1
|
Xiong X, Friedman R, Wu W, Su P. QM/MM-Based Energy Decomposition Analysis Method for Large Systems. J Phys Chem A 2024. [PMID: 38687960 DOI: 10.1021/acs.jpca.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In this work, a QM/MM-based EDA method, called GKS-EDA(QM/MM), is proposed. As an extension of GKS-EDA, this scheme divides the total interaction energy into electrostatic, exchange-repulsion, polarization, and correlation/dispersion terms. GKS-EDA(QM/MM) can be applied to describe the interactions of large-scale systems combined with various QM/MM platforms. By using the examples of a hydrated hydronium ion complex in water solution, the barnase-barstar complex, and MMP-13-pyrimidinetrione in a metalloprotein, the capability of GKS-EDA(QM/MM) for various interactions in large systems is validated.
Collapse
Affiliation(s)
- Xuewei Xiong
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
2
|
Chakraborty S, Mandal K, Ramakrishnan R. Understanding the Role of Intramolecular Ion-Pair Interactions in Conformational Stability Using an Ab Initio Thermodynamic Cycle. J Phys Chem B 2023; 127:648-660. [PMID: 36638237 DOI: 10.1021/acs.jpcb.2c06803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intramolecular ion-pair interactions yield shape and functionality to many molecules. With proper orientation, these interactions overcome steric factors and are responsible for the compact structures of several peptides. In this study, we present a thermodynamic cycle based on isoelectronic and alchemical mutation to estimate the intramolecular ion-pair interaction energy. We determine these energies for 26 benchmark molecules with common ion-pair combinations and compare them with results obtained using intramolecular symmetry-adapted perturbation theory. For systems with long linkers, the ion-pair energies evaluated using both approaches deviate by less than 2.5% in the vacuum phase. The thermodynamic cycle based on density functional theory facilitates calculations of salt-bridge interactions in model tripeptides with continuum/microsolvation modeling and four large peptides: 1EJG (crambin), 1BDK (bradykinin), 1L2Y (a mini-protein with a tryptophan cage), and 1SCO (a toxin from the scorpion venom).
Collapse
Affiliation(s)
| | - Kalyaneswar Mandal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad500046, India
| | | |
Collapse
|
3
|
Xu Y, Zhang S, Lindahl E, Friedman R, Wu W, Su P. A general tight-binding based energy decomposition analysis scheme for intermolecular interactions in large molecules. J Chem Phys 2022; 157:034104. [DOI: 10.1063/5.0091781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, a general tight-binding based energy decomposition analysis (EDA) scheme for intermolecular interactions is proposed. Different from the earlier version [Xu et al., J. Chem. Phys. 154, 194106 (2021)], the current tight-binding based density functional theory (DFTB)-EDA is capable of performing interaction analysis with all the self-consistent charge (SCC) type DFTB methods, including SCC-DFTB2/3 and GFN1/2-xTB, despite their different formulas and parameterization schemes. In DFTB-EDA, the total interaction energy is divided into frozen, polarization, and dispersion terms. The performance of DFTB-EDA with SCC-DFTB2/3 and GFN1/2-xTB for various interaction systems is discussed and assessed.
Collapse
Affiliation(s)
- Yuan Xu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shu Zhang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Erik Lindahl
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
4
|
Dawson W, Degomme A, Stella M, Nakajima T, Ratcliff LE, Genovese L. Density functional theory calculations of large systems: Interplay between fragments, observables, and computational complexity. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Martina Stella
- Department of Materials Imperial College London London UK
| | | | | | - Luigi Genovese
- Université Grenoble Alpes, INAC‐MEM, L_Sim Grenoble France
| |
Collapse
|
5
|
Kang M, Pandit N, Kim AY, Cho SJ, Kwon YJ, Ahn J, Lee KM, Wu S, Oh JS, Jung KY, Kim JS. PCW-1001, a Novel Pyrazole Derivative, Exerts Antitumor and Radio-Sensitizing Activities in Breast Cancer. Front Oncol 2022; 12:835833. [PMID: 35425705 PMCID: PMC9002139 DOI: 10.3389/fonc.2022.835833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
As pyrazole and its derivatives have a wide range of biological activities, including anticancer activity, the design of novel pyrazole derivatives has emerged as an important research field. This study describes a novel pyrazole derivative that exerts antitumor and radiosensitizing activities in breast cancer both in vitro and in vivo. We synthesized a novel pyrazole compound N,N-dimethyl-N’-(3-(1-(4-(trifluoromethyl)phenyl)-1H-pyrazol-4-yl)phenyl)azanesulfonamide (PCW-1001) and showed that it inhibited several oncogenic properties of breast cancer both in vitro and in vivo. PCW-1001 induced apoptosis in several breast cancer cell lines. Transcriptome analysis of PCW-1001-treated cells showed that it regulates genes involved in the DNA damage response, suggesting its potential use in radiotherapy. Indeed, PCW-1001 enhanced the radiation sensitivity of breast cancer cells by modulating the expression of DNA damage response genes. Therefore, our data describe a novel pyrazole compound, PCW-1001, with antitumor and radiosensitizer activities in breast cancer.
Collapse
Affiliation(s)
- Minsung Kang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Navin Pandit
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, South Korea
| | - Ah-Young Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Suk Joon Cho
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Young-Ju Kwon
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.,Radiological and Medico-Oncological Sciences, University of Science and Technology, Seoul, South Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyu Myung Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Sangwook Wu
- Research & Development (R&D) Center, Pharmcadd, Busan, South Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Kwan-Young Jung
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, South Korea.,Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.,Radiological and Medico-Oncological Sciences, University of Science and Technology, Seoul, South Korea
| |
Collapse
|
6
|
Chen H, Skylaris CK. Energy decomposition analysis method for metallic systems. Phys Chem Chem Phys 2022; 24:1702-1711. [PMID: 34982081 DOI: 10.1039/d1cp05112a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we present the first extension of an energy decomposition analysis (EDA) method to metallic systems. We extend the theory of our Hybrid Absolutely Localized Molecular Orbitals (HALMO) EDA to take into account that molecular orbitals in metallic systems are partially occupied, which is done by weighted orthogonalization (WO) of the molecular orbitals using their associated fractional occupancies as weights in the construction of the projection operators. These operators are needed for the self-consistent field for molecular interaction (SCF MI) computation of the polarization-energy contribution to the interaction. The method gives more weight to orbitals that have higher occupancies and treats each fragment as metallic. The resulting HALMO EDA for metallic systems naturally reduces to the insulator version and produces the same results when applied to an insulating system. We present the theory and implementation of our new approach, and we demonstrate it with sample calculations of relevance to industrial materials. This work provides a new EDA paradigm and tool for the study and analysis of interactions in metallic systems within large-scale DFT calculations.
Collapse
Affiliation(s)
- Han Chen
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| |
Collapse
|
7
|
Chen H, Skylaris CK. Analysis of DNA interactions and GC content with energy decomposition in large-scale quantum mechanical calculations. Phys Chem Chem Phys 2021; 23:8891-8899. [PMID: 33876048 DOI: 10.1039/d0cp06630c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GC content is a contributing factor to the stability of nucleic acids due to hydrogen bonding. More hydrogen bonding generally results in greater stability. Empirical evidence, however, has suggested that the GC content of a nucleic acid is a poor predictor of its stability, implying that there are sequence-dependent interactions besides what its GC content indicates. To examine how much such sequence-dependent interactions affect the interaction energies of double-stranded DNA (dsDNA) molecules, dsDNA molecules of different sequences are generated and examined in silico for variabilities in the interaction energies within each group of dsDNA molecules of the same GC content. Since the amount of hydrogen bonding depends on the GC content, holding the GC content fixed when examining the differences in interaction energies allows sequence-dependent interactions to be isolated. The nature of sequence-dependent interactions is then dissected using energy decomposition analysis (EDA). By using EDA, the components of the interactions that depend on the neighboring base pairs help explain some of the variability in the interaction energies of the dsDNA molecules despite having the same GC content. This work provides a new paradigm and tool for the study and analysis of the distributions of interaction components in dsDNA with the same GC content using EDA within large-scale quantum chemistry calculations.
Collapse
Affiliation(s)
- Han Chen
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | | |
Collapse
|
8
|
Oebbeke M, Siefker C, Wagner B, Heine A, Klebe G. Fragment‐Bindung an die Kinase‐Scharnier‐Region: Wenn Ladungsverteilung und lokale p
K
a
‐Verschiebungen etablierte Bioisosterie‐Konzepte fehlleiten. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Matthias Oebbeke
- Philipps Universität Marburg Institut für Pharmazeutische Chemie Marbacher Weg 6 35032 Marburg Deutschland
| | - Christof Siefker
- Philipps Universität Marburg Institut für Pharmazeutische Chemie Marbacher Weg 6 35032 Marburg Deutschland
| | - Björn Wagner
- Roche Innovation Center Grenzacherstr. 124 4070 Basel Schweiz
| | - Andreas Heine
- Philipps Universität Marburg Institut für Pharmazeutische Chemie Marbacher Weg 6 35032 Marburg Deutschland
| | - Gerhard Klebe
- Philipps Universität Marburg Institut für Pharmazeutische Chemie Marbacher Weg 6 35032 Marburg Deutschland
| |
Collapse
|
9
|
Oebbeke M, Siefker C, Wagner B, Heine A, Klebe G. Fragment Binding to Kinase Hinge: If Charge Distribution and Local pK a Shifts Mislead Popular Bioisosterism Concepts. Angew Chem Int Ed Engl 2021; 60:252-258. [PMID: 33021032 PMCID: PMC7821265 DOI: 10.1002/anie.202011295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/25/2022]
Abstract
Medicinal-chemistry optimization follows strategies replacing functional groups and attaching larger substituents at a promising lead scaffold. Well-established bioisosterism rules are considered, however, it is difficult to estimate whether the introduced modifications really match the required properties at a binding site. The electron density distribution and pKa values are modulated influencing protonation states and bioavailability. Considering the adjacent H-bond donor/acceptor pattern of the hinge binding motif in a kinase, we studied by crystallography a set of fragments to map the required interaction pattern. Unexpectedly, benzoic acid and benzamidine, decorated with the correct substituents, are totally bioisosteric just as carboxamide and phenolic OH. A mono-dentate pyridine nitrogen out-performs bi-dentate functionalities. The importance of correctly designing pKa values of attached functional groups by additional substituents at the parent scaffold is rendered prominent.
Collapse
Affiliation(s)
- Matthias Oebbeke
- Philipps Universität MarburgInstitut für Pharmazeutische ChemieMarbacher Weg 635032MarburgGermany
| | - Christof Siefker
- Philipps Universität MarburgInstitut für Pharmazeutische ChemieMarbacher Weg 635032MarburgGermany
| | - Björn Wagner
- Roche Innovation CenterGrenzacherstr. 1244070BaselSwitzerland
| | - Andreas Heine
- Philipps Universität MarburgInstitut für Pharmazeutische ChemieMarbacher Weg 635032MarburgGermany
| | - Gerhard Klebe
- Philipps Universität MarburgInstitut für Pharmazeutische ChemieMarbacher Weg 635032MarburgGermany
| |
Collapse
|
10
|
Mao Y, Loipersberger M, Kron KJ, Derrick JS, Chang CJ, Sharada SM, Head-Gordon M. Consistent inclusion of continuum solvation in energy decomposition analysis: theory and application to molecular CO 2 reduction catalysts. Chem Sci 2020; 12:1398-1414. [PMID: 34163903 PMCID: PMC8179122 DOI: 10.1039/d0sc05327a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
To facilitate computational investigation of intermolecular interactions in the solution phase, we report the development of ALMO-EDA(solv), a scheme that allows the application of continuum solvent models within the framework of energy decomposition analysis (EDA) based on absolutely localized molecular orbitals (ALMOs). In this scheme, all the quantum mechanical states involved in the variational EDA procedure are computed with the presence of solvent environment so that solvation effects are incorporated in the evaluation of all its energy components. After validation on several model complexes, we employ ALMO-EDA(solv) to investigate substituent effects on two classes of complexes that are related to molecular CO2 reduction catalysis. For [FeTPP(CO2-κC)]2- (TPP = tetraphenylporphyrin), we reveal that two ortho substituents which yield most favorable CO2 binding, -N(CH3)3 + (TMA) and -OH, stabilize the complex via through-structure and through-space mechanisms, respectively. The coulombic interaction between the positively charged TMA group and activated CO2 is found to be largely attenuated by the polar solvent. Furthermore, we also provide computational support for the design strategy of utilizing bulky, flexible ligands to stabilize activated CO2 via long-range Coulomb interactions, which creates biomimetic solvent-inaccessible "pockets" in that electrostatics is unscreened. For the reactant and product complexes associated with the electron transfer from the p-terphenyl radical anion to CO2, we demonstrate that the double terminal substitution of p-terphenyl by electron-withdrawing groups considerably strengthens the binding in the product state while moderately weakens that in the reactant state, which are both dominated by the substituent tuning of the electrostatics component. These applications illustrate that this new extension of ALMO-EDA provides a valuable means to unravel the nature of intermolecular interactions and quantify their impacts on chemical reactivity in solution.
Collapse
Affiliation(s)
- Yuezhi Mao
- Department of Chemistry, University of California at Berkeley Berkeley CA 94720 USA
| | | | - Kareesa J Kron
- Mork Family Department of Chemical Engineering and Material Science, University of Southern California Los Angeles CA 90089 USA
| | - Jeffrey S Derrick
- Department of Chemistry, University of California at Berkeley Berkeley CA 94720 USA
| | - Christopher J Chang
- Department of Chemistry, University of California at Berkeley Berkeley CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Molecular and Cell Biology, University of California Berkeley Berkeley CA 94720 USA
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Material Science, University of Southern California Los Angeles CA 90089 USA
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California at Berkeley Berkeley CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
11
|
Bitencourt-Ferreira G, de Azevedo WF. Molecular Dynamics Simulations with NAMD2. Methods Mol Biol 2020; 2053:109-124. [PMID: 31452102 DOI: 10.1007/978-1-4939-9752-7_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
X-ray diffraction crystallography is the primary technique to determine the three-dimensional structures of biomolecules. Although a robust method, X-ray crystallography is not able to access the dynamical behavior of macromolecules. To do so, we have to carry out molecular dynamics simulations taking as an initial system the three-dimensional structure obtained from experimental techniques or generated using homology modeling. In this chapter, we describe in detail a tutorial to carry out molecular dynamics simulations using the program NAMD2. We chose as a molecular system to simulate the structure of human cyclin-dependent kinase 2.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
12
|
Prentice JCA, Aarons J, Womack JC, Allen AEA, Andrinopoulos L, Anton L, Bell RA, Bhandari A, Bramley GA, Charlton RJ, Clements RJ, Cole DJ, Constantinescu G, Corsetti F, Dubois SMM, Duff KKB, Escartín JM, Greco A, Hill Q, Lee LP, Linscott E, O'Regan DD, Phipps MJS, Ratcliff LE, Serrano ÁR, Tait EW, Teobaldi G, Vitale V, Yeung N, Zuehlsdorff TJ, Dziedzic J, Haynes PD, Hine NDM, Mostofi AA, Payne MC, Skylaris CK. The ONETEP linear-scaling density functional theory program. J Chem Phys 2020; 152:174111. [PMID: 32384832 DOI: 10.1063/5.0004445] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We present an overview of the onetep program for linear-scaling density functional theory (DFT) calculations with large basis set (plane-wave) accuracy on parallel computers. The DFT energy is computed from the density matrix, which is constructed from spatially localized orbitals we call Non-orthogonal Generalized Wannier Functions (NGWFs), expressed in terms of periodic sinc (psinc) functions. During the calculation, both the density matrix and the NGWFs are optimized with localization constraints. By taking advantage of localization, onetep is able to perform calculations including thousands of atoms with computational effort, which scales linearly with the number or atoms. The code has a large and diverse range of capabilities, explored in this paper, including different boundary conditions, various exchange-correlation functionals (with and without exact exchange), finite electronic temperature methods for metallic systems, methods for strongly correlated systems, molecular dynamics, vibrational calculations, time-dependent DFT, electronic transport, core loss spectroscopy, implicit solvation, quantum mechanical (QM)/molecular mechanical and QM-in-QM embedding, density of states calculations, distributed multipole analysis, and methods for partitioning charges and interactions between fragments. Calculations with onetep provide unique insights into large and complex systems that require an accurate atomic-level description, ranging from biomolecular to chemical, to materials, and to physical problems, as we show with a small selection of illustrative examples. onetep has always aimed to be at the cutting edge of method and software developments, and it serves as a platform for developing new methods of electronic structure simulation. We therefore conclude by describing some of the challenges and directions for its future developments and applications.
Collapse
Affiliation(s)
- Joseph C A Prentice
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Jolyon Aarons
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - James C Womack
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Alice E A Allen
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Lampros Andrinopoulos
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lucian Anton
- UKAEA, Culham Science Centre, Abingdon OX14 3DB, United Kingdom
| | - Robert A Bell
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Arihant Bhandari
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Gabriel A Bramley
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Robert J Charlton
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Rebecca J Clements
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Daniel J Cole
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Gabriel Constantinescu
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Fabiano Corsetti
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Simon M-M Dubois
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kevin K B Duff
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - José María Escartín
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Andrea Greco
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Quintin Hill
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Louis P Lee
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Edward Linscott
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - David D O'Regan
- School of Physics, AMBER, and CRANN Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Maximillian J S Phipps
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Laura E Ratcliff
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Álvaro Ruiz Serrano
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Edward W Tait
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Gilberto Teobaldi
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Valerio Vitale
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nelson Yeung
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Jacek Dziedzic
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Peter D Haynes
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nicholas D M Hine
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Arash A Mostofi
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Mike C Payne
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
13
|
Charge transfer as a ubiquitous mechanism in determining the negative charge at hydrophobic interfaces. Nat Commun 2020; 11:901. [PMID: 32060273 PMCID: PMC7021814 DOI: 10.1038/s41467-020-14659-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/22/2020] [Indexed: 01/17/2023] Open
Abstract
The origin of the apparent negative charge at hydrophobic–water interfaces has fueled debates in the physical chemistry community for decades. The most common interpretation given to explain this observation is that negatively charged hydroxide ions (OH–) bind strongly to the interfaces. Using first principles calculations of extended air–water and oil–water interfaces, we unravel a mechanism that does not require the presence of OH–. Small amounts of charge transfer along hydrogen bonds and asymmetries in the hydrogen bond network due to topological defects can lead to the accumulation of negative surface charge at both interfaces. For water near oil, some spillage of electron density into the oil phase is also observed. The computed surface charge densities at both interfaces is approximately \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-0.015\ {\rm{e}}/{{\rm{nm}}}^{2}$$\end{document}−0.015e∕nm2 in agreement with electrophoretic experiments. We also show, using an energy decomposition analysis, that the electronic origin of this phenomena is rooted in a collective polarization/charge transfer effect. The accumulation of negative charge at hydrophobic–water interfaces has been a source of debate for a long time. Here the authors use ab initio calculations to show that the charge accumulation at air–water and oil–water interfaces is caused by subtle charge transfer processes.
Collapse
|
14
|
Zhai C, Li T, Shi H, Yeo J. Discovery and design of soft polymeric bio-inspired materials with multiscale simulations and artificial intelligence. J Mater Chem B 2020; 8:6562-6587. [DOI: 10.1039/d0tb00896f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Establishing the “Materials 4.0” paradigm requires intimate knowledge of the virtual space in materials design.
Collapse
Affiliation(s)
- Chenxi Zhai
- J2 Lab for Engineering Living Materials
- Sibley School of Mechanical and Aerospace Engineering
- Cornell University
- Ithaca
- USA
| | - Tianjiao Li
- J2 Lab for Engineering Living Materials
- Sibley School of Mechanical and Aerospace Engineering
- Cornell University
- Ithaca
- USA
| | - Haoyuan Shi
- J2 Lab for Engineering Living Materials
- Sibley School of Mechanical and Aerospace Engineering
- Cornell University
- Ithaca
- USA
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials
- Sibley School of Mechanical and Aerospace Engineering
- Cornell University
- Ithaca
- USA
| |
Collapse
|
15
|
Otero-de-la-Roza A, Johnson ER. Analysis of Density-Functional Errors for Noncovalent Interactions between Charged Molecules. J Phys Chem A 2019; 124:353-361. [DOI: 10.1021/acs.jpca.9b10257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. Otero-de-la-Roza
- Departamento de Química Física y Analítica and MALTA-Consolider Team, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
16
|
Bitencourt-Ferreira G, Veit-Acosta M, de Azevedo WF. Van der Waals Potential in Protein Complexes. Methods Mol Biol 2019; 2053:79-91. [PMID: 31452100 DOI: 10.1007/978-1-4939-9752-7_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Van der Waals forces are determinants of the formation of protein-ligand complexes. Physical models based on the Lennard-Jones potential can estimate van der Waals interactions with considerable accuracy and with a computational complexity that allows its application to molecular docking simulations and virtual screening of large databases of small organic molecules. Several empirical scoring functions used to evaluate protein-ligand interactions approximate van der Waals interactions with the Lennard-Jones potential. In this chapter, we present the main concepts necessary to understand van der Waals interactions relevant to molecular recognition of a ligand by the binding pocket of a protein target. We describe the Lennard-Jones potential and its application to calculate potential energy for an ensemble of structures to highlight the main features related to the importance of this interaction for binding affinity.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Martina Veit-Acosta
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Ulman K, Busch S, Hassanali AA. Quantum mechanical effects in zwitterionic amino acids: The case of proline, hydroxyproline, and alanine in water. J Chem Phys 2018; 148:222826. [DOI: 10.1063/1.5008665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kanchan Ulman
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Geesthacht GmbH, Lichtenbergstr. 1, 85747 Garching bei München, Germany
| | - Ali A. Hassanali
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
18
|
A new approach for the acceleration of large-scale serial quantum chemical calculations of docking complexes. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2186-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|