sun
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
28
|
Li X, Govind N, Isborn C, DePrince AE, Lopata K. Real-Time Time-Dependent Electronic Structure Theory. Chem Rev 2020; 120:9951-9993. [DOI: 10.1021/acs.chemrev.0c00223] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christine Isborn
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, United States
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
29
|
Sun S, Li X. Relativistic Effects in Magnetic Circular Dichroism: Restricted Magnetic Balance and Temperature Dependence. J Chem Theory Comput 2020; 16:4533-4542. [DOI: 10.1021/acs.jctc.0c00287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shichao Sun
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
30
|
Repisky M, Komorovsky S, Kadek M, Konecny L, Ekström U, Malkin E, Kaupp M, Ruud K, Malkina OL, Malkin VG. ReSpect: Relativistic spectroscopy DFT program package. J Chem Phys 2020; 152:184101. [DOI: 10.1063/5.0005094] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-84536 Bratislava, Slovakia
| | - Marius Kadek
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Lukas Konecny
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ulf Ekström
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Elena Malkin
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Martin Kaupp
- Technische Universität Berlin, Institute of Chemistry, Strasse des 17 Juni 135, D-10623 Berlin, Germany
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Olga L. Malkina
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-84536 Bratislava, Slovakia
| | - Vladimir G. Malkin
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-84536 Bratislava, Slovakia
| |
Collapse
|
31
|
Hu H, Jenkins AJ, Liu H, Kasper JM, Frisch MJ, Li X. Relativistic Two-Component Multireference Configuration Interaction Method with Tunable Correlation Space. J Chem Theory Comput 2020; 16:2975-2984. [DOI: 10.1021/acs.jctc.9b01290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hang Hu
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J. Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hongbin Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Joseph M. Kasper
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Michael J. Frisch
- Gaussian Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
32
|
Kasper JM, Li X. Natural transition orbitals for complex two-component excited state calculations. J Comput Chem 2020; 41:1557-1563. [PMID: 32220083 DOI: 10.1002/jcc.26196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/26/2019] [Accepted: 03/09/2020] [Indexed: 01/02/2023]
Abstract
While the natural transition orbital (NTO) method has allowed electronic excitations from time-dependent Hartree-Fock and density functional theory to be viewed in a traditional orbital picture, the extension to multicomponent molecular orbitals such as those used in relativistic two-component methods or generalized Hartree-Fock (GHF) or generalized Kohn-Sham (GKS) is less straightforward due to mixing of spin-components and the inherent inclusion of spin-flip transitions in time-dependent GHF/GKS. An extension of single-component NTOs to the two-component framework is presented, in addition to a brief discussion of the practical aspects of visualizing two-component complex orbitals. Unlike the single-component analog, the method explicitly describes the spin and frequently obtains solutions with several significant orbital pairs. The method is presented using calculations on a mercury atom and a CrO2 Cl2 complex.
Collapse
Affiliation(s)
- Joseph M Kasper
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
33
|
De Santis M, Storchi L, Belpassi L, Quiney HM, Tarantelli F. PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python. J Chem Theory Comput 2020; 16:2410-2429. [PMID: 32101419 DOI: 10.1021/acs.jctc.0c00053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matteo De Santis
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Loriano Storchi
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Dipartimento di Farmacia, Università degli Studi ‘G. D’Annunzio’, Via dei Vestini 31, 66100 Chieti, Italy
| | - Leonardo Belpassi
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Harry M. Quiney
- ARC Centre of Excellence for Advanced Molecular Imaging, School of Physics, The University of Melbourne, 3010 Victoria, Australia
| | - Francesco Tarantelli
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
34
|
Kasper JM, Gamelin DR, Li X. Theoretical investigation of quantum confinement on the Rashba effect in ZnO semiconductor nanocrystals. J Chem Phys 2020; 152:014308. [DOI: 10.1063/1.5128355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Joseph M. Kasper
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Daniel R. Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
35
|
Zhang T, Kasper JM, Li X. Localized relativistic two-component methods for ground and excited state calculations. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/bs.arcc.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
36
|
Konecny L, Repisky M, Ruud K, Komorovsky S. Relativistic four-component linear damped response TDDFT for electronic absorption and circular dichroism calculations. J Chem Phys 2019; 151:194112. [DOI: 10.1063/1.5128564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Lukas Konecny
- Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
37
|
Koulias LN, Williams-Young DB, Nascimento DR, DePrince AE, Li X. Relativistic Real-Time Time-Dependent Equation-of-Motion Coupled-Cluster. J Chem Theory Comput 2019; 15:6617-6624. [DOI: 10.1021/acs.jctc.9b00729] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lauren N. Koulias
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David B. Williams-Young
- Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50A-3111, Berkeley, California 94720, United States
| | - Daniel R. Nascimento
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
38
|
Valentine AJS, Radler JJ, Mills A, Kim P, Castellano FN, Chen LX, Li X. Resolving the ultrafast intersystem crossing in a bimetallic platinum complex. J Chem Phys 2019; 151:114303. [PMID: 31542032 DOI: 10.1063/1.5115169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bimetallic platinum complexes have interesting luminescent properties and feature long-lasting vibrational coherence and ultrafast intersystem crossing (ISC) after photoexcitation. Ultrafast triplet formation is driven by very strong spin-orbit coupling in these platinum (II) systems, where relativistic theoretical approaches beyond first-order perturbation theory are desirable. Using a fully variational relativistic theoretical method recently developed by the authors, we investigate the origins of ultrafast ISC in the [Pt(ppy) (μ-tBu2pz)]2 complex (ppy = phenylpyridine, pz = pyrazolate). Spin-orbit coupling values, evaluated along a Born-Oppenheimer molecular dynamics trajectory, are used to propagate electronic populations in time. Using this technique, we estimate ultrafast ISC rates of 15-134 fs in this species for the possible ISC pathways into the three low-lying triplet states.
Collapse
Affiliation(s)
- Andrew J S Valentine
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Joseph J Radler
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Alexis Mills
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Pyosang Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
39
|
Valentine AJS, Li X. Toward the evaluation of intersystem crossing rates with variational relativistic methods. J Chem Phys 2019; 151:084107. [PMID: 31470709 DOI: 10.1063/1.5113815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The change in electronic state from one spin multiplicity to another, known as intersystem crossing, occurs in molecules via the relativistic phenomenon of spin-orbit coupling. Current means of estimating intersystem crossing rates rely on the perturbative evaluation of spin-orbit coupling effects. This perturbative approach, valid in lighter atoms where spin-orbit coupling is weaker, is expected to break down for heavier elements where relativistic effects become dominant. Methods which incorporate spin-orbit effects variationally, such as the exact-two-component (X2C) method, will be necessary to treat this strong-coupling regime. We present a novel procedure which produces a diabatic basis of spin-pure electronic states coupled by spin-orbit terms, generated from fully variational relativistic calculations. This method is implemented within X2C using time-dependent density-functional theory and is compared to results from a perturbative relativistic study in the weak spin-orbit coupling regime. Additional calculations on a more strongly spin-orbit-coupled [UO2Cl4]2- complex further illustrate the strengths of this method. This procedure will be valuable in the estimation of intersystem crossing rates within strongly spin-coupled species.
Collapse
Affiliation(s)
- Andrew J S Valentine
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
40
|
Jenkins AJ, Liu H, Kasper JM, Frisch MJ, Li X. Variational Relativistic Two-Component Complete-Active-Space Self-Consistent Field Method. J Chem Theory Comput 2019; 15:2974-2982. [DOI: 10.1021/acs.jctc.9b00011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew J. Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hongbin Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Joseph M. Kasper
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Michael J. Frisch
- Gaussian Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
41
|
Konecny L, Kadek M, Komorovsky S, Ruud K, Repisky M. Resolution-of-identity accelerated relativistic two- and four-component electron dynamics approach to chiroptical spectroscopies. J Chem Phys 2018; 149:204104. [PMID: 30501232 DOI: 10.1063/1.5051032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an implementation and application of electron dynamics based on real-time time-dependent density functional theory (RT-TDDFT) and relativistic 2-component X2C and 4-component Dirac-Coulomb (4c) Hamiltonians to the calculation of electron circular dichroism and optical rotatory dispersion spectra. In addition, the resolution-of-identity approximation for the Coulomb term (RI-J) is introduced into RT-TDDFT and formulated entirely in terms of complex quaternion algebra. The proposed methodology was assessed on the dimethylchalcogenirane series, C4H8X (X = O, S, Se, Te, Po, Lv), and the spectra obtained by non-relativistic and relativistic methods start to disagree for Se and Te, while dramatic differences are observed for Po and Lv. The X2C approach, even in its simplest one-particle form, reproduces the reference 4c results surprisingly well across the entire series while offering an 8-fold speed-up of the simulations. An overall acceleration of RT-TDDFT by means of X2C and RI-J increases with system size and approaches a factor of almost 25 when compared to the full 4c treatment, without compromising the accuracy of the final spectra. These results suggest that one-particle X2C electron dynamics with RI-J acceleration is an attractive method for the calculation of chiroptical spectra in the valence region.
Collapse
Affiliation(s)
- Lukas Konecny
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Marius Kadek
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
42
|
Norman P, Dreuw A. Simulating X-ray Spectroscopies and Calculating Core-Excited States of Molecules. Chem Rev 2018; 118:7208-7248. [DOI: 10.1021/acs.chemrev.8b00156] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Patrick Norman
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Kasper JM, Lestrange PJ, Stetina TF, Li X. Modeling L2,3-Edge X-ray Absorption Spectroscopy with Real-Time Exact Two-Component Relativistic Time-Dependent Density Functional Theory. J Chem Theory Comput 2018; 14:1998-2006. [DOI: 10.1021/acs.jctc.7b01279] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph M. Kasper
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Patrick J. Lestrange
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Torin F. Stetina
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
44
|
Abstract
The foundations, formalisms, technicalities, and practicalities of relativistic time-dependent density functional theories (R-TD-DFT) for spinor excited states of molecular systems containing heavy elements are critically reviewed.
Collapse
Affiliation(s)
- Wenjian Liu
- Beijing National Center for Molecular Sciences
- Institute of Theoretical and Computational Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yunlong Xiao
- Beijing National Center for Molecular Sciences
- Institute of Theoretical and Computational Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
45
|
Goings JJ, Lestrange PJ, Li X. Real‐time time‐dependent electronic structure theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1341] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Xiaosong Li
- Department of ChemistryUniversity of Washington Seattle WA USA
| |
Collapse
|