1
|
Kidder KM, Noid WG. Analysis of mapping atomic models to coarse-grained resolution. J Chem Phys 2024; 161:134113. [PMID: 39365018 DOI: 10.1063/5.0220989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
Low-resolution coarse-grained (CG) models provide significant computational and conceptual advantages for simulating soft materials. However, the properties of CG models depend quite sensitively upon the mapping, M, that maps each atomic configuration, r, to a CG configuration, R. In particular, M determines how the configurational information of the atomic model is partitioned between the mapped ensemble of CG configurations and the lost ensemble of atomic configurations that map to each R. In this work, we investigate how the mapping partitions the atomic configuration space into CG and intra-site components. We demonstrate that the corresponding coordinate transformation introduces a nontrivial Jacobian factor. This Jacobian factor defines a labeling entropy that corresponds to the uncertainty in the atoms that are associated with each CG site. Consequently, the labeling entropy effectively transfers configurational information from the lost ensemble into the mapped ensemble. Moreover, our analysis highlights the possibility of resonant mappings that separate the atomic potential into CG and intra-site contributions. We numerically illustrate these considerations with a Gaussian network model for the equilibrium fluctuations of actin. We demonstrate that the spectral quality, Q, provides a simple metric for identifying high quality representations for actin. Conversely, we find that neither maximizing nor minimizing the information content of the mapped ensemble results in high quality representations. However, if one accounts for the labeling uncertainty, Q(M) correlates quite well with the adjusted configurational information loss, Îmap(M), that results from the mapping.
Collapse
Affiliation(s)
- Katherine M Kidder
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
2
|
Kidder KM, Shell MS, Noid WG. Surveying the energy landscape of coarse-grained mappings. J Chem Phys 2024; 160:054105. [PMID: 38310476 DOI: 10.1063/5.0182524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/05/2024] Open
Abstract
Simulations of soft materials often adopt low-resolution coarse-grained (CG) models. However, the CG representation is not unique and its impact upon simulated properties is poorly understood. In this work, we investigate the space of CG representations for ubiquitin, which is a typical globular protein with 72 amino acids. We employ Monte Carlo methods to ergodically sample this space and to characterize its landscape. By adopting the Gaussian network model as an analytically tractable atomistic model for equilibrium fluctuations, we exactly assess the intrinsic quality of each CG representation without introducing any approximations in sampling configurations or in modeling interactions. We focus on two metrics, the spectral quality and the information content, that quantify the extent to which the CG representation preserves low-frequency, large-amplitude motions and configurational information, respectively. The spectral quality and information content are weakly correlated among high-resolution representations but become strongly anticorrelated among low-resolution representations. Representations with maximal spectral quality appear consistent with physical intuition, while low-resolution representations with maximal information content do not. Interestingly, quenching studies indicate that the energy landscape of mapping space is very smooth and highly connected. Moreover, our study suggests a critical resolution below which a "phase transition" qualitatively distinguishes good and bad representations.
Collapse
Affiliation(s)
- Katherine M Kidder
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
3
|
Zha J, Xia F. Developing Hybrid All-Atom and Ultra-Coarse-Grained Models to Investigate Taxol-Binding and Dynein Interactions on Microtubules. J Chem Theory Comput 2023; 19:5621-5632. [PMID: 37489636 DOI: 10.1021/acs.jctc.3c00275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Simulating the conformations and functions of biological macromolecules by using all-atom (AA) models is a challenging task due to expensive computational costs. One possible strategy to solve this problem is to develop hybrid all-atom and ultra-coarse-grained (AA/UCG) models of the biological macromolecules. In the AA/UCG scheme, the interest regions are described by AA models, while the other regions are described in the UCG representation. In this study, we develop the hybrid AA/UCG models and apply them to investigate the conformational changes of microtubule-bound tubulins. The simulation results of the hybrid models elucidated the mechanism of why the taxol molecules selectively bound microtubules but not tubulin dimers. In addition, we also explore the interactions of the microtubules and dyneins. Our study shows that the hybrid AA/UCG model has great application potential in studying the function of complex biological systems.
Collapse
Affiliation(s)
- Jinyin Zha
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| |
Collapse
|
4
|
Yang W, Templeton C, Rosenberger D, Bittracher A, Nüske F, Noé F, Clementi C. Slicing and Dicing: Optimal Coarse-Grained Representation to Preserve Molecular Kinetics. ACS CENTRAL SCIENCE 2023; 9:186-196. [PMID: 36844497 PMCID: PMC9951291 DOI: 10.1021/acscentsci.2c01200] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 05/05/2023]
Abstract
The aim of molecular coarse-graining approaches is to recover relevant physical properties of the molecular system via a lower-resolution model that can be more efficiently simulated. Ideally, the lower resolution still accounts for the degrees of freedom necessary to recover the correct physical behavior. The selection of these degrees of freedom has often relied on the scientist's chemical and physical intuition. In this article, we make the argument that in soft matter contexts desirable coarse-grained models accurately reproduce the long-time dynamics of a system by correctly capturing the rare-event transitions. We propose a bottom-up coarse-graining scheme that correctly preserves the relevant slow degrees of freedom, and we test this idea for three systems of increasing complexity. We show that in contrast to this method existing coarse-graining schemes such as those from information theory or structure-based approaches are not able to recapitulate the slow time scales of the system.
Collapse
Affiliation(s)
- Wangfei Yang
- Center
for Theoretical Biological Physics, Rice
University, Houston, Texas77005, United States
- Graduate
Program in Systems, Synthetic and Physical Biology, Rice University, Houston, Texas77005, United States
| | - Clark Templeton
- Department
of Physics, Freie Universität Berlin, Arnimallee 12, 14195Berlin, Germany
| | - David Rosenberger
- Department
of Physics, Freie Universität Berlin, Arnimallee 12, 14195Berlin, Germany
| | - Andreas Bittracher
- Department
of Mathematics and Computer Science, Freie
Universität Berlin, Arnimallee 12, 14195Berlin, Germany
| | - Feliks Nüske
- Max
Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106Magdeburg, Germany
| | - Frank Noé
- Center
for Theoretical Biological Physics, Rice
University, Houston, Texas77005, United States
- Department
of Physics, Freie Universität Berlin, Arnimallee 12, 14195Berlin, Germany
- Department
of Mathematics and Computer Science, Freie
Universität Berlin, Arnimallee 12, 14195Berlin, Germany
- Department
of Chemistry, Rice University, Houston, Texas77005, United States
| | - Cecilia Clementi
- Center
for Theoretical Biological Physics, Rice
University, Houston, Texas77005, United States
- Department
of Physics, Freie Universität Berlin, Arnimallee 12, 14195Berlin, Germany
- Department
of Chemistry, Rice University, Houston, Texas77005, United States
- Department
of Physics, Rice University, Houston, Texas77005, United States
- E-mail:
| |
Collapse
|
5
|
Jin J, Pak AJ, Durumeric AEP, Loose TD, Voth GA. Bottom-up Coarse-Graining: Principles and Perspectives. J Chem Theory Comput 2022; 18:5759-5791. [PMID: 36070494 PMCID: PMC9558379 DOI: 10.1021/acs.jctc.2c00643] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/14/2023]
Abstract
Large-scale computational molecular models provide scientists a means to investigate the effect of microscopic details on emergent mesoscopic behavior. Elucidating the relationship between variations on the molecular scale and macroscopic observable properties facilitates an understanding of the molecular interactions driving the properties of real world materials and complex systems (e.g., those found in biology, chemistry, and materials science). As a result, discovering an explicit, systematic connection between microscopic nature and emergent mesoscopic behavior is a fundamental goal for this type of investigation. The molecular forces critical to driving the behavior of complex heterogeneous systems are often unclear. More problematically, simulations of representative model systems are often prohibitively expensive from both spatial and temporal perspectives, impeding straightforward investigations over possible hypotheses characterizing molecular behavior. While the reduction in resolution of a study, such as moving from an atomistic simulation to that of the resolution of large coarse-grained (CG) groups of atoms, can partially ameliorate the cost of individual simulations, the relationship between the proposed microscopic details and this intermediate resolution is nontrivial and presents new obstacles to study. Small portions of these complex systems can be realistically simulated. Alone, these smaller simulations likely do not provide insight into collectively emergent behavior. However, by proposing that the driving forces in both smaller and larger systems (containing many related copies of the smaller system) have an explicit connection, systematic bottom-up CG techniques can be used to transfer CG hypotheses discovered using a smaller scale system to a larger system of primary interest. The proposed connection between different CG systems is prescribed by (i) the CG representation (mapping) and (ii) the functional form and parameters used to represent the CG energetics, which approximate potentials of mean force (PMFs). As a result, the design of CG methods that facilitate a variety of physically relevant representations, approximations, and force fields is critical to moving the frontier of systematic CG forward. Crucially, the proposed connection between the system used for parametrization and the system of interest is orthogonal to the optimization used to approximate the potential of mean force present in all systematic CG methods. The empirical efficacy of machine learning techniques on a variety of tasks provides strong motivation to consider these approaches for approximating the PMF and analyzing these approximations.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander J. Pak
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksander E. P. Durumeric
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Timothy D. Loose
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Koehl P, Orland H, Delarue M. Parameterizing elastic network models to capture the dynamics of proteins. J Comput Chem 2021; 42:1643-1661. [PMID: 34117647 DOI: 10.1002/jcc.26701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/14/2020] [Accepted: 05/23/2021] [Indexed: 11/09/2022]
Abstract
Coarse-grained normal mode analyses of protein dynamics rely on the idea that the geometry of a protein structure contains enough information for computing its fluctuations around its equilibrium conformation. This geometry is captured in the form of an elastic network (EN), namely a network of edges between its residues. The normal modes of a protein are then identified with the normal modes of its EN. Different approaches have been proposed to construct ENs, focusing on the choice of the edges that they are comprised of, and on their parameterizations by the force constants associated with those edges. Here we propose new tools to guide choices on these two facets of EN. We study first different geometric models for ENs. We compare cutoff-based ENs, whose edges have lengths that are smaller than a cutoff distance, with Delaunay-based ENs and find that the latter provide better representations of the geometry of protein structures. We then derive an analytical method for the parameterization of the EN such that its dynamics leads to atomic fluctuations that agree with experimental B-factors. To limit overfitting, we attach a parameter referred to as flexibility constant to each atom instead of to each edge in the EN. The parameterization is expressed as a non-linear optimization problem whose parameters describe both rigid-body and internal motions. We show that this parameterization leads to improved ENs, whose dynamics mimic MD simulations better than ENs with uniform force constants, and reduces the number of normal modes needed to reproduce functional conformational changes.
Collapse
Affiliation(s)
- Patrice Koehl
- Department of Computer Sciences and Genome Center, University of California, Davis, California, USA
| | - Henri Orland
- Institut de Physique Théorique, Université Paris-Saclay, Gif sur Yvette, France
| | - Marc Delarue
- Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, UMR 3528 du CNRS, Paris, France
| |
Collapse
|
7
|
Giulini M, Rigoli M, Mattiotti G, Menichetti R, Tarenzi T, Fiorentini R, Potestio R. From System Modeling to System Analysis: The Impact of Resolution Level and Resolution Distribution in the Computer-Aided Investigation of Biomolecules. Front Mol Biosci 2021; 8:676976. [PMID: 34164432 PMCID: PMC8215203 DOI: 10.3389/fmolb.2021.676976] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
The ever increasing computer power, together with the improved accuracy of atomistic force fields, enables researchers to investigate biological systems at the molecular level with remarkable detail. However, the relevant length and time scales of many processes of interest are still hardly within reach even for state-of-the-art hardware, thus leaving important questions often unanswered. The computer-aided investigation of many biological physics problems thus largely benefits from the usage of coarse-grained models, that is, simplified representations of a molecule at a level of resolution that is lower than atomistic. A plethora of coarse-grained models have been developed, which differ most notably in their granularity; this latter aspect determines one of the crucial open issues in the field, i.e. the identification of an optimal degree of coarsening, which enables the greatest simplification at the expenses of the smallest information loss. In this review, we present the problem of coarse-grained modeling in biophysics from the viewpoint of system representation and information content. In particular, we discuss two distinct yet complementary aspects of protein modeling: on the one hand, the relationship between the resolution of a model and its capacity of accurately reproducing the properties of interest; on the other hand, the possibility of employing a lower resolution description of a detailed model to extract simple, useful, and intelligible information from the latter.
Collapse
Affiliation(s)
- Marco Giulini
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Marta Rigoli
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Giovanni Mattiotti
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Roberto Menichetti
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Thomas Tarenzi
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaele Fiorentini
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaello Potestio
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| |
Collapse
|
8
|
Errica F, Giulini M, Bacciu D, Menichetti R, Micheli A, Potestio R. A Deep Graph Network-Enhanced Sampling Approach to Efficiently Explore the Space of Reduced Representations of Proteins. Front Mol Biosci 2021; 8:637396. [PMID: 33996896 PMCID: PMC8116519 DOI: 10.3389/fmolb.2021.637396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The limits of molecular dynamics (MD) simulations of macromolecules are steadily pushed forward by the relentless development of computer architectures and algorithms. The consequent explosion in the number and extent of MD trajectories induces the need for automated methods to rationalize the raw data and make quantitative sense of them. Recently, an algorithmic approach was introduced by some of us to identify the subset of a protein's atoms, or mapping, that enables the most informative description of the system. This method relies on the computation, for a given reduced representation, of the associated mapping entropy, that is, a measure of the information loss due to such simplification; albeit relatively straightforward, this calculation can be time-consuming. Here, we describe the implementation of a deep learning approach aimed at accelerating the calculation of the mapping entropy. We rely on Deep Graph Networks, which provide extreme flexibility in handling structured input data and whose predictions prove to be accurate and-remarkably efficient. The trained network produces a speedup factor as large as 105 with respect to the algorithmic computation of the mapping entropy, enabling the reconstruction of its landscape by means of the Wang-Landau sampling scheme. Applications of this method reach much further than this, as the proposed pipeline is easily transferable to the computation of arbitrary properties of a molecular structure.
Collapse
Affiliation(s)
- Federico Errica
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Marco Giulini
- Physics Department, University of Trento, Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Davide Bacciu
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Roberto Menichetti
- Physics Department, University of Trento, Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Alessio Micheli
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Raffaello Potestio
- Physics Department, University of Trento, Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| |
Collapse
|
9
|
Giulini M, Menichetti R, Shell MS, Potestio R. An Information-Theory-Based Approach for Optimal Model Reduction of Biomolecules. J Chem Theory Comput 2020; 16:6795-6813. [PMID: 33108737 PMCID: PMC7659038 DOI: 10.1021/acs.jctc.0c00676] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 02/06/2023]
Abstract
In theoretical modeling of a physical system, a crucial step consists of the identification of those degrees of freedom that enable a synthetic yet informative representation of it. While in some cases this selection can be carried out on the basis of intuition and experience, straightforward discrimination of the important features from the negligible ones is difficult for many complex systems, most notably heteropolymers and large biomolecules. We here present a thermodynamics-based theoretical framework to gauge the effectiveness of a given simplified representation by measuring its information content. We employ this method to identify those reduced descriptions of proteins, in terms of a subset of their atoms, that retain the largest amount of information from the original model; we show that these highly informative representations share common features that are intrinsically related to the biological properties of the proteins under examination, thereby establishing a bridge between protein structure, energetics, and function.
Collapse
Affiliation(s)
- Marco Giulini
- Physics
Department, University of Trento, via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento
Institute for Fundamental Physics and Applications, I-38123 Trento, Italy
| | - Roberto Menichetti
- Physics
Department, University of Trento, via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento
Institute for Fundamental Physics and Applications, I-38123 Trento, Italy
| | - M. Scott Shell
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Raffaello Potestio
- Physics
Department, University of Trento, via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento
Institute for Fundamental Physics and Applications, I-38123 Trento, Italy
| |
Collapse
|
10
|
Wu Z, Zhang Y, Zhang JZ, Xia K, Xia F. Determining Optimal Coarse-Grained Representation for Biomolecules Using Internal Cluster Validation Indexes. J Comput Chem 2019; 41:14-20. [PMID: 31568566 DOI: 10.1002/jcc.26070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
The development of ultracoarse-grained models for large biomolecules needs to derive the optimal number of coarse-grained (CG) sites to represent the targets. In this work, we propose to use the statistical internal cluster validation indexes to determine the optimal number of CG sites that are optimized based on the essential dynamics coarse-graining method. The calculated curves of Calinski-Harabasz and Silhouette Coefficient indexes exhibit the extrema corresponding to the similar CG numbers. The calculated ratios of the optimal CG numbers to the residue numbers of fine-grained models are in the range from 4 to 2. The comparison of the stability of index results indicates that Calinski-Harabasz index is the better choice to determine the optimal CG representation in coarse-graining. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhenliang Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yuwei Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - John Zenghui Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.,School of Biological Sciences, Nanyang Technological University, 637371, Singapore
| | - Fei Xia
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| |
Collapse
|
11
|
Zhang Y, Xia K, Cao Z, Gräter F, Xia F. A new method for the construction of coarse-grained models of large biomolecules from low-resolution cryo-electron microscopy data. Phys Chem Chem Phys 2019; 21:9720-9727. [PMID: 31025999 DOI: 10.1039/c9cp01370a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The rapid development of cryo-electron microscopy (cryo-EM) has led to the generation of significant low-resolution electron density data of biomolecules. However, the atomistic details of huge biomolecules usually cannot be obtained because it is very difficult to construct all-atom models for MD simulations. Thus, it is still a challenge to make use of the rich low-resolution cryo-EM data for computer simulation and functional study. In this study, we proposed a new method called Convolutional and K-means Coarse-Graining (CK-CG) for the efficient coarse-graining of large biological systems. Using the CK-CG method, we could directly map the cryo-EM data into coarse-grained (CG) beads. Furthermore, the CG beads were parameterized with an empirical harmonic potential to construct a new CG model. We subjected the CK-CG models of the fibrillar protein assemblies F-actin and collagen to external forces in pulling dynamic simulations to assess their mechanical response. The agreement between the estimated tensile stiffness between CG models and experiments demonstrates the validity of the CK-CG method. Thus, our method provides a practical strategy for the direct construction of a structural model from low-resolution data for biological function studies.
Collapse
Affiliation(s)
- Yuwei Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | | | | | | | | |
Collapse
|
12
|
Matsudaira PT, Verma CS. Editorial. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 143:1-4. [PMID: 30951764 DOI: 10.1016/j.pbiomolbio.2019.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paul T Matsudaira
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore; Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore; MechanoBiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| | - Chandra S Verma
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore.
| |
Collapse
|
13
|
Webb MA, Delannoy JY, de Pablo JJ. Graph-Based Approach to Systematic Molecular Coarse-Graining. J Chem Theory Comput 2018; 15:1199-1208. [PMID: 30557028 DOI: 10.1021/acs.jctc.8b00920] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel methodology is introduced here to generate coarse-grained (CG) representations of molecular models for simulations. The proposed strategy relies on basic graph-theoretic principles and is referred to as graph-based coarse-graining (GBCG). It treats a given system as a molecular graph and derives a corresponding CG representation by using edge contractions to combine nodes in the graph, which correspond to atoms in the molecule, into CG sites. A key element of this methodology is that the nodes are combined according to well-defined protocols that rank-order nodes based on the underlying chemical connectivity. By iteratively performing these operations, successively coarser representations of the original atomic system can be produced to yield a systematic set of CG mappings with hierarchical resolution in an automated fashion. These capabilities are demonstrated in the context of several test systems, including toluene, pentadecane, a polysaccharide dimer, and a rhodopsin protein. In these examples, GBCG yields multiple, intuitive structures that naturally preserve the chemical topology of the system. Importantly, these representations are rendered from algorithmic implementation rather than an arbitrary ansatz, which, until now, has been the conventional approach for defining CG mapping schemes. Overall, the results presented here indicate that GBCG is efficient, robust, and unambiguous in its application, making it a valuable tool for future CG modeling.
Collapse
Affiliation(s)
- Michael A Webb
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Jean-Yves Delannoy
- Simulation, Modeling and Artificial Intelligence team , Solvay , Bristol , Pennsylvania 19007 , United States
| | - Juan J de Pablo
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States.,Institute for Molecular Engineering and Materials Science Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| |
Collapse
|
14
|
Advances in coarse-grained modeling of macromolecular complexes. Curr Opin Struct Biol 2018; 52:119-126. [PMID: 30508766 DOI: 10.1016/j.sbi.2018.11.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/05/2018] [Accepted: 11/17/2018] [Indexed: 01/12/2023]
Abstract
Recent progress in coarse-grained (CG) molecular modeling and simulation has facilitated an influx of computational studies on biological macromolecules and their complexes. Given the large separation of length-scales and time-scales that dictate macromolecular biophysics, CG modeling and simulation are well-suited to bridge the microscopic and mesoscopic or macroscopic details observed from all-atom molecular simulations and experiments, respectively. In this review, we first summarize recent innovations in the development of CG models, which broadly include structure-based, knowledge-based, and dynamics-based approaches. We then discuss recent applications of different classes of CG models to explore various macromolecular complexes. Finally, we conclude with an outlook for the future in this ever-growing field of biomolecular modeling.
Collapse
|