1
|
Duchemin I, Amblard D, Blase X. Polarizable Continuum Models and Green's Function GW Formalism: On the Dynamics of the Solvent Electrons. J Chem Theory Comput 2024; 20:9072-9083. [PMID: 39226212 DOI: 10.1021/acs.jctc.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The many-body GW formalism, for the calculation of ionization potentials or electronic affinities, relies on the frequency-dependent dielectric function built from the electronic degrees of freedom. Considering the case of water as a solvent treated within the polarizable continuum model, we explore the impact of restricting the full frequency-dependence of the solvent electronic dielectric response to a frequency-independent (ϵ∞) optical dielectric constant. For solutes presenting small to large highest-occupied to lowest-unoccupied molecular orbital energy gaps, we show that such a restriction induces errors no larger than a few percent on the energy level shifts from the gas to the solvated phase. We further introduce a remarkably accurate single-pole model for mimicking the effect of the full frequency dependence of the water dielectric function in the visible-UV range. This allows a fully dynamical embedded GW calculation with the only knowledge of the cavity reaction field calculated for the ϵ∞ optical dielectric constant.
Collapse
Affiliation(s)
- Ivan Duchemin
- CEA, IRIG-MEM-L_Sim, Université Grenoble Alpes, 38054 Grenoble, France
| | - David Amblard
- CNRS, Inst NEEL, Université Grenoble Alpes, F-38042 Grenoble, France
| | - Xavier Blase
- CNRS, Inst NEEL, Université Grenoble Alpes, F-38042 Grenoble, France
| |
Collapse
|
2
|
Rodriguez-Mayorga M, Blase X, Duchemin I, D'Avino G. From Many-Body Ab Initio to Effective Excitonic Models: A Versatile Mapping Approach Including Environmental Embedding Effects. J Chem Theory Comput 2024; 20:8675-8688. [PMID: 39376072 DOI: 10.1021/acs.jctc.4c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We present an original multistate projective diabatization scheme based on Green's function formalisms that allows the systematic mapping of many-body ab initio calculations onto effective excitonic models. This method inherits the ability of the Bethe-Salpeter equation to describe Frenkel molecular excitons and intermolecular charge-transfer states equally well, as well as the possibility for an effective description of environmental effects in a QM/MM framework. The latter is found to be a crucial element in order to obtain accurate model parameters for condensed phases and to ensure their transferability to excitonic models for extended systems. The method is presented through a series of examples illustrating its quality, robustness, and internal consistency.
Collapse
Affiliation(s)
- Mauricio Rodriguez-Mayorga
- Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble 38042, France
| | - Xavier Blase
- Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble 38042, France
| | - Ivan Duchemin
- Grenoble Alpes University, CEA, IRIG-MEM-L Sim, Grenoble 38054, France
| | - Gabriele D'Avino
- Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble 38042, France
| |
Collapse
|
3
|
Amblard D, Blase X, Duchemin I. Static versus dynamically polarizable environments within the many-body GW formalism. J Chem Phys 2024; 160:154104. [PMID: 38624115 DOI: 10.1063/5.0203637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Continuum- or discrete-polarizable models for the study of optoelectronic processes in embedded subsystems rely mostly on the restriction of the surrounding electronic dielectric response to its low frequency limit. Such a description hinges on the assumption that the electrons in the surrounding medium react instantaneously to any excitation in the central subsystem, thus treating the environment in the adiabatic limit. Exploiting a recently developed embedded GW formalism with an environment described at the fully ab initio level, we assess the merits of the adiabatic limit with respect to an environment where the full dynamics of the dielectric response are considered. Furthermore, we show how to properly take the static limit of the environment's susceptibility by introducing the so-called Coulomb-hole and screened-exchange contributions to the reaction field. As a first application, we consider a C60 molecule at the surface of a C60 crystal, namely, a case where the dynamics of the embedded and embedding subsystems are similar. The common adiabatic assumption, when properly treated, generates errors below 10% on the polarization energy associated with frontier energy levels and associated energy gaps. Finally, we consider a water molecule inside a metallic nanotube, the worst case for the environment's adiabatic limit. The error on the gap polarization energy remains below 10%, even though the error on the frontier orbital polarization energies can reach a few tenths of an electronvolt.
Collapse
Affiliation(s)
- David Amblard
- University Grenoble Alpes, CNRS, Inst NEEL, F-38042 Grenoble, France
| | - Xavier Blase
- University Grenoble Alpes, CNRS, Inst NEEL, F-38042 Grenoble, France
| | - Ivan Duchemin
- University Grenoble Alpes, CEA, IRIG-MEM-L_Sim, 38054 Grenoble, France
| |
Collapse
|
4
|
Amblard D, Blase X, Duchemin I. Many-body GW calculations with very large scale polarizable environments made affordable: A fully ab initio QM/QM approach. J Chem Phys 2023; 159:164107. [PMID: 37873961 DOI: 10.1063/5.0168755] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
We present a many-body GW formalism for quantum subsystems embedded in discrete polarizable environments containing up to several hundred thousand atoms described at a fully ab initio random phase approximation level. Our approach is based on a fragment approximation in the construction of the Green's function and independent-electron susceptibilities. Further, the environing fragments susceptibility matrices are reduced to a minimal but accurate representation preserving low order polarizability tensors through a constrained minimization scheme. This approach dramatically reduces the cost associated with inverting the Dyson equation for the screened Coulomb potential W, while preserving the description of short to long-range screening effects. The efficiency and accuracy of the present scheme is exemplified in the paradigmatic cases of fullerene bulk, surface, subsurface, and slabs with varying number of layers.
Collapse
Affiliation(s)
- David Amblard
- Univ. Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France
| | - Xavier Blase
- Univ. Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France
| | - Ivan Duchemin
- Univ. Grenoble Alpes, CEA, IRIG-MEM-L_Sim, 38054 Grenoble, France
| |
Collapse
|
5
|
Naim C, Besalú-Sala P, Zaleśny R, Luis JM, Castet F, Matito E. Are Accelerated and Enhanced Wave Function Methods Accurate to Compute Static Linear and Nonlinear Optical Properties? J Chem Theory Comput 2023; 19:1753-1764. [PMID: 36862983 DOI: 10.1021/acs.jctc.2c01212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Key components of organic-based electro-optic devices are challenging to design or optimize because they exhibit nonlinear optical responses, which are difficult to model or rationalize. Computational chemistry furnishes the tools to investigate extensive collections of molecules in the quest for target compounds. Among the electronic structure methods that provide static nonlinear optical properties (SNLOPs), density functional approximations (DFAs) are often preferred because of their low cost/accuracy ratio. However, the accuracy of the SNLOPs critically depends on the amount of exact exchange and electron correlation included in the DFA, precluding the reliable calculation of many molecular systems. In this scenario, wave function methods such as MP2, CCSD, and CCSD(T) constitute a reliable alternative to compute SNLOPs. Unfortunately, the computational cost of these methods significantly restricts the size of molecules to study, a limitation that hampers the identification of molecules with significant nonlinear optical responses. This paper analyzes various flavors and alternatives to MP2, CCSD, and CCSD(T) methods that either drastically reduce the computational cost or improve their performance but were scarcely and unsystematically employed to compute SNLOPs. In particular, we have tested RI-MP2, RIJK-MP2, RIJCOSX-MP2 (with GridX2 and GridX4 setups), LMP2, SCS-MP2, SOS-MP2, DLPNO-MP2, LNO-CCSD, LNO-CCSD(T), DLPNO-CCSD, DLPNO-CCSD(T0), and DLPNO-CCSD(T1). Our results indicate that all these methods can be safely employed to calculate the dipole moment and the polarizability with average relative errors below 5% with respect to CCSD(T). On the other hand, the calculation of higher-order properties represents a challenge for LNO and DLPNO methods, which present severe numerical instabilities in computing the single-point field-dependent energies. RI-MP2, RIJK-MP2, or RIJCOSX-MP2 are cost-effective methods to compute first and second hyperpolarizabilities with a marginal average error with respect to canonical MP2 (up to 5% for β and up to 11% for γ). More accurate hyperpolarizabilities can be obtained with DLPNO-CCSD(T1); however, this method cannot be employed to obtain reliable second hyperpolarizabilities. These results open the way to obtain accurate nonlinear optical properties at a computational cost that can compete with current DFAs.
Collapse
Affiliation(s)
- Carmelo Naim
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain.,Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, 20080 Donostia, Euskadi, Spain
| | - Pau Besalú-Sala
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, 17003 Girona, Catalonia, Spain
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, 17003 Girona, Catalonia, Spain
| | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Eduard Matito
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain.,Ikerbasque Foundation for Science, 48011 Bilbao, Euskadi, Spain
| |
Collapse
|
6
|
Mukatayev I, Moevus F, Sklénard B, Olevano V, Li J. XPS Core-Level Chemical Shift by Ab Initio Many-Body Theory. J Phys Chem A 2023; 127:1642-1648. [PMID: 36787463 DOI: 10.1021/acs.jpca.3c00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
X-ray photoemission spectroscopy (XPS) provides direct information on atomic composition and stoichiometry by measuring core-electron binding energies. Moreover, from the shift of the binding energy, the so-called chemical shift, the precise chemical type of bonds can be inferred, which brings additional information on the local structure. In this work, we present a theoretical study of the chemical shift first by comparing different theories, from Hartree-Fock and density functional theory to many-body perturbation theory approaches like the GW approximation and its static version (COHSEX). The accuracy of each theory is assessed with respect to a carbon 1s chemical shift experimental benchmark measured on a set of gas-phase molecules. More importantly, by decomposing the chemical shift into different contributions according to terms in the total Hamiltonian, classical electrostatics is identified as the major contributor to the chemical shift, one order of magnitude larger than the correlation.
Collapse
Affiliation(s)
| | - Florient Moevus
- Université Grenoble Alpes, CEA, Leti, F-38000, Grenoble, France
| | - Benoît Sklénard
- Université Grenoble Alpes, CEA, Leti, F-38000, Grenoble, France.,European Theoretical Spectroscopy Facility (ETSF), bâtiment B5a Université de Liège Allée du 6 août, numéro 17 Sart-Tilman, F-38000 Grenoble, France
| | - Valerio Olevano
- European Theoretical Spectroscopy Facility (ETSF), bâtiment B5a Université de Liège Allée du 6 août, numéro 17 Sart-Tilman, F-38000 Grenoble, France.,Université Grenoble Alpes, F-38000 Grenoble, France.,CNRS, Institut Néel, F-38042 Grenoble, France
| | - Jing Li
- Université Grenoble Alpes, CEA, Leti, F-38000, Grenoble, France.,European Theoretical Spectroscopy Facility (ETSF), bâtiment B5a Université de Liège Allée du 6 août, numéro 17 Sart-Tilman, F-38000 Grenoble, France
| |
Collapse
|
7
|
Duchemin I, Blase X. Cubic-Scaling All-Electron GW Calculations with a Separable Density-Fitting Space-Time Approach. J Chem Theory Comput 2021; 17:2383-2393. [PMID: 33797245 DOI: 10.1021/acs.jctc.1c00101] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present an implementation of the GW space-time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without exploiting any localization or sparsity considerations. The independent-electron susceptibility is constructed in a time representation over a nonuniform distribution of real-space locations {rk} optimized within a separable resolution-of-the-identity framework to reproduce standard Coulomb-fitting calculations with meV accuracy. The compactness of the obtained {rk} distribution leads to a crossover with the standard Coulomb-fitting scheme for system sizes below a few hundred electrons. The needed analytic continuation follows a recent approach that requires the continuation of the screened Coulomb potential rather than the much more structured self-energy. The present scheme is benchmarked over large molecular sets, and scaling properties are demonstrated on a family of defected hexagonal boron-nitride flakes containing up to 6000 electrons.
Collapse
Affiliation(s)
- Ivan Duchemin
- Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim, 38054 Grenoble, France
| | - Xavier Blase
- Université Grenoble Alpes, CNRS, Inst NEEL, F-38042 Grenoble, France
| |
Collapse
|
8
|
Wilhelm J, Seewald P, Golze D. Low-Scaling GW with Benchmark Accuracy and Application to Phosphorene Nanosheets. J Chem Theory Comput 2021; 17:1662-1677. [DOI: 10.1021/acs.jctc.0c01282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jan Wilhelm
- Institute of Theoretical Physics, University of Regensburg, D-93053 Regensburg, Germany
| | - Patrick Seewald
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Dorothea Golze
- Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
9
|
Duchemin I, Blase X. Robust Analytic-Continuation Approach to Many-Body GW Calculations. J Chem Theory Comput 2020; 16:1742-1756. [DOI: 10.1021/acs.jctc.9b01235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivan Duchemin
- IRIG-MEM-L_Sim, Univ. Grenoble Alpes, CEA, F-38054 Grenoble, France
| | - Xavier Blase
- Inst NEEL, Univ. Grenoble Alpes, CNRS, F-38042 Grenoble, France
| |
Collapse
|
10
|
Lesiuk M. A straightforward a posteriori method for reduction of density-fitting error in coupled-cluster calculations. J Chem Phys 2020; 152:044104. [PMID: 32007079 DOI: 10.1063/1.5129883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a simple method for a posteriori removal of a significant fraction of the density-fitting error from the calculated total coupled-cluster energies. The method treats the difference between the exact and density-fitted integrals as a perturbation, and simplified response-like equations allow us to calculate improved amplitudes and the corresponding energy correction. The proposed method is tested at the coupled-cluster singles and doubles level of theory for a diverse set of moderately-sized molecules. On average, error reductions by a factor of approximately 10 and 20 are observed in double-zeta and triple-zeta basis sets, respectively. Similar reductions are observed in calculations of interaction energies of several model complexes. The computational cost of the procedure is small in comparison with the preceding coupled-cluster iterations. The applicability of this method is not limited to the density-fitting approximation; in principle, it can be used in conjunction with an arbitrary decomposition scheme of the electron repulsion integrals.
Collapse
Affiliation(s)
- Michał Lesiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
11
|
Loos PF, Pradines B, Scemama A, Giner E, Toulouse J. Density-Based Basis-Set Incompleteness Correction for GW Methods. J Chem Theory Comput 2019; 16:1018-1028. [DOI: 10.1021/acs.jctc.9b01067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Barthélémy Pradines
- Laboratoire de Chimie Théorique (UMR 7616), Sorbonne Université, CNRS, Paris, France
- Institut des Sciences du Calcul et des Données, Sorbonne Université, Paris, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuel Giner
- Laboratoire de Chimie Théorique (UMR 7616), Sorbonne Université, CNRS, Paris, France
| | - Julien Toulouse
- Laboratoire de Chimie Théorique (UMR 7616), Sorbonne Université, CNRS, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
12
|
Duchemin I, Blase X. Separable resolution-of-the-identity with all-electron Gaussian bases: Application to cubic-scaling RPA. J Chem Phys 2019; 150:174120. [PMID: 31067912 DOI: 10.1063/1.5090605] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We explore a separable resolution-of-the-identity (RI) formalism built on quadratures over limited sets of real-space points designed for all-electron calculations. Our implementation preserves, in particular, the use of common atomic orbitals and their related auxiliary basis sets. The setup of the present density fitting scheme, i.e., the calculation of the system specific quadrature weights, scales cubically with respect to the system size. Extensive accuracy tests are presented for the Fock exchange and MP2 correlation energies. We finally demonstrate random phase approximation (RPA) correlation energy calculations with a scaling that is cubic in terms of operations, quadratic in memory, with a small crossover with respect to our standard RI-RPA implementation.
Collapse
Affiliation(s)
- Ivan Duchemin
- Laboratoire de Simulation Atomistique, Université Grenoble Alpes, CEA, 38054 Grenoble, France
| | - Xavier Blase
- Institut NEEL, Université Grenoble Alpes, CNRS, F-38042 Grenoble, France
| |
Collapse
|
13
|
Golze D, Wilhelm J, van Setten MJ, Rinke P. Core-Level Binding Energies from GW: An Efficient Full-Frequency Approach within a Localized Basis. J Chem Theory Comput 2018; 14:4856-4869. [DOI: 10.1021/acs.jctc.8b00458] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dorothea Golze
- Department of Applied Physics, Aalto University, Otakaari 1, FI-02150 Espoo, Finland
- Department of Electrical Engineering and Automation, Aalto University, PO Box 13500, 00076 Aalto, Finland
| | - Jan Wilhelm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Michiel J. van Setten
- Nanoscopic Physics, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Patrick Rinke
- Department of Applied Physics, Aalto University, Otakaari 1, FI-02150 Espoo, Finland
| |
Collapse
|
14
|
Duchemin I, Guido CA, Jacquemin D, Blase X. The Bethe-Salpeter formalism with polarisable continuum embedding: reconciling linear-response and state-specific features. Chem Sci 2018; 9:4430-4443. [PMID: 29896384 PMCID: PMC5956976 DOI: 10.1039/c8sc00529j] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/02/2018] [Indexed: 11/25/2022] Open
Abstract
The Bethe-Salpeter equation (BSE) formalism has been recently shown to be a valuable alternative to time-dependent density functional theory (TD-DFT) with the same computing time scaling with system size. In particular, problematic transitions for TD-DFT such as charge-transfer, Rydberg and cyanine-like excitations were shown to be accurately described with BSE. We demonstrate here that combining the BSE formalism with the polarisable continuum model (PCM) allows us to include simultaneously linear-response and state-specific contributions to solvatochromism. This is confirmed by exploring transitions of various natures (local, charge-transfer, etc.) in a series of solvated molecules (acrolein, indigo, p-nitro-aniline, donor-acceptor complexes, etc.) for which we compare BSE solvatochromic shifts to those obtained by linear-response and state-specific TD-DFT implementations. Such a remarkable and unique feature is particularly valuable for the study of solvent effects on excitations presenting a hybrid localised/charge-transfer character.
Collapse
Affiliation(s)
- Ivan Duchemin
- Univ. Grenobles Alpes , CEA, INAC-MEM, L_Sim , F-38000 Grenoble , France . ;
| | - Ciro A Guido
- Laboratoire CEISAM - UMR CNR 6230 , Université de Nantes , 2 Rue de la Houssinière, BP 92208 , 44322 Nantes Cedex 3 , France
- Laboratoire MOLTECH - UMR CNRS 6200 , Université de Angers , 2 Bd Lavoisier , 49045 Angers Cedex , France
| | - Denis Jacquemin
- Laboratoire CEISAM - UMR CNR 6230 , Université de Nantes , 2 Rue de la Houssinière, BP 92208 , 44322 Nantes Cedex 3 , France
| | - Xavier Blase
- Univ. Grenobles Alpes , CNRS , Institut Néel , F-38042 Grenoble , France
| |
Collapse
|
15
|
Wilhelm J, Golze D, Talirz L, Hutter J, Pignedoli CA. Toward GW Calculations on Thousands of Atoms. J Phys Chem Lett 2018; 9:306-312. [PMID: 29280376 DOI: 10.1021/acs.jpclett.7b02740] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The GW approximation of many-body perturbation theory is an accurate method for computing electron addition and removal energies of molecules and solids. In a canonical implementation, however, its computational cost is [Formula: see text] in the system size N, which prohibits its application to many systems of interest. We present a full-frequency GW algorithm in a Gaussian-type basis, whose computational cost scales with N2 to N3. The implementation is optimized for massively parallel execution on state-of-the-art supercomputers and is suitable for nanostructures and molecules in the gas, liquid or condensed phase, using either pseudopotentials or all electrons. We validate the accuracy of the algorithm on the GW100 molecular test set, finding mean absolute deviations of 35 meV for ionization potentials and 27 meV for electron affinities. Furthermore, we study the length-dependence of quasiparticle energies in armchair graphene nanoribbons of up to 1734 atoms in size, and compute the local density of states across a nanoscale heterojunction.
Collapse
Affiliation(s)
- Jan Wilhelm
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Dorothea Golze
- COMP/Department of Applied Physics, Aalto University , P.O. Box 11100, FI-00076 Aalto, Finland
| | - Leopold Talirz
- Laboratory of Molecular Simulation, École Polytechnique Fédérale de Lausanne , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
- Theory and Simulation of Materials, École Polytechnique Fédérale de Lausanne , Station 9, CH-1015 Lausanne, Switzerland
| | - Jürg Hutter
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlo A Pignedoli
- Swiss Federal Laboratories for Materials Science and Technology (Empa) , Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
16
|
Schurkus HF, Luenser A, Ochsenfeld C. Communication: Almost error-free resolution-of-the-identity correlation methods by null space removal of the particle-hole interactions. J Chem Phys 2017; 146:211106. [PMID: 28595410 PMCID: PMC5462614 DOI: 10.1063/1.4985085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/24/2017] [Indexed: 11/14/2022] Open
Abstract
We present a method to improve upon the resolution-of-the-identity (RI) for correlation methods. While RI is known to allow for drastic speedups, it relies on a cancellation of errors. Our method eliminates the errors introduced by RI which are known to be problematic for absolute energies. In this way, independence of the error compensation assumption for relative energies is also achieved. The proposed method is based on the idea of starting with an oversized RI basis and projecting out all of its unphysical parts. The approach can be easily implemented into existing RI codes and results in an overhead of about 30%, while effectively removing the RI error. In passing, this process alleviates the problem that for many frequently employed basis sets no optimized RI basis sets have been constructed. In this paper, the theory is presented and results are discussed exemplarily for the random phase approximation and Møller-Plesset perturbation theory.
Collapse
Affiliation(s)
- Henry F Schurkus
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany
| | - Arne Luenser
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany
| |
Collapse
|