1
|
Yu L, Gao S, Ding W, Bao X, Wang H, Yuan R. Mechanism Analysis and Property Prediction of Extended Surfactants Based on the Respectively Optimized Force Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14859-14868. [PMID: 37843017 DOI: 10.1021/acs.langmuir.3c01432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Extended surfactants represent a novel class of anionic-nonionic surfactants with exceptional performance and unique application value in chemically enhanced oil recovery. Although molecular dynamics (MD) simulations can efficiently screen these surfactants, the current research is limited. Here, it is proven for the first time that existing generic force fields (GAFF and CHARMM) cannot accurately describe extended surfactants, and traditional approaches are insufficient for obtaining precise charge parameters. The concept of the respectively optimized force field (ROFF) with the purports of specialization and accuracy is proposed to construct high-accuracy models for MD simulations, and a new approach is developed to simulate the interface model. By combining the newly specialized alkane model, ROFF-based surfactant models, and the innovative simulation protocol, high accuracy and reliability can be obtained in predicting hydration free energies, minimum of area per molecule, and critical micelle concentration of extended surfactants. Key properties of the newly designed extended surfactants in conventional oil-water interfaces and oil reservoir environments are comprehensively predicted by using advanced analytical and characterization methods. Furthermore, the more rigorous mechanism underlying the special amphiphilicity of the extended surfactant is revealed, potentially offering significant improvements over previous empirical perspectives.
Collapse
Affiliation(s)
- Lintao Yu
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318 , China
| | - Simeng Gao
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318 , China
| | - Wei Ding
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318 , China
| | - Xinxin Bao
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318 , China
| | - Hainan Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318 , China
| | - Ruixia Yuan
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318 , China
| |
Collapse
|
2
|
Shen K, Nguyen M, Sherck N, Yoo B, Köhler S, Speros J, Delaney KT, Shell MS, Fredrickson GH. Predicting surfactant phase behavior with a molecularly informed field theory. J Colloid Interface Sci 2023; 638:84-98. [PMID: 36736121 DOI: 10.1016/j.jcis.2023.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS The computational study of surfactants and self-assembly is challenging because 1) models need to reflect chemistry-specific interactions, and 2) self-assembled structures are difficult to equilibrate with conventional molecular dynamics. We propose to overcome these challenges with a multiscale simulation approach where relative entropy minimization transfers chemically-detailed information from all-atom (AA) simulations to coarse-grained (CG) models that can be simulated using field-theoretic methods. Field-theoretic simulations are not limited by intrinsic physical time scales like diffusion and allow for rigorous equilibration via free energy minimization. This approach should enable the study of properties that are difficult to obtain by particle-based simulations. SIMULATION WORK We apply this workflow to sodium dodecylsulfate. To ensure chemical fidelity we present an AA force field calibrated against interfacial tension experiments. We generate CG models from AA simulation trajectories and show that particle-based and field-theoretic simulations of the CG model reproduce AA simulations and experimental measurements. FINDINGS The workflow captures the complex balance of interactions in a multicomponent system ultimately described by an atomistic model. The resulting CG models can study complex 3D phases like double or alternating gyroids, and reproduce salt effects on properties like aggregation number and shape transitions.
Collapse
Affiliation(s)
- Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| | - My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - Brian Yoo
- BASF Corporation, Tarrytown 10591, NY, United States
| | | | - Joshua Speros
- California Research Alliance (CARA) by BASF, Berkeley 94720, CA, United States
| | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| | - Glenn H Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Department of Materials Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| |
Collapse
|
3
|
Catalytic Properties of Calixarene Bearing Choline Groups in the Processes of Ester Hydrolysis. THEOR EXP CHEM+ 2023. [DOI: 10.1007/s11237-023-09752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
4
|
Farafonov VS, Lebed AV, Nerukh DA, Mchedlov-Petrossyan NO. Estimation of Nanoparticle's Surface Electrostatic Potential in Solution Using Acid-Base Molecular Probes I: In Silico Implementation for Surfactant Micelles. J Phys Chem B 2023; 127:1022-1030. [PMID: 36655872 DOI: 10.1021/acs.jpcb.2c07012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Surface electrostatic potential Ψ is a key characteristic of colloid particles. Since the surface of the particles adsorbs various compounds and facilitates chemical reactions between them, Ψ largely affects the properties of adsorbed reactants and governs the flow of chemical reactions occurring between them. One of the most popular methods for estimating Ψ in hydrophilic colloids, such as micellar surfactant solutions and related systems, is the application of molecular probes, predominantly acid-base indicator dyes. The Ψ value is calculated from the difference of the probe's indices of the apparent acidity constant between the examined colloid solution and, usually, some other colloid solution with noncharged particles. Here, we show how to implement this method in silico using alchemical free energy calculations within the framework of molecular dynamics simulations. The proposed implementation is tested on surfactant micelles and is shown to predict experimental Ψ values with quantitative accuracy depending on the kind of surfactant. The sources of errors in the method are discussed, and recommendations for its application are given.
Collapse
Affiliation(s)
- Vladimir S Farafonov
- Department of Physical Chemistry, V. N. Karazin National University, Kharkiv61022, Ukraine.,Department of Mathematics, Aston University, BirminghamB4 7ET, U.K
| | - Alexander V Lebed
- Department of Physical Chemistry, V. N. Karazin National University, Kharkiv61022, Ukraine
| | - Dmitry A Nerukh
- Department of Mathematics, Aston University, BirminghamB4 7ET, U.K
| | | |
Collapse
|
5
|
|
6
|
Mohammed S, Kuzmenko I, Gadikota G. Reversible assembly of silica nanoparticles at water-hydrocarbon interfaces controlled by SDS surfactant. NANOSCALE 2021; 14:127-139. [PMID: 34897361 DOI: 10.1039/d1nr06807e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Achieving reversible and tunable assembly of silica nanoparticles at liquid-liquid interfaces is vital for a wide range of scientific and technological applications including sustainable subsurface energy applications, catalysis, drug delivery and material synthesis. In this study, we report the mechanisms controlling the assembly of silica nanoparticles (dia. 50 nm and 100 nm) at water-heptane and water-toluene interfaces using sodium dodecyl sulfate (SDS) surfactant with concentrations ranging from 0.001-0.1 wt% using operando ultrasmall/small-angle X-ray scattering, cryogenic scanning electron microscopy imaging and classical molecular dynamics simulations. The results show that the assembly of silica nanoparticles at water-hydrocarbon interfaces can be tuned by controlling the concentrations of SDS. Silica nanoparticles are found to: (a) dominate the interfaces in the absence of interfacial SDS molecules, (b) coexist with SDS at the interfaces at low surfactant concentration of 0.001 wt% and (c) migrate toward the aqueous phase at a high SDS concentration of 0.1 wt%. Energetic analyses suggest that the van der Waals and electrostatic interactions between silica nanoparticles and SDS surfactants increase with SDS concentration. However, the favorable van der Waals and electrostatic interactions between the silica nanoparticles and toluene or heptane decrease with increasing SDS concentration. As a result, the silica nanoparticles migrate away from the water-hydrocarbon interface and towards bulk water at higher SDS concentrations. These calibrated investigations reveal the mechanistic basis for tuning silica nanoparticle assembly at complex interfaces.
Collapse
Affiliation(s)
- Sohaib Mohammed
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Ivan Kuzmenko
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Greeshma Gadikota
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
7
|
Müller P, Bonthuis DJ, Miller R, Schneck E. Ionic Surfactants at Air/Water and Oil/Water Interfaces: A Comparison Based on Molecular Dynamics Simulations. J Phys Chem B 2021; 125:406-415. [DOI: 10.1021/acs.jpcb.0c08615] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Paulina Müller
- Physics Department, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Douwe Jan Bonthuis
- Institute of Theoretical and Computational Physics, Technische Universität Graz, 8010 Graz, Austria
| | - Reinhard Miller
- Physics Department, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Emanuel Schneck
- Physics Department, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
8
|
Peng M, Duignan TT, Nguyen AV. Quantifying the Counterion-Specific Effect on Surfactant Adsorption Using Modeling, Simulation, and Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13012-13022. [PMID: 33084333 DOI: 10.1021/acs.langmuir.0c02403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ionic surfactants behave differently in the presence of various counterions, which plays an important role in many scientific and engineering processes. Previous work has shown that the counterion-specific surface tension can be reproduced with classical adsorption models, but the underlying origin of this effect has not been explained. In this paper, we extend our previously developed adsorption model to account for the specific counterion adsorption. This model can accurately predict the surface tension of surfactant solutions like sodium dodecyl sulfate (SDS) in the presence of the monovalent salts LiCl, NaCl, KCl, and CsCl. The predicted surface excess and surface potential are validated by corresponding sum-frequency generation (SFG) spectroscopy experiments. We also used molecular dynamic (MD) simulation to explain the origin of the counterion-specific effect for surfactant behavior. Our study shows that for SDS, binding of the counterion to both the headgroup and a few CH2 fragments close to the surfactant head contributes to the counterion-specific effect. In general, SDS behaves like a large ion, and it prefers to bind with large counterions such as Cs+, which is consistent with Collins's law of matching water affinity. Therefore, large counterions enhance the surface adsorption and lower the surface tension the most.
Collapse
Affiliation(s)
- Mengsu Peng
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy T Duignan
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
9
|
Johnston MA, Duff AI, Anderson RL, Swope WC. Model for the Simulation of the C nE m Nonionic Surfactant Family Derived from Recent Experimental Results. J Phys Chem B 2020; 124:9701-9721. [PMID: 32986421 DOI: 10.1021/acs.jpcb.0c06132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a comprehensive set of recently published experimental results for training and validation, we have developed computational models appropriate for simulations of aqueous solutions of poly(ethylene oxide) alkyl ethers, an important class of micelle-forming nonionic surfactants, usually denoted CnEm. These models are suitable for use in simulations that employ a moderate amount of coarse graining and especially for dissipative particle dynamics (DPD), which we adopt in this work. The experimental data used for training and validation were reported earlier and produced in our laboratory using dynamic light scattering (DLS) measurements performed on 12 members of the CnEm compound family yielding micelle size distribution functions and mass-weighted mean aggregation numbers at each of several surfactant concentrations. The range of compounds and quality of the experimental results were designed to support the development of computational models. An essential feature of this work is that all simulation results were analyzed in a way that is consistent with the experimental data. Proper account is taken of the fact that a broad distribution of micelle sizes exists, so mass-weighted averages (rather than number-weighted averages) over this distribution are required for the proper comparison of simulation and experimental results. The resulting DPD force field reproduces several important trends seen in the experimental critical micelle concentrations and mass-averaged mean aggregation numbers with respect to surfactant characteristics and concentration. We feel it can be used to investigate a number of open questions regarding micelle sizes and shapes and their dependence on surfactant concentration for this important class of nonionic surfactants.
Collapse
Affiliation(s)
| | - Andrew Ian Duff
- STFC Hartree Centre, SciTech Daresbury, Warrington, Cheshire WA4 4AD, U.K
| | - Richard L Anderson
- STFC Hartree Centre, SciTech Daresbury, Warrington, Cheshire WA4 4AD, U.K
| | - William C Swope
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| |
Collapse
|
10
|
Farafonov VS, Lebed AV, Mchedlov-Petrossyan NO. Computing p Ka Shifts Using Traditional Molecular Dynamics: Example of Acid-Base Indicator Dyes in Organized Solutions. J Chem Theory Comput 2020; 16:5852-5865. [PMID: 32786914 DOI: 10.1021/acs.jctc.0c00231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A compound's acidity constant (Ka) in a given medium determines its protonation state and, thus, its behavior and physicochemical properties. Therefore, it is among the key characteristics considered during the design of new compounds for the needs of advanced technology, medicine, and biological research, a notable example being pH sensors. The computational prediction of Ka for weak acids and bases in homogeneous solvents is presently rather well developed. However, it is not the case for more complex media, such as microheterogeneous solutions. The constant-pH molecular dynamics (MD) method is a notable contribution to the solution of the problem, but it is not commonly used. Here, we develop an approach for predicting Ka changes of weak small-molecule acids upon transfer from water to colloid solutions by means of traditional classical molecular dynamics. The approach is based on free energy (ΔG) computations and requires limited experiment data input during calibration. It was successfully tested on a series of pH-sensitive acid-base indicator dyes in micellar solutions of surfactants. The difficulty of finite-size effects affecting ΔG computation between states with different total charges is taken into account by evaluating relevant corrections; their impact on the results is discussed, and it is found non-negligible (0.1-0.4 pKa units). A marked bias is found in the ΔG values of acid deprotonation, as computed from MD, which is apparently caused by force-field issues. It is hypothesized to affect the constant-pH MD and reaction ensemble MD methods as well. Consequently, for these methods, a preliminary calibration is suggested.
Collapse
Affiliation(s)
- Vladimir S Farafonov
- V. N. Karazin Kharkiv National University, 4 Svoboda Square, Kharkiv 61022, Ukraine
| | - Alexander V Lebed
- V. N. Karazin Kharkiv National University, 4 Svoboda Square, Kharkiv 61022, Ukraine
| | | |
Collapse
|
11
|
|
12
|
Peroukidis SD, Tsalikis DG, Noro MG, Stott IP, Mavrantzas VG. Quantitative Prediction of the Structure and Viscosity of Aqueous Micellar Solutions of Ionic Surfactants: A Combined Approach Based on Coarse-Grained MARTINI Simulations Followed by Reverse-Mapped All-Atom Molecular Dynamics Simulations. J Chem Theory Comput 2020; 16:3363-3372. [DOI: 10.1021/acs.jctc.0c00229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stavros D. Peroukidis
- Department of Chemical Engineering, University of Patras and FORTH-ICE/HT, Patras, GR 26504, Greece
- Hellenic Open University, Patras, GR 26222, Greece
| | - Dimitrios G. Tsalikis
- Department of Chemical Engineering, University of Patras and FORTH-ICE/HT, Patras, GR 26504, Greece
| | - Massimo G. Noro
- UKRI Science and Technology Facilities Council, Daresbury WA4 4AD, U.K
| | - Ian P. Stott
- Unilever Research & Development Port Sunlight, Bebington CH63 3JW, U.K
| | - Vlasis G. Mavrantzas
- Department of Chemical Engineering, University of Patras and FORTH-ICE/HT, Patras, GR 26504, Greece
- Department of Mechanical and Process Engineering, Particle Technology Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
13
|
Abdel-Azeim S. Revisiting OPLS-AA Force Field for the Simulation of Anionic Surfactants in Concentrated Electrolyte Solutions. J Chem Theory Comput 2020; 16:1136-1145. [PMID: 31904948 DOI: 10.1021/acs.jctc.9b00947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hereby, we developed a set of nonbonded parameters within all-atom optimized potentials for liquid simulations (OPLS-AA) force field for the simulation of concentrated electrolyte solutions of anionic surfactants. More specifically, the aim of this paper is to assess the performance of five sets of atomic charges calculated using different population analyses (DDEC6, CHelpG, CHelpG-SMD, RESP, and CM5), as well as the original set of charges used in the literature for sodium dodecyl sulfate (SDS) simulation. Recently, Farafonov et al. have revised the SDS OPLS-AA force field; however, we were unable to obtain the experimental rodlike micelles using this parameter set on long time scale. In fact, the initial SDS bilayer micelle adopted a rodlike shape transiently and then broke down into spherical micelles. Updating OPLS-AA force field with DDEC6, CHelpG, and CHelpG-SMD charges resulted in stable rod micelles for a long simulation time (1 μs). The atomic charges of Farafonov (taken from Shelley et al.), RESP, and CM5 could not correctly describe SDS in concentrated electrolyte solutions. Analysis of the interaction of SDS with the counterions and solvent highlights the role of a balance of the intermolecular forces that must be met to describe adequately the anionic surfactant electrolyte solutions. Further, the optimization of the SDS Lennard-Jones parameters enabled the Farafonov set to properly reproduce the experimental rod micelle. In addition, we have examined the performance of different parameters of sodium ions: the first developed based on the Kirkwood-Buff integrals (KBI) and the second developed by Joung et al. The excessive ion pairing caused by KBI parameters screens significantly SDS-water interactions, which stabilize the rod micelle. Further, a tight interaction of the Na+-SDS head group resulted in stabilization of the bilayer micelle as observed in the case of Na+ parameters developed by Joung et al.
Collapse
Affiliation(s)
- Safwat Abdel-Azeim
- Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering and Geosciences , King Fahd University of Petroleum and Minerals (KFUPM) , Dhahran 31261 , Saudi Arabia
| |
Collapse
|
14
|
In search of an optimal acid-base indicator for examining surfactant micelles: Spectrophotometric studies and molecular dynamics simulations. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Mchedlov-Petrossyan NO, Farafonov VS, Lebed AV. Examining surfactant micelles via acid-base indicators: Revisiting the pioneering Hartley–Roe 1940 study by molecular dynamics modeling. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Farafonov VS, Lebed AV, Mchedlov-Petrossyan NO. Solvatochromic betaine dyes of different hydrophobicity in ionic surfactant micelles: Molecular dynamics modeling of location character. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.11.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Ergin G, Lbadaoui-Darvas M, Takahama S. Molecular Structure Inhibiting Synergism in Charged Surfactant Mixtures: An Atomistic Molecular Dynamics Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14093-14104. [PMID: 29160707 DOI: 10.1021/acs.langmuir.7b03346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synergistic and nonsynergistic surfactant-water mixtures of sodium dodecyl sulfate (SDS), lauryl betaine (C12B), and cocoamidopropyl betaine (CAPB) systems are studied using molecular simulation to understand the role of interactions among headgroups, tailgroups, and water on structural and thermodynamic properties at the air-water interface. SDS is an anionic surfactant, while C12B and CAPB are zwitterionic; CAPB differs from C12B by an amide group in the tail. While the lowest surface tensions at high surface concentrations in the SDS-C12B synergistic system could not be reproduced by simulation, estimated partitioning between surface and bulk shows trends consistent with synergism. Structural analysis shows the influence of the SDS headgroup pulling C12B to the surface, resulting in closely packed structures compared to their respective homomolecular-surfactant systems. The SDS-CAPB system, on the other hand, is nonsynergistic when the surfactants are mixed on account of the tilted structure of the CAPB tail. The translational excess entropy due to the tailgroup interactions discriminates between the synergistic and nonsynergistic systems. The implications of such interactions on surfactant effects in complex, multicomponent atmospheric aerosols are discussed.
Collapse
Affiliation(s)
- Gözde Ergin
- Atmospheric Particle and Research Laboratory, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Mária Lbadaoui-Darvas
- Atmospheric Particle and Research Laboratory, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Satoshi Takahama
- Atmospheric Particle and Research Laboratory, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Farafonov VS, Lebed AV, Mchedlov-Petrossyan NO. Character of Localization and Microenvironment of Solvatochromic Reichardt's Betaine Dye in Sodium n-Dodecyl Sulfate and Cetyltrimethylammonium Bromide Micelles: Molecular Dynamics Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8342-8352. [PMID: 28722416 DOI: 10.1021/acs.langmuir.7b01737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The problem of using surfactant micellar aqueous solutions as reaction media centers on estimating the polarity of the micellar pseudophase. The most popular approach is the utilization of solvatochromic dyes. Among the last, the strongest ones are the dipolar pyridinium N-phenolate dyes. The complication of such approach, however, consists in the nonuniform character of the environment of the indicator fixed in the micellar pseudophase. The aim of this study is to reveal the character of localization and orientation of the standard solvatochromic pyridinium N-phenolate dye, 4-(2,4,6-triphenylpyridinium-1-yl)-2,6-diphenylphenolate, the so-called Reichardt's dye, within the micellar pseudophase of an anionic (sodium n-dodecyl sulfate, SDS) and cationic (cetyltrimethylammonium bromide, CTAB) surfactants using MD simulations. The locus and hydration of the dye are found to be dependent on the surfactant nature. New approaches are proposed to quantitatively describe the state of the dye within the pseudophase. The results confirm the experimental data, which indicate the higher polarity of the interfacial region in the case of the SDS micelles. Because this dye is also used as an interfacial acid-base probe, the corresponding study is simultaneously performed for its protonated, i.e., cationic form. The neutral and protonated forms of the dye are found to be localized and hydrated in a different way in both SDS and CTAB micelles. This should be taken into account when using the Reichardt's dye as an acid-base indicator for estimating the electrical surface potential of micelles. The presented approach may be recommended to shed light upon the locus of other solvatochromic and acid-base indicators in micelles and micellar-like aggregates.
Collapse
Affiliation(s)
- Vladimir S Farafonov
- Department of Physical Chemistry, V. N. Karazin Kharkiv National University , 61022, Kharkiv, Ukraine
| | - Alexander V Lebed
- Department of Physical Chemistry, V. N. Karazin Kharkiv National University , 61022, Kharkiv, Ukraine
| | | |
Collapse
|