1
|
Heßelmann A, Giner E, Reinhardt P, Knowles PJ, Werner HJ, Toulouse J. A density-fitting implementation of the density-based basis-set correction method. J Comput Chem 2024; 45:1247-1253. [PMID: 38348951 DOI: 10.1002/jcc.27325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 01/26/2024] [Indexed: 04/19/2024]
Abstract
This work reports an efficient density-fitting implementation of the density-based basis-set correction (DBBSC) method in the MOLPRO software. This method consists in correcting the energy calculated by a wave-function method with a given basis set by an adapted basis-set correction density functional incorporating the short-range electron correlation effects missing in the basis set, resulting in an accelerated convergence to the complete-basis-set limit. Different basis-set correction density-functional approximations are explored and the complementary-auxiliary-basis-set single-excitation correction is added. The method is tested on a benchmark set of reaction energies at the second-order Møller-Plesset (MP2) level and a comparison with the explicitly correlated MP2-F12 method is provided. The results show that the DBBSC method greatly accelerates the basis convergence of MP2 reaction energies, without reaching the accuracy of the MP2-F12 method but with a lower computational cost.
Collapse
Affiliation(s)
- Andreas Heßelmann
- Institute for Theoretical Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Emmanuel Giner
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, Paris, France
| | - Peter Reinhardt
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, Paris, France
| | | | - Hans-Joachim Werner
- Institute for Theoretical Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Julien Toulouse
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
2
|
Urban L, Laqua H, Thompson TH, Ochsenfeld C. Efficient Exploitation of Numerical Quadrature with Distance-Dependent Integral Screening in Explicitly Correlated F12 Theory: Linear Scaling Evaluation of the Most Expensive RI-MP2-F12 Term. J Chem Theory Comput 2024; 20:3706-3718. [PMID: 38626443 PMCID: PMC11099969 DOI: 10.1021/acs.jctc.4c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
We present a linear scaling atomic orbital based algorithm for the computation of the most expensive exchange-type RI-MP2-F12 term by employing numerical quadrature in combination with CABS-RI to avoid six-center-three-electron integrals. Furthermore, a robust distance-dependent integral screening scheme, based on integral partition bounds [Thompson, T. H.; Ochsenfeld, C. J. Chem. Phys. 2019, 150, 044101], is used to drastically reduce the number of the required three-center-one-electron integrals substantially. The accuracy of our numerical quadrature/CABS-RI approach and the corresponding integral screening is thoroughly assessed for interaction and isomerization energies across a variety of numerical integration grids. Our method outperforms the standard density fitting/CABS-RI approach with errors below 1 μEh even for small grid sizes and moderate screening thresholds. The choice of the grid size and screening threshold allows us to tailor our ansatz to a desired accuracy and computational efficiency. We showcase the approach's effectiveness for the chemically relevant system valinomycin, employing a triple-ζ F12 basis set combination (C54H90N6O18, 5757 AO basis functions, 10,266 CABS basis functions, 735,783 grid points). In this context, our ansatz achieves higher accuracy combined with a 135× speedup compared to the classical density fitting based variant, requiring notably less computation time than the corresponding RI-MP2 calculation. Additionally, we demonstrate near-linear scaling through calculations on linear alkanes. We achieved an 817-fold acceleration for C80H162 and an extrapolated 28,765-fold acceleration for C200H402, resulting in a substantially reduced computational time for the latter─from 229 days to just 11.5 min. Our ansatz may also be adapted to the remaining MP2-F12 terms, which will be the subject of future work.
Collapse
Affiliation(s)
- Lars Urban
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
- Max
Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Henryk Laqua
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Travis H. Thompson
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
- Max
Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| |
Collapse
|
3
|
Semidalas E, Martin JML. Correlation Consistent Basis Sets for Explicitly Correlated Theory: The Transition Metals. J Chem Theory Comput 2023; 19:5806-5820. [PMID: 37540641 PMCID: PMC10500978 DOI: 10.1021/acs.jctc.3c00506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 08/06/2023]
Abstract
We present correlation consistent basis sets for explicitly correlated (F12) calculations, denoted VnZ(-PP)-F12-wis (n = D,T), for the d-block elements. The cc-pVDZ-F12-wis basis set is contracted to [8s7p5d2f] for the 3d-block, while its ECP counterpart for the 4d and 5d-blocks, cc-pVDZ-PP-F12-wis, is contracted to [6s6p5d2f]. The corresponding contracted sizes for cc-pVTZ(-PP)-F12-wis are [9s8p6d3f2g] for the 3d-block elements and [7s7p6d3f2g] for the 4d and 5d-block elements. Our VnZ(-PP)-F12-wis basis sets are evaluated on challenging test sets for metal-organic barrier heights (MOBH35) and group-11 metal clusters (CUAGAU-2). In F12 calculations, they are found to be about as close to the complete basis set limit as the combination of standard cc-pVnZ-F12 on main-group elements with the standard aug-cc-pV(n+1)Z(-PP) basis sets on the transition metal(s). While our basis sets are somewhat more compact than aug-cc-pV(n+1)Z(-PP), the CPU time benefit is negligible for catalytic complexes that contain only one or two transition metals among dozens of main-group elements; however, it is somewhat more significant for metal clusters.
Collapse
Affiliation(s)
- Emmanouil Semidalas
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| | - Jan M. L. Martin
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| |
Collapse
|
4
|
Semidalas E, Martin JML. Automatic generation of complementary auxiliary basis sets for explicitly correlated methods. J Comput Chem 2022; 43:1690-1700. [PMID: 35852227 PMCID: PMC9544771 DOI: 10.1002/jcc.26970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 07/02/2022] [Indexed: 11/15/2022]
Abstract
Explicitly correlated calculations, aside from the orbital basis set, typically require three auxiliary basis sets: Coulomb-exchange fitting (JK), resolution of the identity MP2 (RI-MP2), and complementary auxiliary basis set (CABS). If unavailable for the orbital basis set and chemical elements of interest, the first two can be auto-generated on the fly using existing algorithms, but not the third. In this paper, we present a quite simple algorithm named autoCABS; a Python implementation under a free software license is offered at Github. For the cc-pVnZ-F12 (n = D,T,Q,5), the W4-08 thermochemical benchmark, and the HFREQ2014 set of harmonic frequencies, we demonstrate that autoCABS-generated CABS basis sets are comparable in quality to purpose-optimized OptRI basis sets from the literature, and that the quality difference becomes entirely negligible as n increases.
Collapse
Affiliation(s)
- Emmanouil Semidalas
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceReḥovotIsrael
| | - Jan M. L. Martin
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceReḥovotIsrael
| |
Collapse
|
5
|
Nagy PR, Gyevi-Nagy L, Lőrincz BD, Kállay M. Pursuing the basis set limit of CCSD(T) non-covalent interaction energies for medium-sized complexes: case study on the S66 compilation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Péter R. Nagy
- Faculty of Chemical Technology and Biotechnology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
- ELKH-BME Quantum Chemistry Research Group, Budapest, Hungary
| | - László Gyevi-Nagy
- Faculty of Chemical Technology and Biotechnology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
- ELKH-BME Quantum Chemistry Research Group, Budapest, Hungary
| | - Balázs D. Lőrincz
- Faculty of Chemical Technology and Biotechnology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
- ELKH-BME Quantum Chemistry Research Group, Budapest, Hungary
| | - Mihály Kállay
- Faculty of Chemical Technology and Biotechnology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
- ELKH-BME Quantum Chemistry Research Group, Budapest, Hungary
| |
Collapse
|
6
|
Urban L, Laqua H, Ochsenfeld C. Highly Efficient and Accurate Computation of Multiple Orbital Spaces Spanning Fock Matrix Elements on Central and Graphics Processing Units for Application in F12 Theory. J Chem Theory Comput 2022; 18:4218-4228. [PMID: 35674337 DOI: 10.1021/acs.jctc.2c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We employ our recently published highly efficient seminumerical exchange (sn-LinK) [Laqua, H.; Thompson, T. H.; Kussmann, J.; Ochsenfeld, C. J. Chem. Theory Comput. 2020, 16, 1456-1468] and integral-direct resolution of the identity Coulomb (RI-J) [Kussmann, J.; Laqua, H.; Ochsenfeld, C. J. Chem. Theory Comput. 2021, 17, 1512-1521] methods to significantly accelerate the computation of the demanding multiple orbital spaces spanning Fock matrix elements present in R12/F12 theory on central and graphics processing units. The errors introduced by RI-J and sn-LinK into the RI-MP2-F12 energy are thoroughly assessed for a variety of basis sets and integration grids. We find that these numerical errors are always below "chemical accuracy" (∼1 mH) even for the coarsest settings and can easily be reduced below 1 μH by employing only moderately large integration grids and RI-J basis sets. Since the number of basis functions of the multiple orbital spaces is notably larger compared with conventional Hartree-Fock theory, the efficiency gains from the superior basis scaling of RI-J and sn-LinK (O(Nbas2) instead of O(Nbas4) for both) are even more significant, with maximum speedup factors of 37 000 for RI-J and 4500 for sn-LinK. In total, the multiple orbital spaces spanning Fock matrix evaluation of the largest tested structure using a triple-ζ F12 basis set (5058 AO basis functions, 9267 CABS basis functions) is accelerated over 1575× using CPUs and over 4155× employing GPUs.
Collapse
Affiliation(s)
- Lars Urban
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany.,Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Henryk Laqua
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany.,Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| |
Collapse
|
7
|
Bader F, Tremblay JC, Paulus B. Theoretical modeling of molecules in weakly interacting environments: trifluoride anions in argon. Phys Chem Chem Phys 2022; 24:3555-3567. [PMID: 35080559 DOI: 10.1039/d1cp02338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The properties of molecules can be affected by the presence of a host environment. Even in inert rare gas matrices such effects are observable, as for instance in matrix isolation spectroscopy. In this work we study the trifluoride anion in cryogenic argon environments. To investigate the structure and vibrational properties of the guest-host systems, a potential energy surface of compound F-3-argon structures is determined from ab initio calculations with the CCSD(T)-F12b approach. Argon environments are probed with minima hopping optimizations of extended trifluoride-argon clusters. The vibrations of F-3 within the optimized environments are examined with anharmonic vibrational analyses. Among the three identified structural surroundings for the trifluoride, two are characterized by relatively favorable guest-host and host-host interactions as well as vibrational zero-point energies. A striking dependence of the trifluoride properties on the particular argon environment reveals the delicate influence of the host atoms on the guest molecule. Very good agreement with measured data suggests that in experiment F-3 occupies a double-vacancy site.
Collapse
Affiliation(s)
- Frederik Bader
- Institut für Chemie und Biochemie, Freie Universität Berlin, D-14195, Berlin, Germany.
| | - Jean Christophe Tremblay
- Laboratoire de Physique et Chimie Théoriques, CNRS-Université de Lorraine, UMR 7019, ICPM, 1Bd Arago, 57070 Metz, France
| | - Beate Paulus
- Institut für Chemie und Biochemie, Freie Universität Berlin, D-14195, Berlin, Germany.
| |
Collapse
|
8
|
Hill JG, Shaw RA. Correlation consistent basis sets for explicitly correlated wavefunctions: Pseudopotential-based basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. J Chem Phys 2021; 155:174113. [PMID: 34742216 DOI: 10.1063/5.0070638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
New correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements have been developed specifically for use in explicitly correlated F12 calculations. This includes orbital basis sets for valence only (cc-pVnZ-PP-F12, n = D, T, Q) and outer core-valence (cc-pCVnZ-PP-F12) correlation, along with both of these augmented with additional high angular momentum diffuse functions. Matching auxiliary basis sets required for density fitting and resolution-of-the-identity approaches to conventional and F12 integrals have also been optimized. All of the basis sets are to be used in conjunction with small-core relativistic pseudopotentials [Figgen et al., Chem. Phys. 311, 227 (2005)]. The accuracy of the basis sets is determined through benchmark calculation at the explicitly correlated coupled-cluster level of theory for various properties of atoms and diatomic molecules. The convergence of the properties with respect to the basis set is dramatically improved compared to conventional coupled-cluster calculations, with cc-pVTZ-PP-F12 results close to conventional estimates of the complete basis set limit. The patterns of convergence are also greatly improved compared to those observed from the use of conventional correlation consistent basis sets in F12 calculations.
Collapse
Affiliation(s)
- J Grant Hill
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Robert A Shaw
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| |
Collapse
|
9
|
Saleh Y, Sanjay V, Iske A, Yachmenev A, Küpper J. Active learning of potential-energy surfaces of weakly bound complexes with regression-tree ensembles. J Chem Phys 2021; 155:144109. [PMID: 34654290 DOI: 10.1063/5.0057051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several pool-based active learning (AL) algorithms were employed to model potential-energy surfaces (PESs) with a minimum number of electronic structure calculations. Theoretical and empirical results suggest that superior strategies can be obtained by sampling molecular structures corresponding to large uncertainties in their predictions while at the same time not deviating much from the true distribution of the data. To model PESs in an AL framework, we propose to use a regression version of stochastic query by forest, a hybrid method that samples points corresponding to large uncertainties while avoiding collecting too many points from sparse regions of space. The algorithm is implemented with decision trees that come with relatively small computational costs. We empirically show that this algorithm requires around half the data to converge to the same accuracy in comparison to the uncertainty-based query-by-committee algorithm. Moreover, the algorithm is fully automatic and does not require any prior knowledge of the PES. Simulations on a 6D PES of pyrrole(H2O) show that <15 000 configurations are enough to build a PES with a generalization error of 16 cm-1, whereas the final model with around 50 000 configurations has a generalization error of 11 cm-1.
Collapse
Affiliation(s)
- Yahya Saleh
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Vishnu Sanjay
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Armin Iske
- Department of Mathematics, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
| | - Andrey Yachmenev
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
10
|
Urban L, Thompson TH, Ochsenfeld C. A scaled explicitly correlated F12 correction to second-order Møller-Plesset perturbation theory. J Chem Phys 2021; 154:044101. [PMID: 33514114 DOI: 10.1063/5.0033411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An empirically scaled version of the explicitly correlated F12 correction to second-order Møller-Plesset perturbation theory (MP2-F12) is introduced. The scaling eliminates the need for many of the most costly terms of the F12 correction while reproducing the unscaled explicitly correlated F12 interaction energy correction to a high degree of accuracy. The method requires a single, basis set dependent scaling factor that is determined by fitting to a set of test molecules. We present factors for the cc-pVXZ-F12 (X = D, T, Q) basis set family obtained by minimizing interaction energies of the S66 set of small- to medium-sized molecular complexes and show that our new method can be applied to accurately describe a wide range of systems. Remarkably good explicitly correlated corrections to the interaction energy are obtained for the S22 and L7 test sets, with mean percentage errors for the double-zeta basis of 0.60% for the F12 correction to the interaction energy, 0.05% for the total electron correlation interaction energy, and 0.03% for the total interaction energy, respectively. Additionally, mean interaction energy errors introduced by our new approach are below 0.01 kcal mol-1 for each test set and are thus negligible for second-order perturbation theory based methods. The efficiency of the new method compared to the unscaled F12 correction is shown for all considered systems, with distinct speedups for medium- to large-sized structures.
Collapse
Affiliation(s)
- L Urban
- Department of Chemistry, Ludwig-Maximilians-University Munich (LMU Munich), D-81377 Munich, Germany
| | - T H Thompson
- Department of Chemistry, Ludwig-Maximilians-University Munich (LMU Munich), D-81377 Munich, Germany
| | - C Ochsenfeld
- Department of Chemistry, Ludwig-Maximilians-University Munich (LMU Munich), D-81377 Munich, Germany
| |
Collapse
|
11
|
Bader F, Tremblay JC, Paulus B. A pair potential modeling study of F3− in neon matrices. Phys Chem Chem Phys 2021; 23:886-899. [DOI: 10.1039/d0cp05031h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First-principles investigations of the trifluoride anion in a neon environment reveal a small blue-shift of the fundamental vibrational excitations.
Collapse
Affiliation(s)
- Frederik Bader
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- D-14195, Berlin
- Germany
| | | | - Beate Paulus
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- D-14195, Berlin
- Germany
| |
Collapse
|
12
|
Werner HJ, Knowles PJ, Manby FR, Black JA, Doll K, Heßelmann A, Kats D, Köhn A, Korona T, Kreplin DA, Ma Q, Miller TF, Mitrushchenkov A, Peterson KA, Polyak I, Rauhut G, Sibaev M. The Molpro quantum chemistry package. J Chem Phys 2020; 152:144107. [PMID: 32295355 DOI: 10.1063/5.0005081] [Citation(s) in RCA: 531] [Impact Index Per Article: 132.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Molpro is a general purpose quantum chemistry software package with a long development history. It was originally focused on accurate wavefunction calculations for small molecules but now has many additional distinctive capabilities that include, inter alia, local correlation approximations combined with explicit correlation, highly efficient implementations of single-reference correlation methods, robust and efficient multireference methods for large molecules, projection embedding, and anharmonic vibrational spectra. In addition to conventional input-file specification of calculations, Molpro calculations can now be specified and analyzed via a new graphical user interface and through a Python framework.
Collapse
Affiliation(s)
- Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Peter J Knowles
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Frederick R Manby
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Joshua A Black
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Klaus Doll
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Andreas Heßelmann
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Daniel Kats
- Max-Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Andreas Köhn
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Tatiana Korona
- Faculty of Chemistry, University of Warsaw, L. Pasteura 1 St., 02-093 Warsaw, Poland
| | - David A Kreplin
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | - Iakov Polyak
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Guntram Rauhut
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Marat Sibaev
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
13
|
Abstract
Halogen bonds are prevalent in many areas of chemistry, physics, and biology. We present a statistical model for the interaction energies of halogen-bonded systems at equilibrium based on high-accuracy ab initio benchmark calculations for a range of complexes. Remarkably, the resulting model requires only two fitted parameters, X and B—one for each molecule—and optionally the equilibrium separation, R e , between them, taking the simple form E = X B / R e n . For n = 4 , it gives negligible root-mean-squared deviations of 0.14 and 0.28 kcal mol - 1 over separate fitting and validation data sets of 60 and 74 systems, respectively. The simple model is shown to outperform some of the best density functionals for non-covalent interactions, once parameters are available, at essentially zero computational cost. Additionally, we demonstrate how it can be transferred to completely new, much larger complexes and still achieve accuracy within 0.5 kcal mol - 1 . Using a principal component analysis and symmetry-adapted perturbation theory, we further show how the model can be used to predict the physical nature of a halogen bond, providing an efficient way to gain insight into the behavior of halogen-bonded systems. This means that the model can be used to highlight cases where induction or dispersion significantly affect the underlying nature of the interaction.
Collapse
|
14
|
Ma Q, Werner HJ. Accurate Intermolecular Interaction Energies Using Explicitly Correlated Local Coupled Cluster Methods [PNO-LCCSD(T)-F12]. J Chem Theory Comput 2019; 15:1044-1052. [DOI: 10.1021/acs.jctc.8b01098] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
15
|
Przybytek M. Dispersion Energy of Symmetry-Adapted Perturbation Theory from the Explicitly Correlated F12 Approach. J Chem Theory Comput 2018; 14:5105-5117. [DOI: 10.1021/acs.jctc.8b00470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michał Przybytek
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
16
|
Affiliation(s)
- Robert A. Shaw
- Department of Chemistry, University of Sheffield, Sheffield, UK
| | - J. Grant Hill
- Department of Chemistry, University of Sheffield, Sheffield, UK
| |
Collapse
|
17
|
Kesharwani MK, Karton A, Sylvetsky N, Martin JML. The S66 Non-Covalent Interactions Benchmark Reconsidered Using Explicitly Correlated Methods Near the Basis Set Limit. Aust J Chem 2018. [DOI: 10.1071/ch17588] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The S66 benchmark for non-covalent interactions has been re-evaluated using explicitly correlated methods with basis sets near the one-particle basis set limit. It is found that post-MP2 ‘high-level corrections’ are treated adequately well using a combination of CCSD(F12*) with (aug-)cc-pVTZ-F12 basis sets on the one hand, and (T) extrapolated from conventional CCSD(T)/heavy-aug-cc-pV{D,T}Z on the other hand. Implications for earlier benchmarks on the larger S66×8 problem set in particular, and for accurate calculations on non-covalent interactions in general, are discussed. At a slight cost in accuracy, (T) can be considerably accelerated by using sano-V{D,T}Z+ basis sets, whereas half-counterpoise CCSD(F12*)(T)/cc-pVDZ-F12 offers the best compromise between accuracy and computational cost.
Collapse
|
18
|
|
19
|
Sylvetsky N, Kesharwani MK, Martin JML. The aug-cc-pVnZ-F12 basis set family: Correlation consistent basis sets for explicitly correlated benchmark calculations on anions and noncovalent complexes. J Chem Phys 2017; 147:134106. [DOI: 10.1063/1.4998332] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nitai Sylvetsky
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| | - Manoj K. Kesharwani
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| | - Jan M. L. Martin
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| |
Collapse
|