1
|
Gałyńska M, Tecmer P, Boguslawski K. Exploring Electron Affinities, LUMO Energies, and Band Gaps with Electron-Pair Theories. J Phys Chem A 2024; 128:11068-11073. [PMID: 39665680 DOI: 10.1021/acs.jpca.4c06904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
We introduce the electron attachment equation-of-motion pair coupled cluster doubles (EA-EOM-pCCD) ansatz, which allows us to inexpensively compute electron affinities, energies of unoccupied orbitals, and electron attachment spectra. We assess the accuracy of EA-EOM-pCCD for a representative data set of organic molecules for which experimental data are available, as well as the electron attachment process in uranyl dichloride. EA-EOM-pCCD provides more reliable energies for electron attachment properties than its ionization potential EOM counterpart. The advantage of EA-EOM-pCCD is demonstrated for rylene and rylene diimide units of different chain lengths, where it outperforms the more elaborate EOM-DLPNO-CCSD flavors, reducing errors by an order of magnitude.
Collapse
Affiliation(s)
- Marta Gałyńska
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Paweł Tecmer
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| |
Collapse
|
2
|
Gao R, Li Y, Car R. Enhanced deep potential model for fast and accurate molecular dynamics: application to the hydrated electron. Phys Chem Chem Phys 2024; 26:23080-23088. [PMID: 39177036 DOI: 10.1039/d4cp01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
In molecular simulations, neural network force fields aim at achieving ab initio accuracy with reduced computational cost. This work introduces enhancements to the Deep Potential network architecture, integrating a message-passing framework and a new lightweight implementation with various improvements. Our model achieves accuracy on par with leading machine learning force fields and offers significant speed advantages, making it well-suited for large-scale, accuracy-sensitive systems. We also introduce a new iterative model for Wannier center prediction, allowing us to keep track of electron positions in simulations of general insulating systems. We apply our model to study the solvated electron in bulk water, an ostensibly simple system that is actually quite challenging to represent with neural networks. Our trained model is not only accurate, but can also transfer to larger systems. Our simulation confirms the cavity model, where the electron's localized state is observed to be stable. Through an extensive run, we accurately determine various structural and dynamical properties of the solvated electron.
Collapse
Affiliation(s)
- Ruiqi Gao
- Department of Electrical and Computer Engineering, Princeton University, Princeton, USA
| | - Yifan Li
- Department of Chemistry, Princeton University, Princeton, USA.
| | - Roberto Car
- Department of Chemistry, Princeton University, Princeton, USA.
| |
Collapse
|
3
|
Rahmatpour E, Esmaeili A. Introducing a new correlation functional in density functional theory. Sci Rep 2024; 14:17715. [PMID: 39085474 PMCID: PMC11291885 DOI: 10.1038/s41598-024-68655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
The correlation functional holds significance in density functional theory as it addresses electron-electron interactions beyond the mean-field approximation, enhancing the accuracy of total energy calculations, electronic excitations, and the prediction of materials properties. There are several expressions to describe this energy, and each of them has a unique set of errors in calculating particular properties of materials. This work offers a new correlation functional by employing the density's dependence on ionization energy. We theoretically derived this functional and combined it with the previously reported ionization energy dependent exchange functional to investigate its effect on the total energy, bond energy, dipole moment, and zero-point energy of 62 molecules. The comparison of this new functional in respect to existing widely used correlation models including QMC, PBE, B3LYP and Chachiyo models shows how well it works in producing accurate results with minimal mean absolute error.
Collapse
|
4
|
Sakaguchi D, Gotoh H. Using Three-Dimensional Information to Predict and Interpret the Facial Selectivities of Nucleophilic Additions to Cyclic Ketones. J Chem Inf Model 2024; 64:3213-3221. [PMID: 38591731 DOI: 10.1021/acs.jcim.4c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In this study, we devised a new method to predict facial selectivity by quantifying steric and orbital factors for the nucleophile approaching both π-plane faces. Using this method, we quantified the total electron density and frontier orbital distributions of 163 cyclic ketones with various structures and quantitatively explained the surface selectivity of 323 reactions with eight nucleophiles (BH3, LiAlH4, NaBH4, LiAl(OMe)3H, MeLi, MeMgI, PhLi, and PnMgI). Importance analysis showed a large orbital effect for BH3, LiAlH4, and NaBH4 and the dominance of the steric effect for LiAl(OMe)3H, MeLi, MeMgI, PhLi, and PhMgI. Our method analyzes three-dimensional features based on Gaussian cube files, which can be easily obtained using mainstream computational chemistry software packages, and this approach should prove useful for predicting the rates and facial selectivity of other reactions.
Collapse
Affiliation(s)
- Daimon Sakaguchi
- Department of Chemistry and Life Science, Yokohama National University, Yokohama, Hodogaya-ku 240-8501, Japan
| | - Hiroaki Gotoh
- Department of Chemistry and Life Science, Yokohama National University, Yokohama, Hodogaya-ku 240-8501, Japan
| |
Collapse
|
5
|
Mazraedoost S, Žuvela P, Ulenberg S, Bączek T, Liu JJ. Cross-column density functional theory-based quantitative structure-retention relationship model development powered by machine learning. Anal Bioanal Chem 2024:10.1007/s00216-024-05243-7. [PMID: 38507043 DOI: 10.1007/s00216-024-05243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Quantitative structure-retention relationship (QSRR) modeling has emerged as an efficient alternative to predict analyte retention times using molecular descriptors. However, most reported QSRR models are column-specific, requiring separate models for each high-performance liquid chromatography (HPLC) system. This study evaluates the potential of machine learning (ML) algorithms and quantum mechanical (QM) descriptors to develop QSRR models that can predict retention times across three different reversed-phase HPLC columns under varying conditions. Four machine learning methods-partial least squares (PLS) regression, ridge regression (RR), random forest (RF), and gradient boosting (GB)-were compared on a dataset of 360 retention times for 15 aromatic analytes. Molecular descriptors were calculated using density functional theory (DFT). Column characteristics like particle size and pore size and experimental conditions like temperature and gradient time were additionally used as descriptors. Results showed that the GB-QSRR model demonstrated the best predictive performance, with Q2 of 0.989 and root mean square error of prediction (RMSEP) of 0.749 min on the test set. Feature analysis revealed that solvation energy (SE), HOMO-LUMO energy gap (∆E HOMO-LUMO), total dipole moment (Mtot), and global hardness (η) are among the most influential predictors for retention time prediction, indicating the significance of electrostatic interactions and hydrophobicity. Our findings underscore the efficiency of ensemble methods, GB and RF models employing non-linear learners, in capturing local variations in retention times across diverse experimental setups. This study emphasizes the potential of cross-column QSRR modeling and highlights the utility of ML models in optimizing chromatographic analysis.
Collapse
Affiliation(s)
- Sargol Mazraedoost
- Intelligent Systems Laboratory, Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Petar Žuvela
- Intelligent Systems Laboratory, Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Szymon Ulenberg
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - J Jay Liu
- Intelligent Systems Laboratory, Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
- Institute of Cleaner Production Technology, Pukyong National University, (48513) 45, Yongso-Ro, Nam-Gu, Busan, South Korea.
| |
Collapse
|
6
|
Soltani Nejad M, Alipour M. How does theory compare to experiment for oscillator strengths in electronic spectra? Proposing range-separated hybrids with reliable accountability. Phys Chem Chem Phys 2024; 26:879-894. [PMID: 38087910 DOI: 10.1039/d3cp04793h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
As an important quantity in atomic and molecular spectroscopy, oscillator strength should be mentioned. Oscillator strength is linked to the transition dipole moment and consequently to the transition probability between two states, where its magnitude is directly connected to the intensity of the peaks in ultraviolet-visible spectra. However, accurately accounting for oscillator strengths still remains one of the greatest challenges in theory and experiment. Given previous efforts in the context of investigations into oscillator strengths, the related theoretical treatments are relatively limited and have proven to be challenging. In this work, the oscillator strengths in the electronic spectra of organic compounds have thoroughly been investigated with the help of optimally tuned range-separated hybrids (OT-RSHs). In particular, variants of the OT-RSHs combined with the polarizable continuum model (PCM), OT-RSHs-PCM, as well as their screened versions accounting for the screening effects by the electron correlation through the dielectric constant, OT-SRSHs-PCM, are proposed for reliable prediction of the oscillator strengths. The role of the involved ingredients in the proposed methods, namely the underlying density functional approximations, short-range and long-range Hartree-Fock (HF) exchange, as well as the range-separation parameter, has been examined in detail. It is shown that any combination of the parameters in the proposed approximations does not render the reliable oscillator strengths, but a particular compromise among them is needed to describe the experimental data well. Perusing all the results of our developed methods, the best ones are found to be the generalized gradient approximation-based OT-RSHs-PCM, coupled with the linear response theory in the non-equilibrium solvation regime, with the correct asymptotic behavior and incorporating no (low) HF exchange contributions in the short-range part. The best proposed approximations also reveal superior performances not only with respect to their standard counterparts with the default parameters but also as compared to earlier range-separated functionals. Finally, the applicability of the best approximation is also put into broader perspective, where it is used for predicting the oscillator strengths in other sets of compounds not included in the process of developing the approximations. Hopefully, our proposed method can function as an affordable alternative to the expensive wave function-based methods for both theoretical modeling and confirming the experimental observations in the field of electronic spectroscopy.
Collapse
Affiliation(s)
- Mahdi Soltani Nejad
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| | - Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| |
Collapse
|
7
|
Fürst S, Kaupp M, Wodyński A. Range-Separated Local Hybrid Functionals with Small Fractional-Charge and Fractional-Spin Errors: Escaping the Zero-Sum Game of DFT Functionals. J Chem Theory Comput 2023. [PMID: 37972297 DOI: 10.1021/acs.jctc.3c00877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Extending recent developments on strong-correlation (sc) corrections to local hybrid functionals to the recent accurate ωLH22t range-separated local hybrid, a series of highly flexible strong-correlation-corrected range-separated local hybrids (scRSLHs) has been constructed and evaluated. This has required the position-dependent reduction of both short- and long-range exact-exchange admixtures in regions of space characterized by strong static correlations. Using damping procedures provides scRSLHs that retain largely the excellent performance of ωLH22t for weakly correlated situations and, in particular, for accurate quasiparticle energies of a wide variety of systems while reducing dramatically static-correlation errors, e.g., in stretched-bond situations. An additional correction to the local mixing function to reduce delocalization errors in abnormal open-shell situations provides further improvements in thermochemical and kinetic parameters, making scRSLH functionals such as ωLH23tdE or ωLH23tdP promising tools for complex molecular or condensed-phase systems, where low fractional-charge and fractional-spin errors are simultaneously important. The proposed rung 4 functionals thereby largely escape the usual zero-sum game between these two quantities and are expected to open new areas of accurate computations by Kohn-Sham DFT. At the same time, they require essentially no extra computational effort over the underlying ωLH22t functional, which means that their use is only moderately more demanding than that of global, local, or range-separated hybrid functionals.
Collapse
Affiliation(s)
- Susanne Fürst
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Artur Wodyński
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
8
|
Rohman S, Kar R. Understanding Photophysical Properties of Molecules Relevant in Organic Semiconductor Laser Diodes from Electron Localization Function-Tuned and Solvent-Tuned Range-Separated Functionals. J Phys Chem A 2023; 127:9069-9081. [PMID: 37862688 DOI: 10.1021/acs.jpca.3c05486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Organic semiconductor laser diodes (OSLDs) are prevalent in optoelectronics because of their sustainable energy applications. Organic molecules used in such diodes are usually large; hence, their studies are computationally challenging with high-end benchmark methods. Computational methods with reliable accuracy and efficiency are always indispensable. In the present work, we have applied our computationally inexpensive, nonempirically tuned [electron localization function (ELF*) and solvent (Sol*)] range-separated (RS) functionals to study five molecules used in OSLDs. The emission energies in three different environments [toluene, CBP (4,4'-bis(n-carbazolyl)-1,1'-biphenyl) film, and gas] have been computed with the tuned functionals and compared with the experimental emission energies. ELF* and Sol* functionals can accurately reproduce emission energies in toluene and CBP film environments. On the other hand, both ELF* and IP-tuned functionals with excited-state geometry (IP*) perform better in the gas phase. In addition, a comparative study is performed between time-dependent density functional theory and the Tamm-Dancoff approximation. Along with the emission energy, oscillator strength values have also been reported. Different IP-tuned RS parameters were obtained with the ground- and excited-state geometries. Interestingly, it has been observed that the optimally tuned RS parameter with excited-state geometry (IP*) performs better compared to that with ground-state geometries (IP). Fractional occupation calculations show that the tuned functionals exhibit less localization and delocalization error. The study envisages that ELF* and Sol* functionals can be used to design future candidates for OSLDs.
Collapse
Affiliation(s)
- Satter Rohman
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Rahul Kar
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| |
Collapse
|
9
|
Aetizaz M, Ullah F, Sarfaraz S, Mahmood T, Ayub K. Robust and facile detection of formaldehyde through transition metals doped olympicene sensors: a step forward DFT investigation. RSC Adv 2023; 13:29231-29241. [PMID: 37809028 PMCID: PMC10551803 DOI: 10.1039/d3ra04019d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Formaldehyde, a volatile organic compound (VOC) released by building and decoration materials, has many applications in the chemical feedstock industry. Excessive release of formaldehyde can cause serious health issues, such as chest tightness, cough, cancer, and tissue damage. Therefore, detection of formaldehyde is required. Herein transition metal (Fe, Ni, and Pd) doped olympicene is evaluated as a gas sensor for the detection of formaldehyde. The performance of the designed electrochemical sensor is evaluated through interaction energy, natural bond orbital (NBO) non-covalent interaction (NCI), electron density differences (EDD), electrostatic potential (ESP), quantum theory of atom in molecule (QTAIM), frontier molecular orbital (FMO), and density of states (DOS) analysis. Interaction energies obtained at B3LYP-D3/def-2 TZVP level of theory shows that formaldehyde is physiosorbed over the surface of transition metal doped olympicene. The trend for interaction energy is OLY(Ni)/HCHO > OLY(Fe)/HCHO > OLY(Pd)/HCHO. The presence of non-covalent interactions is confirmed by the QTAIM and NCI analyses, while transfer of charges is confirmed by natural bond orbital analysis. The reduced density gradient (RDG) approach using noncovalent interaction (NCI) analysis demonstrates that electrostatic hydrogen bonding interactions prevail in the complexes. Recovery time is calculated to check the reusability of the sensor. This study may provide a deep insight for the designing of highly efficient electrochemical sensor against formaldehyde with transition metals doped on olympicene.
Collapse
Affiliation(s)
- Muhammad Aetizaz
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
| | - Faizan Ullah
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
| | - Sehrish Sarfaraz
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
| | - Tariq Mahmood
- Department of Chemistry, College of Science, University of Bahrain 1051 Bahrain
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
| |
Collapse
|
10
|
Abstract
Weakly bound non-valence anions are molecular systems where the excess electron stabilizes in a very diffuse orbital whose size, shape, and binding energy (∼1-100 meV) are governed by the long-range electrostatic potential of the molecule. Its binding energy comes mainly from charge-dipole or charge-multipole interactions or dispersion forces. While highly correlated methods, like coupled cluster methods, are considered to be the state of the art for describing anionic systems, especially when the electron lies in a very diffuse orbital, we consider here the possibility to use DFT-based calculations. In such molecular anions, the outer electron experiences long-range exchange and correlation interactions. We show that DFT can describe long-range bound states provided that a correct asymptotic exchange and correlation potential is used, namely, that from a range-separated hybrid functional. This opens an alternative to the computationally demanding highly correlated method calculations. It is also suggested that the study of weakly bound anions could help in the construction of new DFT potentials to study systems where nonlocal effects are significant.
Collapse
Affiliation(s)
- Guillaume Thiam
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, F-69622 Villeurbanne, France
| | - Franck Rabilloud
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, F-69622 Villeurbanne, France
| |
Collapse
|
11
|
Santibañez D, Mendizabal F. Understanding lead and mercury adsorption by post-synthetically modified linkers in UiO-66 MOF. A computational theoretical study. MOLECULAR SIMULATION 2023. [DOI: 10.1080/08927022.2023.2171073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Daniel Santibañez
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Mendizabal
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Ming S, Zhang Y, Lin K, Zhao J, Zhang Y. Large-fused-ring-based D-A type electrochromic polymer with magenta/yellowish green/cyan three-color transitions. Phys Chem Chem Phys 2023; 25:1970-1976. [PMID: 36541439 DOI: 10.1039/d2cp04987b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Large-fused-ring-based conjugated polymers possess wide application prospects in optoelectronic devices due to their high charge transport and wide optical absorption. In this paper, three low-bandgap donor-acceptor (D-A) type polymers PBIT-X (X = 1, 2, 3) based on alkylated benzodithiophene and tris(thienothiophene) as donors and thiadiazol-quinoxaline as an acceptor were synthesized via Stille coupling polymerization at different (donor/acceptor) D/A molar feed ratios. The band gaps of PBIT-1, PBIT-2, PBIT-3 were 1.10 eV, 1.04 eV and 1.02 eV, respectively. Spectroelectrochemistry studies showed that the three D-A type polymers have dual bands located in visible and near-infrared regions in the neutral state. The three D-A type polymers possess good electrochromic properties, such as an optical contrast of 56% and response time of 0.3 s. In particular, PBIT-3 could achieve three color changes from magenta to yellowish green to cyan during the oxidation process. The results indicate that these D-A type conjugated polymers based on large fused-ring units exhibit multiple color changes, endowing them with huge potential applications in visible and near-infrared electrochromic devices.
Collapse
Affiliation(s)
- Shouli Ming
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Yuling Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Kaiwen Lin
- Department of Materials and Food, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, P. R. China
| | - Jinsheng Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| |
Collapse
|
13
|
Aetizaz M, Sarfaraz S, Ayub K. Interaction of Imidazolium based ionic liquid electrolytes with carbon nitride electrodes in supercapacitors; A step forward for understanding electrode-electrolyte interaction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Carter-Fenk K, Cunha LA, Arias-Martinez JE, Head-Gordon M. Electron-Affinity Time-Dependent Density Functional Theory: Formalism and Applications to Core-Excited States. J Phys Chem Lett 2022; 13:9664-9672. [PMID: 36215404 DOI: 10.1021/acs.jpclett.2c02564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The lack of particle-hole attraction and orbital relaxation within time-dependent density functional theory (TDDFT) lead to extreme errors in the prediction of K-edge X-ray absorption spectra (XAS). We derive a linear-response formalism that uses optimized orbitals of the n - 1-electron system as the reference, building orbital relaxation and a proper hole into the initial density. Our approach is an exact generalization of the static-exchange approximation that ameliorates the particle-hole interaction error associated with the adiabatic approximation and reduces errors in TDDFT XAS by orders of magnitude. With a statistical performance of just 0.5 eV root-mean-square error and the same computational scaling as TDDFT under the core-valence separation approximation, we anticipate that this approach will be of great utility in XAS calculations of large systems.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Leonardo A Cunha
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Juan E Arias-Martinez
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
15
|
Sarghein MG, Ghiasi R, Baniyaghoob S. CHEMISORPTION OF C2H2 ON C20 BOWL: A COMPUTATIONAL INVESTIGATION. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Alipour M, Izadkhast T. Toward highly efficient hyperfluorescence-based emitters through excited-states alignment using novel optimally tuned range-separated models. Phys Chem Chem Phys 2022; 24:23718-23736. [PMID: 36155689 DOI: 10.1039/d2cp03395j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperfluorescence has recently been introduced as a promising strategy to achieve organic light-emitting diodes (OLEDs) with high color purity and enhanced stability. In this approach, fluorescent emitters (FEs) with strong and narrow band fluorescence are integrated in thin films containing sensitizers exhibiting thermally activated delayed fluorescence (TADF). Toward highly efficient hyperfluorescence-based emitters, the excited-states ordering of the FEs should be well-aligned. Given some recent endeavors in this context, the related theoretical explorations are relatively limited and have proven to be challenging. In this work, alignments of the corresponding excited-states, crucial for both the fast Förster resonance energy transfer and suppression of the Dexter energy transfer from TADF sensitizers to FEs, have theoretically been investigated using optimally tuned range-separated hybrid functionals (OT-RSHs). We have proposed and validated several variants of the models including OT-RSHs, their coupled versions with the polarizable continuum model, OT-RSHs-PCM, as well as the screened versions accounting for the screening effects by the electron correlation through the scalar dielectric constant, OT-SRSHs, for a reliable description of the excited-states ordering in the FEs of the hyperfluorescence-based materials. Particular attention is paid to the influence of the underlying density functional approximations as well as the short- and long-range Hartree-Fock (HF) exchange contributions and the range-separation parameter. Considering a series of experimentally known hyperfluorescence-based emitters as working models, it is unveiled that any combination of the ingredients in the proposed models does not render the correct order of the excited-states of the FEs, but a particular compromise among the involved parameters is needed to more accurately account for the relevant excited-states alignment. Perusing the results of our developed methods, the best ones are found to be the generalized gradient approximation-based OT-RSHs-PCM with the correct asymptotic behavior and incorporating no (low) HF exchange contribution at the short-range regime. The proposed models show superior performances not only with respect to their standard counterparts with the default parameters but also as compared to other range-separated approximations. Accountability of the best-proposed model is also put into broader perspective, where it has been employed for the computational design of several molecules as promising FE candidates prone to be utilized in hyperfluorescence-based materials. Summing up, the proposed models in this study can be recommended for both the theoretical modeling and confirming the experimental observations in the field of hyperfluorescence-based OLEDs.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| | - Tahereh Izadkhast
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| |
Collapse
|
17
|
Sessa F, Rahm M. Electronegativity Equilibration. J Phys Chem A 2022; 126:5472-5482. [PMID: 35939052 PMCID: PMC9393861 DOI: 10.1021/acs.jpca.2c03814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/16/2022] [Indexed: 11/30/2022]
Abstract
Controlling the distribution of electrons in materials is the holy grail of chemistry and material science. Practical attempts at this feat are common but are often reliant on simplistic arguments based on electronegativity. One challenge is knowing when such arguments work, and which other factors may play a role. Ultimately, electrons move to equalize chemical potentials. In this work, we outline a theory in which chemical potentials of atoms and molecules are expressed in terms of reinterpretations of common chemical concepts and some physical quantities: electronegativity, chemical hardness, and the sensitivity of electronic repulsion and core levels with respect to changes in the electron density. At the zero-temperature limit, an expression of the Fermi level emerges that helps to connect several of these quantities to a plethora of material properties, theories and phenomena predominantly explored in condensed matter physics. Our theory runs counter to Sanderson's postulate of electronegativity equalization and allows a perspective in which electronegativities of bonded atoms need not be equal. As chemical potentials equalize in this framework, electronegativities equilibrate.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Chemistry and
Chemical Engineering, Chalmers University
of Technology, SE-412 96 Gothenburg, Sweden
| | - Martin Rahm
- Department of Chemistry and
Chemical Engineering, Chalmers University
of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
18
|
Rohman S, Kar R. Excited-State Properties of Some Thermally Activated Delayed Fluorescence Emitters: Quest for an Accurate and Reliable Computational Method. J Phys Chem A 2022; 126:3452-3462. [PMID: 35609339 DOI: 10.1021/acs.jpca.2c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermally activated delayed fluorescence (TADF) finds application in organic light-emitting diodes. The molecules exhibiting TADF are characterized by small singlet-triplet energy gaps that help reverse intersystem crossing. Recently, ionization potential (IP)-tuned range-separated (RS) density functionals have been well accepted for studying excited-state properties. In the present work, two efficient descriptor-based tuning schemes [electron localization function (ELF) and Sol] of RS density functionals have been used to accurately reproduce the excited-state properties of TADF emitters by performing a single self-consistent field calculation. The lowest singlet vertical excitation energies (EVA(S1)) and the vertical singlet-triplet energy gaps (ΔEVST) are computed with ELF-, Sol-, and IP-tuned RS functionals (LC-BLYP, ωB97, ωB97X, and ωB97XD). Encouraging mean absolute deviations from the experimental values with ELF*-, Sol*-, and IP-tuned functionals are observed. Consistent performance of the non-empirical tuned functionals is noted in different solvent dielectrics. In addition to these, fractional occupation calculations have shown that our tuned functionals almost satisfy the energy linearity curve. Thus, ELF*- and Sol*-tuned functionals are promising and reliable alternatives in computing the excited-state properties. Considering the small experimental singlet-triplet gap, we recommend ELF* to calculate EVA(S1) and Sol* to calculate ΔEVST.
Collapse
Affiliation(s)
- Satter Rohman
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Rahul Kar
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| |
Collapse
|
19
|
Rana B, Coons MP, Herbert JM. Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT. J Phys Chem Lett 2022; 13:5275-5284. [PMID: 35674719 DOI: 10.1021/acs.jpclett.2c01187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density-corrected (DC-)DFT and its analytic energy gradient. In DC-DFT, an exchange-correlation functional is evaluated using a Hartree-Fock density, thus incorporating electron correlation while avoiding self-interaction error. Results for an electron polaron in models of titania and a hole polaron in Al-doped silica demonstrate that geometry optimization with semilocal functionals drives significant structural distortion, including the elongation of several bonds, such that subsequent single-point calculations with hybrid functionals fail to afford a localized defect even in cases where geometry optimization with the hybrid functional does localize the polaron. This has significant implications for traditional workflows in computational materials science, where semilocal functionals are often used for structure relaxation. DC-DFT calculations provide a mechanism to detect situations where delocalization error is likely to affect the results.
Collapse
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Marc P Coons
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
20
|
Harry SA, Vemulapalli S, Dudding T, Lectka T. Rational Computational Design of Systems Exhibiting Strong Halogen Bonding Involving Fluorine in Bicyclic Diamine Derivatives. J Org Chem 2022; 87:8413-8419. [PMID: 35658438 DOI: 10.1021/acs.joc.2c00497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perhaps the most controversial and rare aspect of the halogen bonding interaction is the potential of fluorine in compounds to serve as a halogen bond donor. In this note, we provide clear and convincing examples of hypothetical molecules in which fluorine is strongly halogen bonding in a metastable state. Of particular note is a polycyclic system inspired by Selectfluor, which has been controversially proposed to engage in halogen bonding.
Collapse
Affiliation(s)
- Stefan Andrew Harry
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Srini Vemulapalli
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
21
|
Alipour M, Damiri S. Excited-state properties of organic semiconductor dyes as electrically pumped lasing candidates from new optimally tuned range-separated models. Phys Chem Chem Phys 2022; 24:8003-8014. [PMID: 35315460 DOI: 10.1039/d1cp05363a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Even though many efforts have been devoted to optical lasing in recent years, the realization of lasing by direct electrical excitation of organic semiconductors is hampered mainly due to optical losses from electrical contacts and electrical losses induced by triplets and polarons at high current densities. Hereby, accurately accounting for the electrically pumped organic semiconductor laser diodes (OSLDs) still remains one of the greatest challenges in optoelectronics. In this work, the excited-state characteristics of the organic semiconductor dyes used in the electrically pumped OSLDs have thoroughly been investigated using optimally tuned range-separated hybrids (OT-RSHs). Considering several experimentally known compounds of the electrically pumped OSLDs as working models, several variants of OT-RSHs, their combination forms with the polarizable continuum model (PCM), OT-RSH-PCM, as well as their screened versions accounting for the screening effects by the electron correlation through the scalar dielectric constant, OT-SRSHs, have been proposed for reliable prediction of their emission energies and oscillator strengths in both the gas and solvent phases. The role of involved ingredients in the models, namely, the underlying density functional approximations, short- and long-range exact-like exchange, as well as the range-separation parameter, has been examined in detail. It is shown that the newly designed OT-RSHs with the correct behavior of asymptotic exchange-correlation potential outperform the standard RSHs and other density functionals with both fixed and interelectronic distance-dependent exact-like exchange for describing the excite-state properties of compounds of the electrically pumped OSLDs. Concerning the computational cost of the models, it is unveiled that performing both the optimal tuning procedure and subsequent excited-state computations using OT-RSHs in the gas phase can be considered as a more reliable and affordable framework. Finally, the applicability of the proposed models is also put into a broader perspective for the computational design of several compounds as promising candidates to be used in the OSLD materials. Hopefully, our recommended OT-RSHs can function as efficient models for both the related theoretical modeling and confirming the experimental observations in the field of electrically pumped OSLDs.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| | - Samaneh Damiri
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| |
Collapse
|
22
|
Gedeon J, Schmidt J, Hodgson MJP, Wetherell J, Benavides-Riveros CL, Marques MAL. Machine learning the derivative discontinuity of density-functional theory. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1088/2632-2153/ac3149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Machine learning is a powerful tool to design accurate, highly non-local, exchange-correlation functionals for density functional theory. So far, most of those machine learned functionals are trained for systems with an integer number of particles. As such, they are unable to reproduce some crucial and fundamental aspects, such as the explicit dependency of the functionals on the particle number or the infamous derivative discontinuity at integer particle numbers. Here we propose a solution to these problems by training a neural network as the universal functional of density-functional theory that (a) depends explicitly on the number of particles with a piece-wise linearity between the integer numbers and (b) reproduces the derivative discontinuity of the exchange-correlation energy. This is achieved by using an ensemble formalism, a training set containing fractional densities, and an explicitly discontinuous formulation.
Collapse
|
23
|
Ju CW, French EJ, Geva N, Kohn AW, Lin Z. Stacked Ensemble Machine Learning for Range-Separation Parameters. J Phys Chem Lett 2021; 12:9516-9524. [PMID: 34559964 DOI: 10.1021/acs.jpclett.1c02506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Density functional theory-based high-throughput materials and drug discovery has achieved tremendous success in recent decades, but its power on organic semiconducting molecules suffered catastrophically from the self-interaction error until the nonempirical but expensive optimally tuned range-separated hybrid (OT-RSH) functionals were developed. An OT-RSH transitions from a short-range (semi)local functional to a long-range Hartree-Fock exchange at a distance characterized by a molecule-specific range-separation parameter (ω). Herein, we propose a stacked ensemble machine learning model that provides an accelerated alternative of OT-RSH based on system-dependent structural and electronic configurations. We trained ML-ωPBE, the first functional in our series, using a database of 1970 molecules with sufficient structural and functional diversity, and assessed its accuracy and efficiency using another 1956 molecules. Compared with nonempirical OT-ωPBE, ML-ωPBE reaches a mean absolute error of 0.00504a0-1 for optimal ω's, reduces the computational cost by 2.66 orders of magnitude, and achieves comparable predictive power in optical properties.
Collapse
Affiliation(s)
- Cheng-Wei Ju
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ethan J French
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Nadav Geva
- Advanced Micro Devices Inc., Boxborough, Massachusetts 01719, United States
| | - Alexander W Kohn
- Blizzard Entertainment Inc., Irvine, California 92618, United States
| | - Zhou Lin
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
24
|
Assessment of DFT methods for the prediction of detachment energies and electronic structures of complex and multiply charged anions. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Ai W, Fang WH, Su NQ. The Role of Range-Separated Correlation in Long-Range Corrected Hybrid Functionals. J Phys Chem Lett 2021; 12:1207-1213. [PMID: 33482068 DOI: 10.1021/acs.jpclett.0c03621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The extensive application of long-range corrected hybrid functionals highlights the importance of further improving their accuracy. Unlike common long-range corrected hybrid functionals mainly focusing on the exchange part, range-separated correlation and its role in long-range corrected hybrid functionals are the main concerns of this work. To this end, we present theory on the derivation of the range-separated correlation, whose reliability and validity are proved by the agreement with the full CI on the test of the short-range correlation energy. The tests on various properties indicate that the long-range part of the LYP functional cannot effectively capture the long-range correlation effect required in LC-BLYP, whose absence instead results in a better XC functional. This new functional significantly improves LC-BLYP on all the tests in this work, with an accuracy on par with or even greater than the widely recognized CAM-B3LYP method for some applications, while maintaining the important -1/r asymptotic behavior of the XC potential. The advances and insights gained in this work are useful for the application and development of long-range corrected hybrid functionals, while emphasizing the significance of developing effective and low-cost long-range correlation functionals.
Collapse
Affiliation(s)
- Wenna Ai
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Wei-Hai Fang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Neil Qiang Su
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| |
Collapse
|
26
|
Alipour M, Safari Z. Singlet fission relevant energetics from optimally tuned range-separated hybrids. Phys Chem Chem Phys 2020; 22:27060-27076. [PMID: 33215617 DOI: 10.1039/d0cp03951a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a promising idea to design high-efficiency organic photovoltaics, singlet fission (SF) mechanism, i.e., generating two triplet excitons out of a single photon absorption, has recently come into the spotlight. Even though much effort has been devoted to this arena, accurately accounting for the SF process from the theoretical perspective has proven to be challenging. Herein, the SF energetics have thoroughly been investigated with the help of optimally tuned range-separated hybrid functionals (OT-RSHs) in both gas and solvent phases. Taking a series of experimentally known SF chromophores as working models, we have proposed and validated several variants of OT-RSH approximations for the reliable prediction of the energy levels which match the crucial criteria for the SF process, namely, the negative singlet-triplet and triplet-triplet energy gaps. We scrutinize the role of the OT-RSH ingredients, i.e., the underlying density functional approximations, short- and long-range exact-like exchange, as well as the range-separation parameter, for our purpose. The newly designed OT-RSHs outperform the standard RSHs and other related schemes such as screened-exchange approximations as well as other density functionals from different rungs for describing the SF energetics. More importantly, it is unveiled that although the OT-RSH coupled with the polarizable continuum model, OT-RSH-PCM, as well as the screened versions, OT-SRSHs, which account for the screening effect by the electron correlation through the scalar dielectric constant have some advantages over gas-phase computations using OT-RSHs, the energetics criteria of the SF process may not necessarily be satisfied. This in turn corroborates the idea of performing both the optimal tuning procedure and subsequent computations of the SF relevant energetics using OT-RSHs as a more reliable and affordable framework, at least for the present purpose. The applicability of the proposed models is also put into broader perspective, where they are used for the computational design of several chromophores as promising candidates prone to utilization in the SF-based materials. Hopefully, our recommended OT-RSHs can function as efficient models for both the theoretical modeling of SF chromophores and confirming the experimental observations in the field.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| | | |
Collapse
|
27
|
Zambrano-Huerta A, Bautista-Renedo JM, Reyes H, Martínez-Otero D, García-Orozco I, Melgar-Fernández RC, Ramírez-Palma MT, González-Rivas N, Cuevas-Yañez E. Structural and theoretical studies of 1,3-Bis-(1,2,3-triazol-1-yl)-propan-2-ol derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Sohlberg K, Foster ME. What's the gap? A possible strategy for advancing theory, and an appeal for experimental structure data to drive that advance. RSC Adv 2020; 10:36887-36896. [PMID: 35517967 PMCID: PMC9057033 DOI: 10.1039/d0ra07496a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/24/2020] [Indexed: 02/03/2023] Open
Abstract
There is substantial demand for theoretical/computational tools that can produce correct predictions of the geometric structure and band gap to accelerate the design and screening of new materials with desirable electronic properties. DFT-based methods exist that reliably predict electronic structure given the correct geometry. Similarly, when good spectroscopic data are available, these same methods may, in principle, be used as input to the inverse problem of generating a good structural model. The same is generally true for gas-phase systems, for which the choice of method is different, but factors that guide its selection are known. Despite these successes, there are shortcomings associated with DFT for the prediction of materials' electronic structure. The present paper offers a perspective on these shortcomings. Fundamentally, the shortcomings associated with DFT stem from a lack of knowledge of the exact functional form of the exchange–correlation functional. Inaccuracies therefore arise from using an approximate functional. These inaccuracies can be reduced by judicious selection of the approximate functional. Other apparent shortcomings present due to misuse or improper application of the method. One of the most significant difficulties is the lack of a robust method for predicting electronic and geometric structure when only qualitative (connectivity) information is available about the system/material. Herein, some actual shortcomings of DFT are distinguished from merely common improper applications of the method. The role of the exchange functional in the predicted relationship between geometric structure and band gap is then explored, using fullerene, 2D polymorphs of elemental phosphorus and polyacetylene as case studies. The results suggest a potentially fruitful avenue of investigation by which some of the true shortcomings might be overcome, and serve as the basis for an appeal for high-accuracy experimental structure data to drive advances in theory. Strong correlation between electronic structure and geometry might be capitalized upon to tune the DFT functional.![]()
Collapse
Affiliation(s)
- Karl Sohlberg
- Department of Chemistry, Drexel University Philadelphia PA 19104 USA .,Department of Materials Science & Engineering, Drexel University Philadelphia PA 19104 USA
| | - Michael E Foster
- Department of Chemistry, Drexel University Philadelphia PA 19104 USA
| |
Collapse
|
29
|
Alipour M, Damiri S. Unveiling the role of short-range exact-like exchange in the optimally tuned range-separated hybrids for fluorescence lifetime modeling. J Chem Phys 2020; 152:204301. [PMID: 32486652 DOI: 10.1063/5.0007767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We propose and validate several variants of the optimally tuned range-separated hybrid functionals (OT-RSHs) including different density functional approximations for predicting the fluorescence lifetimes of different categories of fluorophores within the time-dependent density functional theory (TD-DFT) framework using both the polarizable continuum and state-specific solvation models. Our main idea originates from performing the optimal tuning in the presence of a contribution of the exact-like exchange at the short-range part, which, in turn, leads to the small values of the range-separation parameter, and computing the fluorescence lifetimes using the models including no or small portions of the short-range exact-like exchange. Particular attention is also paid to the influence of the geometries of emitters on fluorescence lifetime computations. It is shown that our developed OT-RSHs along with the polarizable continuum model can be considered as the promising candidates within the TD-DFT framework for the prediction of fluorescence lifetimes for various fluorophores. We find that the proposed models not only outperform their standard counterparts but also provide reliable data better than or comparable to the conventional hybrid functionals with both the fixed and interelectronic distance-dependent exact-like exchanges. Furthermore, it is also revealed that when the excited state geometries come into play, more accurate descriptions of the fluorescence lifetimes can be achieved. Hopefully, our findings can give impetus for future developments of OT-RSHs for computational modeling of other characteristics in fluorescence spectroscopy as well as for verification of the related experimental observations.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| | - Samaneh Damiri
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| |
Collapse
|
30
|
Buszewski B, Žuvela P, Sagandykova G, Walczak-Skierska J, Pomastowski P, David J, Wong MW. Mechanistic Chromatographic Column Characterization for the Analysis of Flavonoids Using Quantitative Structure-Retention Relationships Based on Density Functional Theory. Int J Mol Sci 2020; 21:E2053. [PMID: 32192096 PMCID: PMC7139519 DOI: 10.3390/ijms21062053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 11/16/2022] Open
Abstract
This work aimed to unravel the retention mechanisms of 30 structurally different flavonoids separated on three chromatographic columns: conventional Kinetex C18 (K-C18), Kinetex F5 (K-F5), and IAM.PC.DD2. Interactions between analytes and chromatographic phases governing the retention were analyzed and mechanistically interpreted via quantum chemical descriptors as compared to the typical 'black box' approach. Statistically significant consensus genetic algorithm-partial least squares (GA-PLS) quantitative structure retention relationship (QSRR) models were built and comprehensively validated. Results showed that for the K-C18 column, hydrophobicity and solvent effects were dominating, whereas electrostatic interactions were less pronounced. Similarly, for the K-F5 column, hydrophobicity, dispersion effects, and electrostatic interactions were found to be governing the retention of flavonoids. Conversely, besides hydrophobic forces and dispersion effects, electrostatic interactions were found to be dominating the IAM.PC.DD2 retention mechanism. As such, the developed approach has a great potential for gaining insights into biological activity upon analysis of interactions between analytes and stationary phases imitating molecular targets, giving rise to an exceptional alternative to existing methods lacking exhaustive interpretations.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Gagarina 7, 87-100 Torun, Poland;
- Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland; (J.W.-S.); (P.P.)
| | - Petar Žuvela
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; (P.Ž.); (J.D.)
| | - Gulyaim Sagandykova
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Gagarina 7, 87-100 Torun, Poland;
- Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland; (J.W.-S.); (P.P.)
| | - Justyna Walczak-Skierska
- Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland; (J.W.-S.); (P.P.)
| | - Paweł Pomastowski
- Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland; (J.W.-S.); (P.P.)
| | - Jonathan David
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; (P.Ž.); (J.D.)
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; (P.Ž.); (J.D.)
| |
Collapse
|
31
|
Hirao K, Chan B, Song J, Bhattarai K, Tewary S. Excitation energies expressed as orbital energies of Kohn–Sham density functional theory with long‐range corrected functionals. J Comput Chem 2020; 41:1368-1383. [DOI: 10.1002/jcc.26181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Kimihiko Hirao
- RIKEN Center for Computational Science Chuo‐ku Kobe Japan
- Fukui Institute for Fundamental ChemistryKyoto University Sakyo‐ku Kyoto Japan
| | - Bun Chan
- Graduate School of EngineeringNagasaki University Nagasaki Japan
| | - Jong‐Won Song
- Department of Chemistry EducationDaegu University Gyeongsan South Korea
| | - Kamala Bhattarai
- Department of Chemistry EducationDaegu University Gyeongsan South Korea
| | - Subrata Tewary
- RIKEN Center for Computational Science Chuo‐ku Kobe Japan
| |
Collapse
|
32
|
Fractional occupation numbers and self‐interaction correction‐scaling methods with the Fermi‐Löwdin orbital self‐interaction correction approach. J Comput Chem 2020; 41:1200-1208. [DOI: 10.1002/jcc.26168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/19/2020] [Indexed: 11/07/2022]
|
33
|
Amati M, Stoia S, Baerends EJ. The Electron Affinity as the Highest Occupied Anion Orbital Energy with a Sufficiently Accurate Approximation of the Exact Kohn-Sham Potential. J Chem Theory Comput 2020; 16:443-452. [PMID: 31794657 PMCID: PMC6964414 DOI: 10.1021/acs.jctc.9b00981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Negative ions are not accurately represented in density
functional
approximations (DFAs) such as (semi)local density functionals (LDA
or GGA or meta-GGA). This is caused by the much too high orbital energies
(not negative enough) with these DFAs compared to the exact Kohn–Sham
values. Negative ions very often have positive DFA HOMO energies,
hence they are unstable. These problems do not occur with the exact
Kohn–Sham potential, the anion HOMO energy then being equal
to minus the electron affinity. It is therefore desirable to develop
sufficiently accurate approximations to the exact Kohn–Sham
potential. There are further beneficial effects on the orbital shapes
and the density of using a good approximation to the exact KS potential.
Notably the unoccupied orbitals are not unduly diffuse, as they are
in the Hartree–Fock model, with hybrid functionals, and even
with (semi)local density functional approximations (LDFAs). We show
that the recently developed B-GLLB-VWN approximation [Gritsenko et
al. J. Chem. Phys.2016, 144, 204114] to the exact KS potential affords stable negative ions
with HOMO orbital energy close to minus the electron affinity.
Collapse
Affiliation(s)
- M Amati
- Università degli Studi della Basilicata , Viale dell'Ateneo Lucano 10 , 85100 Potenza , Italy
| | - S Stoia
- Università degli Studi della Basilicata , Viale dell'Ateneo Lucano 10 , 85100 Potenza , Italy
| | - E J Baerends
- Sectie Theoretische Chemie, FEW , Vrije Universiteit , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| |
Collapse
|
34
|
Cox H, Baskerville AL, Syrjanen VJ, Melgaard M. The bound state stability of the hydride ion in Hartree-Fock theory. ADVANCES IN QUANTUM CHEMISTRY 2020. [DOI: 10.1016/bs.aiq.2020.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Alipour M, Safari Z. Toward photophysical characteristics of triplet-triplet annihilation photon upconversion: a promising protocol from the perspective of optimally tuned range-separated hybrids. Phys Chem Chem Phys 2019; 21:17126-17141. [PMID: 31339140 DOI: 10.1039/c9cp02987g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photon upconversion (UC) process assisted by the triplet-triplet annihilation (TTA) mechanism has recently come into the spotlight. Given the rich collection of efforts in this area, theoretical explorations regarding TTA-UC are relatively limited and have proven to be challenging for its control in devices. In this contribution, the photophysical properties crucial for TTA-UC, such as triplet excited state energies and triplet-triplet energy transfer gaps of the essential ingredients involved in the process, namely sensitizers, annihilators and their pairs, have theoretically been investigated using optimally tuned range-separated hybrid functionals (OT-RSHs) and their screened exchange counterparts, OT-SRSHs. Taking a series of experimentally proven-to-work sensitizer/annihilator pairs as working models, we have constructed and validated several variants of OT-RSHs using both full time-dependent and Tamm-Dancoff formalisms for a reliable description of the TTA-UC photophysics. Given the bimolecular biphotonic nature of the TTA-UC process under study, particular attention is paid to the influence of the factors like the underlying density functional approximations and the tunable parameters such as short- and long-range exact-like exchanges as well as the range-separation parameter for both the sensitizers and annihilators separately. Dissecting all the aspects and relying on the appropriate choices from the tested models, we propose an OT-RSH with the correct asymptotic behavior as a cost-effective yet useful tool for this purpose. Not only against the standard RSHs but also in comparison to the conventional hybrids, the newly developed OT-RSH yields a more reliable description for the TTA-UC energetics in the gas phase and dielectric medium. Accountability of the proposed model has further been confirmed for several theoretically designed sensitizer/annihilator pairs prone to be used in the TTA-UC process. Summing up, in light of this study additional pieces of convincing evidence on the quality of OT-(S)RSHs for computational modeling and experimental verifications of the photophysics of the photon UC based on TTA and other possible technologies are showcased.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran.
| | - Zahra Safari
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran.
| |
Collapse
|
36
|
Su NQ, Xu X. Insights into Direct Methods for Predictions of Ionization Potential and Electron Affinity in Density Functional Theory. J Phys Chem Lett 2019; 10:2692-2699. [PMID: 31059262 DOI: 10.1021/acs.jpclett.9b01052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vertical ionization potential (IP) and electron affinity (EA) are fundamental molecular properties, while the Δ method and the direct method are the widely used approaches to compute these properties. The Δ method is calculated by taking the total energy difference of the initial and final states, whose reliability is seriously affected by the issue associated with the imbalanced treatment of these two states. The direct method based on the derivatives involving only one single-state calculation can yield a quasi-particle spectrum whose accuracy, on the other hand, is mostly affected by the levels of approximate molecular structure theories. Because of the aforementioned issues, EA prediction can be particularly problematic. Here we present, for the first time, an analytic theory on the derivation and realization of generalized Kohn-Sham (KS) eigenvalues of doubly hybrid (DH) functionals that depend on both occupied and unoccupied orbitals. The method based on the KS eigenvalues of neutral systems, termed the NKS method, is found to suffer little from the imbalance issue, while it is only the NKS method that can offer accurate EA prediction from a good functional approximation, such as the XYG3 type of DH functionals. Being less sensitive to the size of basis sets, the NKS method is of great significance for its application to large systems. The insights gained in this work are useful for the calculation of properties associated with small energy differences while emphasizing the importance of the development of generalized functionals that rely on both occupied and unoccupied orbitals.
Collapse
Affiliation(s)
- Neil Qiang Su
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry , Fudan University , Shanghai 200433 , China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry , Fudan University , Shanghai 200433 , China
| |
Collapse
|
37
|
Mei Y, Li C, Su NQ, Yang W. Approximating Quasiparticle and Excitation Energies from Ground State Generalized Kohn-Sham Calculations. J Phys Chem A 2019; 123:666-673. [PMID: 30589546 DOI: 10.1021/acs.jpca.8b10380] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quasiparticle energies and fundamental band gaps in particular are critical properties of molecules and materials. It was rigorously established that the generalized Kohn-Sham HOMO and LUMO orbital energies are the chemical potentials of electron removal and addition and thus good approximations to band edges and fundamental gaps from a density functional approximation (DFA) with minimal delocalization error. For other quasiparticle energies, their connection to the generalized Kohn-Sham orbital energies has not been established but remains highly interesting. We provide the comparison of experimental quasiparticle energies for many finite systems with calculations from the GW Green function and localized orbitals scaling correction (LOSC), a recently developed correction to semilocal DFAs, which has minimal delocalization error. Extensive results with over 40 systems clearly show that LOSC orbital energies achieve slightly better accuracy than the GW calculations with little dependence on the semilocal DFA, supporting the use of LOSC DFA orbital energies to predict quasiparticle energies. This also leads to the calculations of excitation energies of the N-electron systems from the ground state DFA calculations of the ( N - 1)-electron systems. Results show good performance with accuracy similar to TDDFT and the delta SCF approach for valence excitations with commonly used DFAs with or without LOSC. For Rydberg states, good accuracy was obtained only with the use of LOSC DFA. This work highlights the pathway to quasiparticle and excitation energies from ground density functional calculations.
Collapse
Affiliation(s)
- Yuncai Mei
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Chen Li
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Neil Qiang Su
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Weitao Yang
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States.,Key Laboratory of Theoretical Chemistry of Environment, School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , China
| |
Collapse
|
38
|
Bhandari S, Cheung MS, Geva E, Kronik L, Dunietz BD. Fundamental Gaps of Condensed-Phase Organic Semiconductors from Single-Molecule Calculations using Polarization-Consistent Optimally Tuned Screened Range-Separated Hybrid Functionals. J Chem Theory Comput 2018; 14:6287-6294. [DOI: 10.1021/acs.jctc.8b00876] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Srijana Bhandari
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Margaret S. Cheung
- Department of Physics, University of Houston, Houston, Texas 77204, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Barry D. Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
39
|
Xu L, Kumar A, Wong BM. Linear polarizabilities and second hyperpolarizabilities of streptocyanines: Results from broken‐Symmetry DFT and new CCSD(T) benchmarks. J Comput Chem 2018; 39:2350-2359. [DOI: 10.1002/jcc.25519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/06/2018] [Accepted: 06/14/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Lihua Xu
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program and Department of Physics & Astronomy University of California‐Riverside Riverside California 92521
| | - Anshuman Kumar
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program and Department of Physics & Astronomy University of California‐Riverside Riverside California 92521
| | - Bryan M. Wong
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program and Department of Physics & Astronomy University of California‐Riverside Riverside California 92521
| |
Collapse
|
40
|
Vikramaditya T, Chai JD, Lin ST. Impact of non-empirically tuning the range-separation parameter of long-range corrected hybrid functionals on ionization potentials, electron affinities, and fundamental gaps. J Comput Chem 2018; 39:2378-2384. [DOI: 10.1002/jcc.25575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Talapunur Vikramaditya
- Department of Chemical Engineering; National Taiwan University; No. 1, Sec. 4, Roosevelt Road, Taipei 10617 Taiwan
| | - Jeng-Da Chai
- Department of Physics; National Taiwan University; No. 1, Sec. 4, Roosevelt Road, Taipei 10617 Taiwan
| | - Shiang-Tai Lin
- Department of Chemical Engineering; National Taiwan University; No. 1, Sec. 4, Roosevelt Road, Taipei 10617 Taiwan
| |
Collapse
|
41
|
Alipour M. Dipole moments of molecules with multi-reference character from optimally tuned range-separated density functional theory. J Comput Chem 2018; 39:1508-1516. [PMID: 29635817 DOI: 10.1002/jcc.25221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 01/31/2023]
Abstract
Dipole moment is the first nonzero moment of the charge density of neutral systems. If a density functional theory (DFT) method is able to yield accurate dipole moments, it should first provide an accurate geometry and then predict a reliable charge distribution for that geometry. In this respect, recent literatures have revealed that most DFT approximations work considerably better for single-reference molecules with respect to multi-reference ones, as may be expected from this fact that DFT utilizes a single configuration state function as reference function to represent the density. Putting together, it seems that as compared to the single-reference systems, situation is slightly more involved in the case of dipole moment calculations of multi-reference molecules. Effort to address this latter issue constitutes the cornerstone of the present investigation. To this end, we rely on a different approach where the new optimally (nonempirically) tuned range-separated hybrid density functionals (OT-RSHs) without invoking any empirical fitting are proposed for predicting the dipole moments of multi-reference molecules containing both main-group elements and transition metals. We have scanned the controlling factors of OT-RSHs like short- and long-range exchange contributions and range-separation parameter with the aim of deriving the best performing models for the purpose. The obtained results unveil that, as compared to the standard range-separated density functionals, our newly developed OT-RSHs not only give an improved description on the dipole moments of the molecules with multi-reference character but also the quality of their predictions is better than other conventional and recently proposed DFT approximations. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71946-84795, Iran
| |
Collapse
|
42
|
Anderson LN, Aquino FW, Raeber AE, Chen X, Wong BM. Halogen Bonding Interactions: Revised Benchmarks and a New Assessment of Exchange vs Dispersion. J Chem Theory Comput 2017; 14:180-190. [DOI: 10.1021/acs.jctc.7b01078] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Lindsey N. Anderson
- Department of Chemical & Environmental Engineering and Materials Science & Engineering Program, University of California-Riverside, Riverside, California 92521, United States
| | - Fredy W. Aquino
- Department of Chemical & Environmental Engineering and Materials Science & Engineering Program, University of California-Riverside, Riverside, California 92521, United States
| | - Alexandra E. Raeber
- Department of Chemical & Environmental Engineering and Materials Science & Engineering Program, University of California-Riverside, Riverside, California 92521, United States
| | - Xi Chen
- Department of Chemical & Environmental Engineering and Materials Science & Engineering Program, University of California-Riverside, Riverside, California 92521, United States
| | - Bryan M. Wong
- Department of Chemical & Environmental Engineering and Materials Science & Engineering Program, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
43
|
Sharma H, Saha B, Bhattacharyya PK. Sandwiches of N-doped diamondoids and benzene vialone pair–cation and cation–pi interaction: a DFT study. NEW J CHEM 2017. [DOI: 10.1039/c7nj02467c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cation–lone pair and cation–pi interactions in the complexes of N-doped dimondoids.
Collapse
Affiliation(s)
- Himakshi Sharma
- Department of Chemistry
- Arya Vidyapeeth College
- Gauhati University
- Guwahati
- India
| | - Bapan Saha
- Department of Chemistry
- Arya Vidyapeeth College
- Gauhati University
- Guwahati
- India
| | | |
Collapse
|