1
|
Nencini R, Tempra C, Biriukov D, Riopedre-Fernandez M, Cruces Chamorro V, Polák J, Mason PE, Ondo D, Heyda J, Ollila OHS, Jungwirth P, Javanainen M, Martinez-Seara H. Effective Inclusion of Electronic Polarization Improves the Description of Electrostatic Interactions: The prosECCo75 Biomolecular Force Field. J Chem Theory Comput 2024; 20:7546-7559. [PMID: 39186899 PMCID: PMC11391585 DOI: 10.1021/acs.jctc.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
prosECCo75 is an optimized force field effectively incorporating electronic polarization via charge scaling. It aims to enhance the accuracy of nominally nonpolarizable molecular dynamics simulations for interactions in biologically relevant systems involving water, ions, proteins, lipids, and saccharides. Recognizing the inherent limitations of nonpolarizable force fields in precisely modeling electrostatic interactions essential for various biological processes, we mitigate these shortcomings by accounting for electronic polarizability in a physically rigorous mean-field way that does not add to computational costs. With this scaling of (both integer and partial) charges within the CHARMM36 framework, prosECCo75 addresses overbinding artifacts. This improves agreement with experimental ion binding data across a broad spectrum of systems─lipid membranes, proteins (including peptides and amino acids), and saccharides─without compromising their biomolecular structures. prosECCo75 thus emerges as a computationally efficient tool providing enhanced accuracy and broader applicability in simulating the complex interplay of interactions between ions and biomolecules, pivotal for improving our understanding of many biological processes.
Collapse
Affiliation(s)
- Ricky Nencini
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
| | - Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Denys Biriukov
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
- CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Victor Cruces Chamorro
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Jakub Polák
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Philip E Mason
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Daniel Ondo
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Jan Heyda
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - O H Samuli Ollila
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| |
Collapse
|
2
|
Kienlein M, Zacharias M. How arginine inhibits substrate-binding domain 2 elucidated using molecular dynamics simulations. Protein Sci 2024; 33:e5077. [PMID: 38888275 PMCID: PMC11184577 DOI: 10.1002/pro.5077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
The substrate-binding domain 2 (SBD2) is an important part of the bacterial glutamine (GLN) transporter and mediates binding and delivery of GLN to the transporter translocation subunit. The SBD2 consists of two domains, D1 and D2, that bind GLN in the space between domains in a closed structure. In the absence of ligand, the SBD2 adopts an open conformation with larger space between domains. The GLN binding and closing are essential for the subsequent transport into the cell. Arginine (ARG) can also bind to SBD2 but does not induce closing and inhibits GLN transport. We use atomistic molecular dynamics (MD) simulations in explicit solvent to study ARG binding in the presence of the open SBD2 structure and observed reversible binding to the native GLN binding site with similar contacts but no transition to a closed SBD2 state. Absolute binding free energy simulations predict a considerable binding affinity of ARG and GLN to the binding site on the D1 domain. Free energy simulations to induce subsequent closing revealed a strong free energy penalty in case of ARG binding in contrast to GLN binding that favors the closed SBD2 state but still retains a free energy barrier for closing. The simulations allowed the identification of the molecular origin of the closing penalty in case of bound ARG and suggested a mutation of lysine at position 373 to alanine that strongly reduced the penalty and allowed closing even in the presence of bound ARG. The study offers an explanation of the molecular mechanism of how ARG competitively inhibits GLN from binding to SBD2 and from triggering the transition to a closed conformation. The proposed Lys373Ala mutation shows promise as a potential tool to validate whether a conformational mismatch between open SBD2 and the translocator is responsible for preventing ARG uptake to the cell.
Collapse
Affiliation(s)
- Maximilian Kienlein
- Center for Functional Protein Assemblies (CPA)Technical University of MunichGarchingGermany
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA)Technical University of MunichGarchingGermany
| |
Collapse
|
3
|
Yamada T, Miyazaki Y, Harada S, Kumar A, Vanni S, Shinoda W. Improved Protein Model in SPICA Force Field. J Chem Theory Comput 2023; 19:8967-8977. [PMID: 37989551 DOI: 10.1021/acs.jctc.3c01016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The previous version of the SPICA coarse-grained (CG) force field (FF) protein model focused primarily on membrane proteins and successfully reproduced the dimerization free energies of several transmembrane helices and the stable structures of various membrane protein assemblies. However, that model had limited accuracy when applied to other proteins, such as intrinsically disordered proteins (IDPs) and peripheral proteins, because the dimensions of the IDPs in an aqueous solution were too compact, and protein binding on the lipid membrane surface was overstabilized. To improve the accuracy of the SPICA FF model for the simulation of such systems, in this study, we introduce protein secondary structure-dependent nonbonded interaction parameters to the backbone segments and reoptimize almost all nonbonded parameters for amino acids. The improved FF proposed here successfully reproduces the radii of gyration of various IDPs, the binding sensitivity of several peripheral membrane proteins, and the dimerization free energies of several transmembrane helices. The new model also shows improved agreement with experiments on the free energy of peptide association in water. In addition, an extensive library of nonbonded interactions between proteins and lipids, including various glycerophospholipids, sphingolipids, and cholesterol, allows the study of specific interactions between lipids and peripheral and transmembrane proteins. Hence, the new SPICA FF (version 2) proposed herein is applicable with high accuracy for simulating a wide range of protein systems.
Collapse
Affiliation(s)
- Teppei Yamada
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yusuke Miyazaki
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Shogo Harada
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ashutosh Kumar
- Department of Biology and National Center of Competence in Research Bio-inspired Materials, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology and National Center of Competence in Research Bio-inspired Materials, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Panigrahy S, Sahu R, Reddy SK, Nayar D. Structure, energetics and dynamics in crowded amino acid solutions: a molecular dynamics study. Phys Chem Chem Phys 2023; 25:5430-5442. [PMID: 36744506 DOI: 10.1039/d2cp04238j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A comprehensive understanding of crowding effects on biomolecular processes necessitates investigating the bulk thermodynamic and kinetic properties of the solutions with an accurate molecular representation of the crowded milieu. Recent studies have reparameterized the non-bonded dispersion interaction of solutes to precisely model intermolecular interactions, which would circumvent artificial aggregation as shown by the original force-fields. However, the performance of this reparameterization is yet to be assessed for concentrated crowded solutions in terms of investigating the hydration shell structure, energetics and dynamics. In this study, we perform molecular dynamics simulations of crowded aqueous solutions of five zwitterionic neutral amino acids (Gly, Ala, Thr, Pro, and Ser), mimicking the molecular crowding environment, using a modified AMBER ff99SB-ILDN force-field. We systematically examine and show that the reproducibility of the osmotic coefficients, density, viscosity and self-diffusivity of amino acids improves using the modified force-field in crowded concentrations. The modified force-field also improves the structuring of the solute solvation shells, solute interaction energy and convergence of tails of radial distribution functions, indicating reduction in the artificial aggregation. Our results also indicate that the hydrogen bonding network of water weakens and water molecules anomalously diffuse at small time scales in the crowded solutions. These results underscore the significance of examining the solution properties and anomalous hydration behaviour of water in crowded solutions, which have implications in shaping the structure and dynamics of biomolecules. The findings also illustrate the improvement in predicting bulk solution properties using the modified force-field, thereby providing an approach towards accurate modeling of crowded molecular solutions.
Collapse
Affiliation(s)
- Sibasankar Panigrahy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Rahul Sahu
- Center for Computational and Data Sciences, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Sandeep K Reddy
- Center for Computational and Data Sciences, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Divya Nayar
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
5
|
El Harrar T, Gohlke H. Cumulative Millisecond-Long Sampling for a Comprehensive Energetic Evaluation of Aqueous Ionic Liquid Effects on Amino Acid Interactions. J Chem Inf Model 2023; 63:281-298. [PMID: 36520535 DOI: 10.1021/acs.jcim.2c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The interactions of amino acid side-chains confer diverse energetic contributions and physical properties to a protein's stability and function. Various computational tools estimate the effect of changing a given amino acid on the protein's stability based on parametrized (free) energy functions. When parametrized for the prediction of protein stability in water, such energy functions can lead to suboptimal results for other solvents, such as ionic liquids (IL), aqueous ionic liquids (aIL), or salt solutions. However, to our knowledge, no comprehensive data are available describing the energetic effects of aIL on intramolecular protein interactions. Here, we present the most comprehensive set of potential of mean force (PMF) profiles of pairwise protein-residue interactions to date, covering 50 relevant interactions in water, the two biotechnologically relevant aIL [BMIM/Cl] and [BMIM/TfO], and [Na/Cl]. These results are based on a cumulated simulation time of >1 ms. aIL and salt ions can weaken, but also strengthen, specific residue interactions by more than 3 kcal mol-1, depending on the residue pair, residue-residue configuration, participating ions, and concentration, necessitating considering such interactions specifically. These changes originate from a complex interplay of competitive or cooperative noncovalent ion-residue interactions, changes in solvent structural dynamics, or unspecific charge screening effects and occur at the contact distance but also at larger, solvent-separated distances. This data provide explanations at the atomistic and energetic levels for complex IL effects on protein stability and should help improve the prediction accuracies of computational tools that estimate protein stability based on (free) energy functions.
Collapse
Affiliation(s)
- Till El Harrar
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Jin Y, Qi G, Shou Y, Li D, Liu Y, Guan H, Zhang Q, Chen S, Luo J, Xu L, Li C, Ma W, Chen N, Zheng Y, Yu D. High throughput data-based, toxicity pathway-oriented development of a quantitative adverse outcome pathway network linking AHR activation to lung damages. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128041. [PMID: 34906874 DOI: 10.1016/j.jhazmat.2021.128041] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The quantitative adverse outcome pathway (qAOP) is proposed to inform dose-responses at multiple biological levels for the purpose of toxicity prediction. So far, qAOP models concerning human health are scarce. Previously, we proposed 5 key molecular pathways that led aryl hydrogen receptor (AHR) activation to lung damages. The present study assembled an AOP network based on the gene expression signatures of these toxicity pathways, and validated the network using publicly available high throughput data combined with machine learning models. In addition, the AOP network was quantitatively evaluated with omics approaches and bioassays, using 16HBE-CYP1A1 cells exposed to benzo(a)pyrene (BaP), a prototypical AHR activator. Benchmark dose (BMD) analysis of transcriptomics revealed that AHR gene held the lowest BMD value, whereas AHR pathway held the lowest point of departure (PoD) compared to the other 4 pathways. Targeted bioassays were further performed to quantitatively understand the cellular responses, including ROS generation, DNA damage, interleukin-6 production, and extracellular matrix increase marked by collagen expression. Eventually, response-response relationships were plotted using nonlinear model fitting. The present study developed a highly reliable AOP model concerning human health, and validated as well as quantitatively evaluated it, and such a method is likely to be adoptable for risk assessment.
Collapse
Affiliation(s)
- Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Guangshuai Qi
- School of Public Health, Qingdao University, Qingdao, China
| | - Yingqing Shou
- School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuzhen Liu
- School of Public Health, Qingdao University, Qingdao, China
| | - Heyuan Guan
- School of Public Health, Qingdao University, Qingdao, China
| | - Qianqian Zhang
- School of Public Health, Qingdao University, Qingdao, China
| | - Shen Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Qiu Y, Jiang Y, Zhang Y, Zhang H. Rational Design of Nonbonded Point Charge Models for Monovalent Ions with Lennard-Jones 12-6 Potential. J Phys Chem B 2021; 125:13502-13518. [PMID: 34860517 DOI: 10.1021/acs.jpcb.1c09103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ions are of central importance in nature, and a variety of potential models was proposed to model ions in different phases for an in-depth exploration of ion-related systems. Here, we developed point charge models of 14 monovalent ions with the traditional 12-6 Lennard-Jones (LJ) potential for use in conjunction with 11 water models of TIP3P, OPC3, SPC/E, SPC/Eb, TIP3P-FB, a99SB-disp, TIP4P-Ew, OPC, TIP4P/2005, TIP4P-D, and TIP4P-FB. The designed models reproduced the real hydration free energy (HFE) of ions and the ion-oxygen distance (IOD) in the first hydration shell accurately and simultaneously, a performance similar to the previously reported 12-6-4 LJ-type ion models (12-6 LJ plus an attractive C4 term for cations or a repulsive one for anions). This work, along with our previous work on di-, tri-, and tetravalent metal cations (J. Chem. Inf. Model. 2021, 61, 4031-4044; J. Chem. Inf. Model. 2021, 61, 4613-4629), demonstrates the feasibility of the simple 12-6 LJ potential in ion modeling. In order for the 12-6 LJ potential to reproduce both the HFE and IOD, the LJ R parameters need to be close to Shannon's ionic radii for the highly charged cations and to the Stokes's van der Waals (vdW) radii for the monovalent ions. With an additional C4 term, the R parameters of 12-6-4 LJ ion models agree well with the Stokes's vdW radii and have a more physical meaning. It appears that the C4 term can be merged into the 12-6 LJ potential by a rational tuning of R and the LJ well depth. Simulations of the osmotic coefficients of alkali chloride solutions and the properties of gaseous and solid alkali halides indicate the necessity of further optimizing ion-ion interactions via, for instance, targeting more properties or using a more physical (polarizable) model.
Collapse
Affiliation(s)
- Yejie Qiu
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yongguang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| |
Collapse
|
8
|
Caceres-Delpiano J, Wang LP, Essex JW. The automated optimisation of a coarse-grained force field using free energy data. Phys Chem Chem Phys 2021; 23:24842-24851. [PMID: 34723311 PMCID: PMC8579472 DOI: 10.1039/d0cp05041e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
Atomistic models provide a detailed representation of molecular systems, but are sometimes inadequate for simulations of large systems over long timescales. Coarse-grained models enable accelerated simulations by reducing the number of degrees of freedom, at the cost of reduced accuracy. New optimisation processes to parameterise these models could improve their quality and range of applicability. We present an automated approach for the optimisation of coarse-grained force fields, by reproducing free energy data derived from atomistic molecular simulations. To illustrate the approach, we implemented hydration free energy gradients as a new target for force field optimisation in ForceBalance and applied it successfully to optimise the un-charged side-chains and the protein backbone in the SIRAH protein coarse-grain force field. The optimised parameters closely reproduced hydration free energies of atomistic models and gave improved agreement with experiment.
Collapse
Affiliation(s)
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, California 95616, USA.
| | - Jonathan W Essex
- School of Chemistry, University of Southampton, Southapton, S017 1BJ, UK.
| |
Collapse
|
9
|
Sun M, Peng S, Nie L, Zou Y, Yang L, Gao L, Dou X, Zhao C, Feng C. Three-Dimensional Chiral Supramolecular Microenvironment Strategy for Enhanced Biocatalysis. ACS NANO 2021; 15:14972-14984. [PMID: 34491712 DOI: 10.1021/acsnano.1c05212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
How the three-dimensional (3D) chiral environment affects the biocatalysis remains an important issue, thereby inspiring the development of a microenvironment that highly mimics the natural features of enzyme to guarantee enhanced biocatalysis. In this study, two gelators bearing d/l-phenylalanine as chiral centers are designed to construct the 3D chiral catalytic microenvironment for enhancing the biocatalysis of lipase. Such a microenvironment is programmed through chiral transmission of chirality from molecular chirality to achiral polymers. It shows that the chirality of the microenvironment evidently influences the catalytic efficiency of immobilized lipase inside the system, and the 3D microenvironment constructed by right-handed helical nanostructures can enhance the catalytic activity of lipase inside as high as 10-fold for catalyzing 4-nitrophenyl palmitate (NPP) to 4-nitrophenol (NP) and 1.4-fold for catalyzing lipids to triglycerides (TGs) in 3T3-L1 cells than that of the achiral microenvironment. Moreover, the 3D chiral microenvironment has the merits of good catalytic efficiency, high storage stability, and efficient recyclability. This strategy of designing a 3D chiral microenvironment suitable for biocatalysis will overcome the present limitations of enzymatic immobilization in traditional materials and enhance the understanding of biocatalysis.
Collapse
Affiliation(s)
- Meng Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Shiqiao Peng
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lei Nie
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yunqing Zou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Laiben Gao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Zhang Y, Jiang Y, Qiu Y, Zhang H. Rational Design of Nonbonded Point Charge Models for Highly Charged Metal Cations with Lennard-Jones 12-6 Potential. J Chem Inf Model 2021; 61:4613-4629. [PMID: 34467756 DOI: 10.1021/acs.jcim.1c00723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we developed nonbonded point charge models using a simple Lennard-Jones (LJ) 12-6 potential for highly charged metal cations (18 trivalent and 6 tetravalent ions) for use with 11 water models of TIP3P, OPC3, SPC/E, SPC/Eb, TIP3P-FB, a99SB-disp, TIP4P-Ew, OPC, TIP4P/2005, TIP4P-D, and TIP4P-FB. The designed models simultaneously reproduce the hydration free energy (HFE) and ion-oxygen distance (IOD) in the first hydration shell with an error within 1 kcal/mol and 0.01 Å on average, respectively, and yield reasonable coordination numbers for most cations. Such performance is equivalent to the previously reported point charge models using a more complex 12-6-4 LJ-type potential, while the LJ R parameters of our models are much close to Shannon's revised effective ion radii than that of the 12-6-4 models. Our designed models overestimate the diffusion constants of several trivalent ions by 5-68%. The performance in predicting osmotic coefficients of trivalent chlorides in aqueous solution depends on the salt type. A calibration of cation-anion interacting LJ parameters reproduces the experimental osmotic coefficients of an AlCl3 solution at 0.2-3.0 mol/L. The effectiveness of our new models is further demonstrated by simulating a metalloprotein system with four force field/water combinations. This work facilitates accurate modeling of metal-containing systems by a variety of force fields and water models in aqueous solution.
Collapse
Affiliation(s)
- Yongguang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yejie Qiu
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| |
Collapse
|
11
|
Mohanty P, Chatterjee KS, Das R. NEDD8 Deamidation Inhibits Cullin RING Ligase Dynamics. Front Immunol 2021; 12:695331. [PMID: 34489942 PMCID: PMC8418054 DOI: 10.3389/fimmu.2021.695331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/29/2021] [Indexed: 11/15/2022] Open
Abstract
Cullin-RING ligases (CRLs) are a significant subset of Ubiquitin E3 ligases that regulate multiple cellular substrates involved in innate immunity, cytoskeleton modeling, and cell cycle. The glutamine deamidase Cycle inhibitory factor (Cif) from enteric bacteria inactivates CRLs to modulate these processes in the host cell. The covalent attachment of a Ubiquitin-like protein NEDD8 catalytically activates CRLs by driving conformational changes in the Cullin C-terminal domain (CTD). NEDDylation results in a shift from a compact to an open CTD conformation through non-covalent interactions between NEDD8 and the WHB subdomain of CTD, eliminating the latter’s inhibitory interactions with the RING E3 ligase-Rbx1/2. It is unknown whether the non-covalent interactions are sufficient to stabilize Cullin CTD’s catalytic conformation. We studied the dynamics of Cullin-CTD in the presence and absence of NEDD8 using atomistic molecular dynamics (MD) simulations. We uncovered that NEDD8 engages in non-covalent interactions with 4HB/αβ subdomains in Cullin-CTD to promote open conformations. Cif deamidates glutamine 40 in NEDD8 to inhibit the conformational change in CRLs by an unknown mechanism. We investigated the effect of glutamine deamidation on NEDD8 and its interaction with the WHB subdomain post-NEDDylation using MD simulations and NMR spectroscopy. Our results suggest that deamidation creates a new intramolecular salt bridge in NEDD8 to destabilize the NEDD8/WHB complex and reduce CRL activity.
Collapse
Affiliation(s)
- Priyesh Mohanty
- National Center for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bangalore, India
| | - Kiran Sankar Chatterjee
- National Center for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bangalore, India
| | - Ranabir Das
- National Center for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bangalore, India
| |
Collapse
|
12
|
Qiu Y, Shan W, Zhang H. Force Field Benchmark of Amino Acids. 3. Hydration with Scaled Lennard-Jones Interactions. J Chem Inf Model 2021; 61:3571-3582. [PMID: 34185520 DOI: 10.1021/acs.jcim.1c00339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Classical protein force fields were reported with too weak protein-water interactions relative to protein-protein interactions, leading to more compact structures and artificial protein aggregation. Here we investigated the impacts of scaled Lennard-Jones (LJ) interactions on the hydration of amino acids and the simulation of folded and intrinsically disordered proteins (IDPs). The obtained optimal scaling parameters reproduce accurately hydration free energies of neutral amino acid side chain analogues and do not affect the compactness and structural stability of folded proteins significantly. The scaling leads to less compact IDPs and varies from case to case. Strengthening the interactions between protein and water oxygen or hydrogen atoms by increasing the interacting LJ well depth (ε) appears more effective than weakening protein-protein interactions by reducing the interacting dispersion coefficients (C6). We demonstrate that weakening water-water interactions is a solution as well to obtaining more favorable protein-water interactions in an indirect way, although modern force fields like Amber ff19SB and a99SB-disp tend to use water models with strong water-water interactions. This is likely a compromise between strong protein-protein interactions and strong water-water interactions. Independent optimization of protein force fields and water models is therefore needed to make both interactions more close to reality, leading to good accuracy without bias or scaling.
Collapse
Affiliation(s)
- Yejie Qiu
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Wenjie Shan
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| |
Collapse
|
13
|
Spoel D, Zhang J, Zhang H. Quantitative predictions from molecular simulations using explicit or implicit interactions. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- David Spoel
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology Uppsala University Uppsala Sweden
| | - Jin Zhang
- Department of Chemistry Southern University of Science and Technology Shenzhen China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing China
| |
Collapse
|
14
|
Peng J, Zhang Y, Jiang Y, Zhang H. Developing and Assessing Nonbonded Dummy Models of Magnesium Ion with Different Hydration Free Energy References. J Chem Inf Model 2021; 61:2981-2997. [PMID: 34080414 DOI: 10.1021/acs.jcim.1c00281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A large diversity in the targeted hydration free energies (HFEs) during model parameterization of metal ions was reported in the literature with a difference by dozens of kcal/mol. Here, we developed a series of nonbonded dummy models of the Mg2+ ion targeting different HFE references in TIP3P water, followed by assessments of the designed models in the simulations of MgCl2 solution and biological systems. Together with the comparison of existing models, we conclude that the difference in the targeted HFEs has a limited influence on the model performance, while the usability of these models differs from case to case. The feasibility of reproducing more properties of Mg2+ such as diffusion constants and water exchange rates using a nonbonded dummy model is demonstrated. Underestimated activity derivative and osmotic coefficient of MgCl2 solutions in high concentration reveal a necessity for further optimization of ion-pair interactions. The developed dummy models are applicable to metal coordination with Asp, Glu, and His residues in metalloenzymes, and the performance in predicting monodentate or bidentate binding modes of Asp/Glu residues depends on the complexity of metal centers and the choice of protein force fields. When both the binding modes coexist, the nonbonded dummy models outperform point charge models, probably in need of considering polarization of metal-binding residues by, for instance, charge calibration in classical force fields. This work is valuable for the use and further development of magnesium ion models for simulations of metal-containing systems with good accuracy.
Collapse
Affiliation(s)
- Jiarong Peng
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yongguang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| |
Collapse
|
15
|
Ploetz EA, Karunaweera S, Bentenitis N, Chen F, Dai S, Gee MB, Jiao Y, Kang M, Kariyawasam NL, Naleem N, Weerasinghe S, Smith PE. Kirkwood-Buff-Derived Force Field for Peptides and Proteins: Philosophy and Development of KBFF20. J Chem Theory Comput 2021; 17:2964-2990. [PMID: 33878263 DOI: 10.1021/acs.jctc.1c00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new classical nonpolarizable force field, KBFF20, for the simulation of peptides and proteins is presented. The force field relies heavily on the use of Kirkwood-Buff theory to provide a comparison of simulated and experimental Kirkwood-Buff integrals for solutes containing the functional groups common in proteins, thus ensuring intermolecular interactions that provide a good balance between the peptide-peptide, peptide-solvent, and solvent-solvent distributions observed in solution mixtures. In this way, it differs significantly from other biomolecular force fields. Further development and testing of the intermolecular potentials are presented here. Subsequently, rotational potentials for the ϕ/ψ and χ dihedral degrees of freedom are obtained by analysis of the Protein Data Bank, followed by small modifications to provide a reasonable balance between simulated and observed α and β percentages for small peptides. This, the first of two articles, describes in detail the philosophy and development behind KBFF20.
Collapse
Affiliation(s)
- Elizabeth A Ploetz
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Sadish Karunaweera
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Nikolaos Bentenitis
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Feng Chen
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Shu Dai
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Moon B Gee
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Yuanfang Jiao
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Myungshim Kang
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Nilusha L Kariyawasam
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Nawavi Naleem
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | | | - Paul E Smith
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| |
Collapse
|
16
|
Kim H, Pak Y. Balancing All‐Atom Force Field for
DNA
Simulations Using Osmotic Pressure Data. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hyeonjun Kim
- Department of Chemistry and Institute of Functional MaterialsPusan National University Busan 46241 South Korea
| | - Youngshang Pak
- Department of Chemistry and Institute of Functional MaterialsPusan National University Busan 46241 South Korea
| |
Collapse
|
17
|
You S, Lee HG, Kim K, Yoo J. Improved Parameterization of Protein-DNA Interactions for Molecular Dynamics Simulations of PCNA Diffusion on DNA. J Chem Theory Comput 2020; 16:4006-4013. [PMID: 32543861 DOI: 10.1021/acs.jctc.0c00241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As the field of molecular dynamics simulation utilizing the force fields is moving toward more complex systems, the accuracy of intermolecular interactions has become a central issue of the field. Here, we quantitatively evaluate the accuracy of the protein-DNA interactions in AMBER and CHARMM force fields by comparing experimental and simulated diffusion coefficients of proliferating cell nuclear antigen. We find that both force fields underestimate diffusion coefficients by at least an order of magnitude because the interactions between basic amino acids and DNA phosphate groups are too attractive. Then, we propose Lennard-Jones parameters optimized using the experimental osmotic pressure data of model chemicals, by using which one can reproduce the experimental diffusion coefficients. Newly optimized parameters will have a broad impact on general protein-DNA interactions.
Collapse
Affiliation(s)
- Seonju You
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hong-Guen Lee
- Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.,Center for Self-Assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Kimoon Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.,Center for Self-Assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Jejoong Yoo
- Center for Self-Assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea.,Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
18
|
Banerjee P, Lipowsky R, Santer M. Coarse-Grained Molecular Model for the Glycosylphosphatidylinositol Anchor with and without Protein. J Chem Theory Comput 2020; 16:3889-3903. [PMID: 32392421 PMCID: PMC7303967 DOI: 10.1021/acs.jctc.0c00056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 01/17/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchors are a unique class of complex glycolipids that anchor a great variety of proteins to the extracellular leaflet of plasma membranes of eukaryotic cells. These anchors can exist either with or without an attached protein called GPI-anchored protein (GPI-AP) both in vitro and in vivo. Although GPIs are known to participate in a broad range of cellular functions, it is to a large extent unknown how these are related to GPI structure and composition. Their conformational flexibility and microheterogeneity make it difficult to study them experimentally. Simplified atomistic models are amenable to all-atom computer simulations in small lipid bilayer patches but not suitable for studying their partitioning and trafficking in complex and heterogeneous membranes. Here, we present a coarse-grained model of the GPI anchor constructed with a modified version of the MARTINI force field that is suited for modeling carbohydrates, proteins, and lipids in an aqueous environment using MARTINI's polarizable water. The nonbonded interactions for sugars were reparametrized by calculating their partitioning free energies between polar and apolar phases. In addition, sugar-sugar interactions were optimized by adjusting the second virial coefficients of osmotic pressures for solutions of glucose, sucrose, and trehalose to match with experimental data. With respect to the conformational dynamics of GPI-anchored green fluorescent protein, the accessible time scales are now at least an order of magnitude larger than for the all-atom system. This is particularly important for fine-tuning the mutual interactions of lipids, carbohydrates, and amino acids when comparing to experimental results. We discuss the prospective use of the coarse-grained GPI model for studying protein-sorting and trafficking in membrane models.
Collapse
Affiliation(s)
- Pallavi Banerjee
- Max
Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
- Institute
of Biochemistry and Biology, University
of Potsdam, Potsdam 14469, Germany
| | - Reinhard Lipowsky
- Max
Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
- Institute
of Biochemistry and Biology, University
of Potsdam, Potsdam 14469, Germany
| | - Mark Santer
- Max
Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
19
|
Piana S, Robustelli P, Tan D, Chen S, Shaw DE. Development of a Force Field for the Simulation of Single-Chain Proteins and Protein-Protein Complexes. J Chem Theory Comput 2020; 16:2494-2507. [PMID: 31914313 DOI: 10.1021/acs.jctc.9b00251] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The accuracy of atomistic physics-based force fields for the simulation of biological macromolecules has typically been benchmarked experimentally using biophysical data from simple, often single-chain systems. In the case of proteins, the careful refinement of force field parameters associated with torsion-angle potentials and the use of improved water models have enabled a great deal of progress toward the highly accurate simulation of such monomeric systems in both folded and, more recently, disordered states. In living organisms, however, proteins constantly interact with other macromolecules, such as proteins and nucleic acids, and these interactions are often essential for proper biological function. Here, we show that state-of-the-art force fields tuned to provide an accurate description of both ordered and disordered proteins can be limited in their ability to accurately describe protein-protein complexes. This observation prompted us to perform an extensive reparameterization of one variant of the Amber protein force field. Our objective involved refitting not only the parameters associated with torsion-angle potentials but also the parameters used to model nonbonded interactions, the specification of which is expected to be central to the accurate description of multicomponent systems. The resulting force field, which we call DES-Amber, allows for more accurate simulations of protein-protein complexes, while still providing a state-of-the-art description of both ordered and disordered single-chain proteins. Despite the improvements, calculated protein-protein association free energies still appear to deviate substantially from experiment, a result suggesting that more fundamental changes to the force field, such as the explicit treatment of polarization effects, may simultaneously further improve the modeling of single-chain proteins and protein-protein complexes.
Collapse
Affiliation(s)
- Stefano Piana
- D. E. Shaw Research, New York, New York 10036, United States
| | - Paul Robustelli
- D. E. Shaw Research, New York, New York 10036, United States
| | - Dazhi Tan
- D. E. Shaw Research, New York, New York 10036, United States
| | - Songela Chen
- D. E. Shaw Research, New York, New York 10036, United States
| | - David E Shaw
- D. E. Shaw Research, New York, New York 10036, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
20
|
Zhu S. Validation of the Generalized Force Fields GAFF, CGenFF, OPLS-AA, and PRODRGFF by Testing Against Experimental Osmotic Coefficient Data for Small Drug-Like Molecules. J Chem Inf Model 2019; 59:4239-4247. [DOI: 10.1021/acs.jcim.9b00552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shun Zhu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
21
|
Kührová P, Mlýnský V, Zgarbová M, Krepl M, Bussi G, Best RB, Otyepka M, Šponer J, Banáš P. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J Chem Theory Comput 2019; 15:3288-3305. [PMID: 30896943 PMCID: PMC7491206 DOI: 10.1021/acs.jctc.8b00955] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular dynamics (MD) simulations became a leading tool for investigation of structural dynamics of nucleic acids. Despite recent efforts to improve the empirical potentials (force fields, ffs), RNA ffs have persisting deficiencies, which hamper their utilization in quantitatively accurate simulations. Previous studies have shown that at least two salient problems contribute to difficulties in the description of free-energy landscapes of small RNA motifs: (i) excessive stabilization of the unfolded single-stranded RNA ensemble by intramolecular base-phosphate and sugar-phosphate interactions and (ii) destabilization of the native folded state by underestimation of stability of base pairing. Here, we introduce a general ff term (gHBfix) that can selectively fine-tune nonbonding interaction terms in RNA ffs, in particular, the H bonds. The gHBfix potential affects the pairwise interactions between all possible pairs of the specific atom types, while all other interactions remain intact; i.e., it is not a structure-based model. In order to probe the ability of the gHBfix potential to refine the ff nonbonded terms, we performed an extensive set of folding simulations of RNA tetranucleotides and tetraloops. On the basis of these data, we propose particular gHBfix parameters to modify the AMBER RNA ff. The suggested parametrization significantly improves the agreement between experimental data and the simulation conformational ensembles, although our current ff version still remains far from being flawless. While attempts to tune the RNA ffs by conventional reparametrizations of dihedral potentials or nonbonded terms can lead to major undesired side effects, as we demonstrate for some recently published ffs, gHBfix has a clear promising potential to improve the ff performance while avoiding introduction of major new imbalances.
Collapse
Affiliation(s)
- Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Miroslav Krepl
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Šponer
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
22
|
Du S, Fu H, Shao X, Chipot C, Cai W. Addressing Polarization Phenomena in Molecular Machines Containing Transition Metal Ions with an Additive Force Field. J Chem Theory Comput 2019; 15:1841-1847. [DOI: 10.1021/acs.jctc.8b00972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shuangli Du
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haohao Fu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Christophe Chipot
- LPCT, UMR 7019 Université de Lorraine CNRS, F-54506 Vandœuvre-lès-Nancy, France
- Laboratoire International Associé CNRS and University of Illinois at Urbana−Champaign, F-54506 Vandœuvre-lès-Nancy, France
- Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| |
Collapse
|
23
|
Carballo-Pacheco M, Ismail AE, Strodel B. On the Applicability of Force Fields To Study the Aggregation of Amyloidogenic Peptides Using Molecular Dynamics Simulations. J Chem Theory Comput 2018; 14:6063-6075. [PMID: 30336669 DOI: 10.1021/acs.jctc.8b00579] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulations play an essential role in understanding biomolecular processes such as protein aggregation at temporal and spatial resolutions which are not attainable by experimental methods. For a correct modeling of protein aggregation, force fields must accurately represent molecular interactions. Here, we study the effect of five different force fields on the oligomer formation of Alzheimer's Aβ16-22 peptide and two of its mutants: Aβ16-22(F19V,F20V), which does not form fibrils, and Aβ16-22(F19L) which forms fibrils faster than the wild type. We observe that while oligomer formation kinetics depends strongly on the force field, structural properties, such as the most relevant protein-protein contacts, are similar between them. The oligomer formation kinetics obtained with different force fields differ more from each other than the kinetics between aggregating and nonaggregating peptides simulated with a single force field. We discuss the difficulties in comparing atomistic simulations of amyloid oligomer formation with experimental observables.
Collapse
Affiliation(s)
- Martín Carballo-Pacheco
- Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany.,AICES Graduate School , RWTH Aachen University , Schinkelstraße 2 , 52062 Aachen , Germany
| | - Ahmed E Ismail
- AICES Graduate School , RWTH Aachen University , Schinkelstraße 2 , 52062 Aachen , Germany.,Aachener Verfahrenstechnik, Faculty of Mechanical Engineering , RWTH Aachen University , Schinkelstraße 2 , 52062 Aachen , Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany.,Institute of Theoretical and Computational Chemistry , Heinrich Heine University Düsseldorf , Universitätstrasse 1 , 40225 Düsseldorf , Germany
| |
Collapse
|
24
|
Yoo J, Aksimentiev A. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys Chem Chem Phys 2018; 20:8432-8449. [PMID: 29547221 DOI: 10.1039/c7cp08185e] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In contrast to ordinary polymers, the vast majority of biological macromolecules adopt highly ordered three-dimensional structures that define their functions. The key to folding of a biopolymer into a unique 3D structure or to an assembly of several biopolymers into a functional unit is a delicate balance between the attractive and repulsive forces that also makes such self-assembly reversible under physiological conditions. The all-atom molecular dynamics (MD) method has emerged as a powerful tool for studies of individual biomolecules and their functional assemblies, encompassing systems of ever increasing complexity. However, advances in parallel computing technology have outpaced the development of the underlying theoretical models-the molecular force fields, pushing the MD method into an untested territory. Recent tests of the MD method have found the most commonly used molecular force fields to be out of balance, overestimating attractive interactions between charged and hydrophobic groups, which can promote artificial aggregation in MD simulations of multi-component protein, nucleic acid, and lipid systems. One route towards improving the force fields is through the NBFIX corrections method, in which the intermolecular forces are calibrated against experimentally measured quantities such as osmotic pressure by making atom pair-specific adjustments to the non-bonded interactions. In this article, we review development of the NBFIX (Non-Bonded FIX) corrections to the AMBER and CHARMM force fields and discuss their implications for MD simulations of electrolyte solutions, dense DNA systems, Holliday junctions, protein folding, and lipid bilayer membranes.
Collapse
Affiliation(s)
- Jejoong Yoo
- Center for the Physics of Living Cells, Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA. and Center for Self-assembly and Complexity, Institute for Basic Science, Pohang, 37363, Republic of Korea
| | - Aleksei Aksimentiev
- Center for the Physics of Living Cells, Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA.
| |
Collapse
|
25
|
New developments in force fields for biomolecular simulations. Curr Opin Struct Biol 2018; 49:129-138. [DOI: 10.1016/j.sbi.2018.02.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/30/2018] [Accepted: 02/04/2018] [Indexed: 11/18/2022]
|
26
|
Sauter J, Grafmüller A. Efficient Osmotic Pressure Calculations Using Coarse-Grained Molecular Simulations. J Chem Theory Comput 2018; 14:1171-1176. [PMID: 29401374 DOI: 10.1021/acs.jctc.7b01220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osmotic pressure data is increasingly used to parametrize all-atom simulation Force Fields (FFs), leading to large computational cost for larger molecules. Here, we show that the osmotic pressure can be calculated precisely using transferable coarse-grained FFs obtained from short atomistic simulations using an inhomogeneously regularized coarse-graining procedure. This is demonstrated for carbohydrates, where compared to the equivalent atomistic system, an increase of the computational efficiency by a factor of ≈500 is achieved.
Collapse
Affiliation(s)
- Jörg Sauter
- Department of Theory and Biosystems , Max Planck Institute of Colloids and Interfaces , Potsdam 14424 , Germany
| | - Andrea Grafmüller
- Department of Theory and Biosystems , Max Planck Institute of Colloids and Interfaces , Potsdam 14424 , Germany
| |
Collapse
|
27
|
Huang J, MacKerell AD. Force field development and simulations of intrinsically disordered proteins. Curr Opin Struct Biol 2017; 48:40-48. [PMID: 29080468 DOI: 10.1016/j.sbi.2017.10.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 12/17/2022]
Abstract
Intrinsically disordered proteins (IDPs) play important roles in many physiological processes such as signal transduction and transcriptional regulation. Computer simulations that are based on empirical force fields have been increasingly used to understand the biophysics of disordered proteins. In this review, we focus on recent improvement of protein force fields, including polarizable force fields, concerning their accuracy in modeling intrinsically disordered proteins. Some recent benchmarks and applications of these force fields are also overviewed.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201, USA; Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, 5635 Fishers Lane, Rockville, MD 20852, USA
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201, USA.
| |
Collapse
|
28
|
Schmalhorst PS, Deluweit F, Scherrers R, Heisenberg CP, Sikora M. Overcoming the Limitations of the MARTINI Force Field in Simulations of Polysaccharides. J Chem Theory Comput 2017; 13:5039-5053. [DOI: 10.1021/acs.jctc.7b00374] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Felix Deluweit
- Wyatt Technology Europe, Hochstraße
18, 56307 Dernbach, Germany
| | - Roger Scherrers
- Wyatt Technology Europe, Hochstraße
18, 56307 Dernbach, Germany
| | | | - Mateusz Sikora
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
29
|
Markthaler D, Gebhardt J, Jakobtorweihen S, Hansen N. Molecular Simulations of Thermodynamic Properties for the System α
-Cyclodextrin/Alcohol in Aqueous Solution. CHEM-ING-TECH 2017. [DOI: 10.1002/cite.201700057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daniel Markthaler
- University of Stuttgart; Institute of Thermodynamics and Thermal Process Engineering; Pfaffenwaldring 9 70569 Stuttgart Germany
| | - Julia Gebhardt
- University of Stuttgart; Institute of Thermodynamics and Thermal Process Engineering; Pfaffenwaldring 9 70569 Stuttgart Germany
| | - Sven Jakobtorweihen
- Hamburg University of Technology; Institute of Thermal Separation Processes; Eißendorfer Straße 38 21073 Hamburg Germany
| | - Niels Hansen
- University of Stuttgart; Institute of Thermodynamics and Thermal Process Engineering; Pfaffenwaldring 9 70569 Stuttgart Germany
| |
Collapse
|
30
|
Wu HN, Jiang F, Wu YD. Significantly Improved Protein Folding Thermodynamics Using a Dispersion-Corrected Water Model and a New Residue-Specific Force Field. J Phys Chem Lett 2017; 8:3199-3205. [PMID: 28651056 DOI: 10.1021/acs.jpclett.7b01213] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An accurate potential energy model is crucial for biomolecular simulations. Despite many recent improvements of classical protein force fields, there are remaining key issues: much weaker temperature dependence of folding/unfolding equilibrium and overly collapsed unfolded or disordered states. For the latter problem, a new water model (TIP4P-D) has been proposed to correct the significantly underestimated water dispersion interactions. Here, using TIP4P-D, we reveal problems in current force fields through failures in folding model systems (a polyalanine peptide, Trp-cage, and the GB1 hairpin). By using residue-specific parameters to achieve better match between amino acid sequences and native structures and adding a small H-bond correction to partially compensate the missing many-body effects in α-helix formation, the new RSFF2+ force field with the TIP4P-D water model can excellently reproduce experimental melting curves of both α-helical and β-hairpin systems. The RSFF2+/TIP4P-D method also gives less collapsed unfolded structures and describes well folded proteins simultaneously.
Collapse
Affiliation(s)
- Hao-Nan Wu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Yun-Dong Wu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
- College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
31
|
Gong Z, Sun H. A Coarse-Grained Force Field Parameterized for MgCl2 and CaCl2 Aqueous Solutions. J Chem Inf Model 2017; 57:1599-1608. [DOI: 10.1021/acs.jcim.7b00206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Zheng Gong
- School of Chemistry and Chemical
Engineering and Ministry of Education Key Laboratory of Scientific
and Engineering Computing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huai Sun
- School of Chemistry and Chemical
Engineering and Ministry of Education Key Laboratory of Scientific
and Engineering Computing, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
32
|
Lay WK, Miller MS, Elcock AH. Reparameterization of Solute-Solute Interactions for Amino Acid-Sugar Systems Using Isopiestic Osmotic Pressure Molecular Dynamics Simulations. J Chem Theory Comput 2017; 13:1874-1882. [PMID: 28437100 PMCID: PMC5844349 DOI: 10.1021/acs.jctc.7b00194] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AMBER/GLYCAM and CHARMM are popular force fields for simulations of amino acids and sugars. Here we report excessively attractive amino acid-sugar interactions in both force fields, and corrections to nonbonded interactions that match experimental osmotic pressures of mixed aqueous solutions of diglycine and sucrose. The modified parameters also improve the ΔGtrans of diglycine from water to aqueous sucrose and, with AMBERff99SB/GLYCAM06, eliminate a caging effect seen in previous simulations of the protein ubiquitin with glucose.
Collapse
Affiliation(s)
- Wesley K Lay
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Mark S Miller
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|