1
|
Madsen JJ, Ohkubo YZ. Elucidating the complex membrane binding of a protein with multiple anchoring domains using extHMMM. PLoS Comput Biol 2024; 20:e1011421. [PMID: 38976709 PMCID: PMC11257402 DOI: 10.1371/journal.pcbi.1011421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 07/18/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Membrane binding is a crucial mechanism for many proteins, but understanding the specific interactions between proteins and membranes remains a challenging endeavor. Coagulation factor Va (FVa) is a large protein whose membrane interactions are complicated due to the presence of multiple anchoring domains that individually can bind to lipid membranes. Using molecular dynamics simulations, we investigate the membrane binding of FVa and identify the key mechanisms that govern its interaction with membranes. Our results reveal that FVa can either adopt an upright or a tilted molecular orientation upon membrane binding. We further find that the domain organization of FVa deviates (sometimes significantly) from its crystallographic reference structure, and that the molecular orientation of the protein matches with domain reorganization to align the C2 domain toward its favored membrane-normal orientation. We identify specific amino acid residues that exhibit contact preference with phosphatidylserine lipids over phosphatidylcholine lipids, and we observe that mostly electrostatic effects contribute to this preference. The observed lipid-binding process and characteristics, specific to FVa or common among other membrane proteins, in concert with domain reorganization and molecular tilt, elucidate the complex membrane binding dynamics of FVa and provide important insights into the molecular mechanisms of protein-membrane interactions. An updated version of the HMMM model, termed extHMMM, is successfully employed for efficiently observing membrane bindings of systems containing the whole FVa molecule.
Collapse
Affiliation(s)
- Jesper J. Madsen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Center for Global Health and Infectious Diseases Research, Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Y. Zenmei Ohkubo
- Department of Bioinformatics, School of Life and Natural Sciences, Abdullah Gül University, Kayseri, Turkey
| |
Collapse
|
2
|
Nie Y, Zheng Z, Li C, Zhan H, Kou L, Gu Y, Lü C. Resolving the dynamic properties of entangled linear polymers in non-equilibrium coarse grain simulation with a priori scaling factors. NANOSCALE 2024. [PMID: 38494916 DOI: 10.1039/d3nr06185j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The molecular weight of polymers can influence the material properties, but the molecular weight at the experiment level sometimes can be a huge burden for property prediction with full-atomic simulations. The traditional bottom-up coarse grain (CG) simulation can reduce the computation cost. However, the dynamic properties predicted by the CG simulation can deviate from the full-atomic simulation result. Usually, in CG simulations, the diffusion is faster and the viscosity and modulus are much lower. The fast dynamics in CG are usually solved by a posteriori scaling on time, temperature, or potential modifications, which usually have poor transferability to other non-fitted physical properties because of a lack of fundamental physics. In this work, a priori scaling factors were calculated by the loss of degrees of freedom and implemented in the iterative Boltzmann inversion. According to the simulation results on 3 different CG levels at different temperatures and loading rates, such a priori scaling factors can help in reproducing some dynamic properties of polycaprolactone in CG simulation more accurately, such as heat capacity, Young's modulus, and viscosity, while maintaining the accuracy in the structural distribution prediction. The transferability of entropy-enthalpy compensation and a dissipative particle dynamics thermostat is also presented for comparison. The proposed method reveals the huge potential for developing customized CG thermostats and offers a simple way to rebuild multiphysics CG models for polymers with good transferability.
Collapse
Affiliation(s)
- Yihan Nie
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Zhuoqun Zheng
- School of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chengkai Li
- School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Haifei Zhan
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane QLD 4001, Australia
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane QLD 4001, Australia
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane QLD 4001, Australia
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane QLD 4001, Australia
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane QLD 4001, Australia
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane QLD 4001, Australia
| | - Chaofeng Lü
- Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, China
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Cammarata MDM, Contin MD, Negri RM, Factorovich MH. Diffusion Coefficients of Variable-Size Amphiphilic Additives in a Glass-Forming Polyethylene Matrix. J Phys Chem B 2024; 128:312-328. [PMID: 38146058 DOI: 10.1021/acs.jpcb.3c04904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Diffusion of additives in polymers is an important issue in the plastics industry since migratory-type molecules are widely used to tune the properties of polymeric composites. Predicting the diffusional behavior of new additives can minimize the need for repetitive experiments. This work presents molecular dynamics simulations at the microsecond time scale and uses the MARTINI force field to estimate self-diffusion coefficients, D, of six monounsaturated amides and their analogs carboxylic acids in polyethylene matrices (PE, MW = 5600 Da). The results are strongly influenced by the glass-forming properties of the PE matrix, which we characterize by three distinct temperatures. The metastability region (T < 325 K), the glass transition temperature (Tg = 256-260 K), and the end of the transition (T ≅ 200 K). Self-diffusion mechanisms are inferred from the results of the dependence of D on the molecular mass of the additive, observing a Rouse-like behavior at high temperatures and deviations from it within the metastability region of the matrix. Interestingly, D values are nonsensitive to the nature of the considered polar head for additives of similar size. The temperature-dependent behavior of D follows, at fixed additive size, a linear Arrhenius pattern at high temperatures and a super Arrhenius trend at lower temperatures, which is well represented with a power law equation as predicted by the Mode Coupling Theory (MCT). We offer a conceptual explanation for the observed super-Arrhenius behavior. This explanation draws on Truhlar and Kohen's interpretation of the available energies at both the initial and the transition states along the diffusion pathway. The matrix's mobility significantly affects solute self-diffusion, yielding equal activation enthalpies for the Arrhenius region or the same power law parameters for the super-Arrhenius regime. Finally, we establish a one-to-one time-equivalence of the self-diffusion processes between CG and all-atom systems for the largest additives and the PE matrix in the high-temperature regime.
Collapse
Affiliation(s)
- María Del Mar Cammarata
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Mario D Contin
- Departamento de Ciencias Química, Catedra de Química Analítica. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Buenos Aires C1113AAD, Argentina
| | - R Martín Negri
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Matias H Factorovich
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
4
|
Eghlidos O, Oswald J. Derived Coarse-Grained Potentials for Semicrystalline Polymers with a Blended Multistate Iterative Boltzmann Inversion Method. J Chem Theory Comput 2023; 19:9445-9456. [PMID: 38083860 DOI: 10.1021/acs.jctc.3c00935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
In this article, we employ the multistate iterative Boltzmann inversion (MS-IBI) method to develop coarse-grained potentials capable of representing molecular structure in both the amorphous and crystalline phases of semicrystalline polymers with improved accuracy while allowing for tunable control over the dynamics governing the α-relaxation process. A unique feature of this method is that the potentials are blended using the product of the target structural distributions, for example, the radial density function, for each phase and a weighting factor. To demonstrate this approach, a family of potentials for polyethylene is developed where the weighting factor of the crystalline phase ranges is varied from zero, incorporating information only from the amorphous phase, to unity, where the model is trained from only the crystalline phase. The most accurate representation of structural distributions was obtained when the crystalline phases is weighted at 50%. However, we show that when the crystalline phase is weighted at 90%, the model more accurately represents dynamics of the α-relaxation process, with realistic predicted values of activation energy and diffusion rates, with relatively minor impact on accuracy in structure.
Collapse
Affiliation(s)
- Omid Eghlidos
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Jay Oswald
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
5
|
Bhat MI, Sharma P, Sitharam TG, Murthy TG. Force transmission during repose of flexible granular chains. SOFT MATTER 2023; 19:8493-8506. [PMID: 37723876 DOI: 10.1039/d3sm00526g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
We study the mechanics of standing columns formed during the repose of flexible granular chains. It is one of the many intriguing behaviours exhibited by granular materials when links capable of transmitting tension exist between particles. We develop and calibrate a discrete element method contact model to simulate the mechanics of the macroscopic flexible granular chains and conduct simulations of the angle of repose experiments of these chains by extracting a chain-filled cylinder and allowing the material to flow out under gravity and repose. We evaluate various micro-mechanical, topological and macroscopic parameters to elucidate the mechanics of the repose behaviour of chain ensembles. It is the ability of the links connecting the individual particles to transmit tensile forces along the chain backbone that provides lateral stability to the column, enabling them to stand. In particular, the contact force rearrangement inside the columns generates a self-confining radial stress near the base of the columns, which provides an important stabilizing stress.
Collapse
|
6
|
Taylor PA, Stevens MJ. Explicit solvent machine-learned coarse-grained model of sodium polystyrene sulfonate to capture polymer structure and dynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:97. [PMID: 37831216 DOI: 10.1140/epje/s10189-023-00355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Strongly charged polyelectrolytes (PEs) demonstrate complex solution behavior as a function of chain length, concentrations, and ionic strength. The viscosity behavior is important to understand and is a core quantity for many applications, but aspects remain a challenge. Molecular dynamics simulations using implicit solvent coarse-grained (CG) models successfully reproduce structure, but are often inappropriate for calculating viscosities. To address the need for CG models which reproduce viscoelastic properties of one of the most studied PEs, sodium polystyrene sulfonate (NaPSS), we report our recent efforts in using Bayesian optimization to develop CG models of NaPSS which capture both polymer structure and dynamics in aqueous solutions with explicit solvent. We demonstrate that our explicit solvent CG NaPSS model with the ML-BOP water model [Chan et al. Nat Commun 10, 379 (2019)] quantitatively reproduces NaPSS chain statistics and solution structure. The new explicit solvent CG model is benchmarked against diffusivities from atomistic simulations and experimental specific viscosities for short chains. We also show that our Bayesian-optimized CG model is transferable to larger chain lengths across a range of concentrations. Overall, this work provides a machine-learned model to probe the structural, dynamic, and rheological properties of polyelectrolytes such as NaPSS and aids in the design of novel, strongly charged polymers with tunable structural and viscoelastic properties.
Collapse
Affiliation(s)
- Phillip A Taylor
- Sandia National Laboratories, Center for Integrated Nanotechnologies, Albuquerque, NM, 87123, USA
| | - Mark J Stevens
- Sandia National Laboratories, Center for Integrated Nanotechnologies, Albuquerque, NM, 87123, USA.
| |
Collapse
|
7
|
Khan P, Kaushik R, Jayaraj A. Approaches and Perspective of Coarse-Grained Modeling and Simulation for Polymer-Nanoparticle Hybrid Systems. ACS OMEGA 2022; 7:47567-47586. [PMID: 36591142 PMCID: PMC9798744 DOI: 10.1021/acsomega.2c06248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Molecular modeling and simulations have emerged as effective and indispensable tools to characterize polymeric systems. They provide fundamental and essential insights to design a product of the required properties and to improve the understanding of a phenomenon at the molecular level for a particular system. The polymer-nanoparticle hybrids are materials with outstanding properties and correspondingly large applications whose study has benefited from this new paradigm. However, despite the significant expansion of modern day computational powers, investigation of the long time and large length scale phenomenon in polymeric and polymer-nanoparticle systems is still a challenging task to complete through all-atom molecular dynamics (AA-MD) simulations. To circumvent this problem, a variety of coarse-grained (CG) models have been proposed, ranging from the generic CG models for qualitative properties predictions to more realistic chemically specific CG models for quantitative properties predictions. These CG models have already delivered some success stories in the study of several spatial and temporal evolutions of many processes. Some of these studies were beyond the feasibility of traditional atomistic resolution models due to either the size or the time constraints. This review captures the different types of popular CG approaches that are utilized in the investigation of the microscopic behavior of polymer-nanoparticle hybrid systems. The rationale of this article is to furnish an overview of the popular CG approaches and their applications, to review several important and most recent developments, and to delineate the perspectives on future directions in the field.
Collapse
Affiliation(s)
- Parvez Khan
- Department
of Chemical Engineering, Aligarh Muslim
University, Aligarh202002, India
| | - Rahul Kaushik
- Laboratory
for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa230-0045, Japan
| | - Abhilash Jayaraj
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut06459, United States
| |
Collapse
|
8
|
Schmid F. Understanding and Modeling Polymers: The Challenge of Multiple Scales. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128Mainz, Germany
| |
Collapse
|
9
|
Meinel MK, Müller-Plathe F. Roughness Volumes: An Improved RoughMob Concept for Predicting the Increase of Molecular Mobility upon Coarse-Graining. J Phys Chem B 2022; 126:3737-3747. [PMID: 35559647 DOI: 10.1021/acs.jpcb.2c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reduced number of degrees of freedom in a coarse-grained molecular model compared to its parent atomistic model not only makes it possible to simulate larger systems for longer time scales but also results in an artificial mobility increase. The RoughMob method [Meinel, M. K. and Müller-Plathe, F. J. Chem. Theory Comput. 2020, 16, 1411.] linked the acceleration factor of the dynamics to the loss of geometric information upon coarse-graining. Our hypothesis is that coarse-graining a multiatom molecule or group into a single spherical bead smooths the molecular surface and, thus, leads to reduced intermolecular friction. A key parameter is the molecular roughness difference, which is calculated via a numerical comparison of the molecular surfaces of both the atomistic and coarse-grained models. Augmenting the RoughMob method, we add the concept of the region where the roughness acts. This information is contained in four so-called roughness volumes. For 17 systems of homogeneous hydrocarbon fluids, simple one-bead coarse-grained models are derived by the structure-based iterative Boltzmann inversion. They include 13 different homogeneous aliphatic and aromatic molecules and two different mapping schemes. We present a simple way to correlate the roughness volumes to the acceleration factor. The resulting relation is able to a priori predict the acceleration factors for an extended size and shape range of hydrocarbon molecules, with different mapping schemes and different densities.
Collapse
Affiliation(s)
- Melissa K Meinel
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, D-64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, D-64287 Darmstadt, Germany
| |
Collapse
|
10
|
Huang W, Ou X, Luo J. Inverse Boltzmann Iterative Multi-Scale Molecular Dynamics Study between Carbon Nanotubes and Amino Acids. Molecules 2022; 27:2785. [PMID: 35566140 PMCID: PMC9104776 DOI: 10.3390/molecules27092785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Our work uses Iterative Boltzmann Inversion (IBI) to study the coarse-grained interaction between 20 amino acids and the representative carbon nanotube CNT55L3. IBI is a multi-scale simulation method that has attracted the attention of many researchers in recent years. It can effectively modify the coarse-grained model derived from the Potential of Mean Force (PMF). IBI is based on the distribution result obtained by All-Atom molecular dynamics simulation; that is, the target distribution function and the PMF potential energy are extracted, and then, the initial potential energy extracted by the PMF is used to perform simulation iterations using IBI. Our research results have been through more than 100 iterations, and finally, the distribution obtained by coarse-grained molecular simulation (CGMD) can effectively overlap with the results of all-atom molecular dynamics simulation (AAMD). In addition, our work lays the foundation for the study of force fields for the simulation of the coarse-graining of super-large proteins and other important nanoparticles.
Collapse
Affiliation(s)
- Wanying Huang
- T-Life Research Center, State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China;
| | - Xinwen Ou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China;
| | - Junyan Luo
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
11
|
Lbadaoui-Darvas M, Garberoglio G, Karadima KS, Cordeiro MNDS, Nenes A, Takahama S. Molecular simulations of interfacial systems: challenges, applications and future perspectives. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1980215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Mária Lbadaoui-Darvas
- ENAC/IIE; Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanni Garberoglio
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (FBK-ECT*), Trento, Italy
- Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), Trento, Italy
| | - Katerina S. Karadima
- Department of Chemical Engineering, University of Patras, Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas(FORTH-ICE/HT), Patras, Greece
| | | | - Athanasios Nenes
- ENAC/IIE; Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas(FORTH-ICE/HT), Patras, Greece
| | - Satoshi Takahama
- ENAC/IIE; Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
12
|
Dhamankar S, Webb MA. Chemically specific coarse‐graining of polymers: Methods and prospects. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satyen Dhamankar
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| | - Michael A. Webb
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| |
Collapse
|
13
|
Wu C, Li K, Ning X, Zhang L. An Enhanced Scheme for Multiscale Modeling of Thermomechanical Properties of Polymer Bulks. J Phys Chem B 2021; 125:8612-8626. [PMID: 34291641 DOI: 10.1021/acs.jpcb.1c02663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While multiscale modeling significantly enhances the capability of molecular simulations of polymer systems, it is well realized that the systematically derived coarse-grained (CG) models generally underestimate the thermomechanical properties. In this work, a charge-based mapping scheme has been adopted to include explicit electrostatic interactions and benchmarked against two typical polymers, atactic poly(methyl methacrylate) (PMMA) and polystyrene (PS). The CG potentials are parameterized against the oligomer bulks of nine monomers per chain to match the essential structural features and the two basic pressure-volume-temperature (PVT) properties, which are obtained from the all-atomistic (AA) molecular dynamics (MD) simulations at a single elevated temperature. The so-parameterized CG potentials are extended with the MD method to simulate the two polymer bulks of one hundred monomers per chain over a wide temperature range. Without any scaling, all the simulated results, including mass densities and bulk moduli at room temperature, thermal expansion coefficients at rubbery and glassy states, and glass transition temperatures (Tg), compare well with the corresponding experimental data. The proposed scheme not only contributes to realistically simulating various thermomechanical properties of both apolar and polar polymers but also allows for directly simulating their electrical properties.
Collapse
Affiliation(s)
- Chaofu Wu
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Kewen Li
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Xutao Ning
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Lei Zhang
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| |
Collapse
|
14
|
Clavier G, Blaak R, Dequidt A, Goujon F, Devémy J, Latour B, Garruchet S, Martzel N, Munch É, Malfreyt P. Assessing the derivation of time parameters from branched polymer coarse-grain model. J Chem Phys 2021; 154:124901. [PMID: 33810686 DOI: 10.1063/5.0039843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The parameterization of rheological models for polymers is often obtained from experiments via the top-down approach. This procedure allows us to determine good fitting parameters for homogeneous materials but is less effective for polymer mixtures. From a molecular simulation point of view, the timescales needed to derive those parameters are often accessed through the use of coarse-grain potentials. However, these potentials are often derived from linear model systems and the transferability to a more complex structure is not straightforward. Here, we verify the transferability of a potential computed from linear polymer simulations to more complex molecular shapes and present a type of analysis, which was recently formulated in the framework of a tube theory, to a coarse-grain molecular approach in order to derive the input parameters for a rheological model. We describe the different behaviors arising from the local topological structure of molecular sub-units. Coarse-grain models and mean-field based tube theory for polymers form a powerful combination with potentially important applications.
Collapse
Affiliation(s)
- Germain Clavier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Ronald Blaak
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Alain Dequidt
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Florent Goujon
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Julien Devémy
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Benoit Latour
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040 Clermont-Ferrand, France
| | - Sébastien Garruchet
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040 Clermont-Ferrand, France
| | - Nicolas Martzel
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040 Clermont-Ferrand, France
| | - Étienne Munch
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040 Clermont-Ferrand, France
| | - Patrice Malfreyt
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
15
|
Bernhardt MP, Hanke M, van der Vegt NFA. Iterative integral equation methods for structural coarse-graining. J Chem Phys 2021; 154:084118. [PMID: 33639741 DOI: 10.1063/5.0038633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this paper, new Newton and Gauss-Newton methods for iterative coarse-graining based on integral equation theory are evaluated and extended. In these methods, the potential update is calculated from the current and target radial distribution function, similar to iterative Boltzmann inversion, but gives a potential update of quality comparable with inverse Monte Carlo. This works well for the coarse-graining of molecules to single beads, which we demonstrate for water. We also extend the methods to systems that include coarse-grained bonded interactions and examine their convergence behavior. Finally, using the Gauss-Newton method with constraints, we derive a model for single bead methanol in implicit water, which matches the osmotic pressure of the atomistic reference. An implementation of all new methods is provided for the open-source VOTCA package.
Collapse
Affiliation(s)
- Marvin P Bernhardt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Martin Hanke
- Institut für Mathematik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
16
|
Power AJ, Remediakis IN, Harmandaris V. Interface and Interphase in Polymer Nanocomposites with Bare and Core-Shell Gold Nanoparticles. Polymers (Basel) 2021; 13:541. [PMID: 33673125 PMCID: PMC7918087 DOI: 10.3390/polym13040541] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
Metal nanoparticles are used to modify/enhance the properties of a polymer matrix for a broad range of applications in bio-nanotechnology. Here, we study the properties of polymer/gold nanoparticle (NP) nanocomposites through atomistic molecular dynamics, MD, simulations. We probe the structural, conformational and dynamical properties of polymer chains at the vicinity of a gold (Au) NP and a functionalized (core/shell) Au NP, and compare them against the behavior of bulk polyethylene (PE). The bare Au NPs were constructed via a systematic methodology starting from ab-initio calculations and an atomistic Wulff construction algorithm resulting in the crystal shape with the minimum surface energy. For the functionalized NPs the interactions between gold atoms and chemically adsorbed functional groups change their shape. As a model polymer matrix we consider polyethylene of different molecular lengths, from the oligomer to unentangled Rouse like systems. The PE/Au interaction is parametrized via DFT calculations. By computing the different properties the concept of the interface, and the interphase as well, in polymer nanocomposites with metal NPs are critically examined. Results concerning polymer density profiles, bond order parameter, segmental and terminal dynamics show clearly that the size of the interface/interphase, depends on the actual property under study. In addition, the anchored polymeric chains change the behavior/properties, and especially the chain density profile and the dynamics, of the polymer chain at the vicinity of the Au NP.
Collapse
Affiliation(s)
- Albert J. Power
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
| | - Ioannis N. Remediakis
- Department of Materials Science and Technology, University of Crete, GR-71003 Heraklion, Crete, Greece;
- Institute of Electronic Structure and Laser, (IESL), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
- Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| |
Collapse
|
17
|
Effectiveness of coarse graining degree and speedup on the dynamic properties of homopolymer. J Mol Model 2021; 27:55. [PMID: 33511476 DOI: 10.1007/s00894-020-04661-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Evaluation of effective coarse graining (CG) degree and reasonable speedup relative to all-atomistic (AA) model was conducted to provide a basis for building appropriate larger-scale model. The reproducibility of atomistic conformation and temperature transferability both act as the analysis criteria to resolve the maximum acceptable CG degree. Taking short- and long time spans into account simultaneously in the estimation of computational speedup, a dynamic scaling factor is accessible in fitting mean squared displacement ratio of CG to AA as an exponential function. Computing loss in parallel running is an indispensable component in acceleration, which was also added in the evaluation. Subsequently, a quantified prediction of CG speedup arises as a multiplication of dynamic scaling factor, computing loss, time step, and the square of reduction in the number of degrees of freedom. Polyethylene oxide was adopted as a reference system to execute the direct Boltzmann inversion and iterative Boltzmann inversion. Bonded and non-bonded potentials were calculated in CG models with 1~4 monomers per bead. The effective CG degree was determined as two at the most with a speedup of four orders magnitude over AA in this study. Determination of effectiveness CG degree and the corresponding speedup prediction provide available tools in larger spatiotemporal-scale calculations.
Collapse
|
18
|
Wu Z, Milano G, Müller-Plathe F. Combination of Hybrid Particle-Field Molecular Dynamics and Slip-Springs for the Efficient Simulation of Coarse-Grained Polymer Models: Static and Dynamic Properties of Polystyrene Melts. J Chem Theory Comput 2020; 17:474-487. [PMID: 33275441 DOI: 10.1021/acs.jctc.0c00954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A quantitative prediction of polymer-entangled dynamics based on molecular simulation is a grand challenge in contemporary computational material science. The drastic increase of relaxation time and viscosity in high-molecular-weight polymeric fluids essentially limits the usage of classic molecular dynamics simulation. Here, we demonstrate a systematic coarse-graining approach for modeling entangled polymers under the slip-spring particle-field scheme. Specifically, a frequency-controlled slip-spring model, a hybrid particle-field model, and a coarse-grained model of polystyrene melts are combined into a hybrid simulation technique. Via a rigorous parameterization strategy to determine the parameters in slip-springs from existing experimental or simulation data, we show that the reptation behavior is clearly observed in multiple characteristics of polymer dynamics, mean-square displacements, diffusion coefficients, reorientational relaxation, and Rouse mode analysis, consistent with the predictions of the tube theory. All dynamical properties of the slip-spring particle-field models are in good agreement with classic molecular dynamics models. Our work provides an efficient and practical approach to establish chemical-specific coarse-grained models for predicting polymer-entangled dynamics.
Collapse
Affiliation(s)
- Zhenghao Wu
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Giuseppe Milano
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, 992-8510 Yamagata-ken, Japan
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| |
Collapse
|
19
|
Peters BL, Salerno KM, Ge T, Perahia D, Grest GS. Viscoelastic Response of Dispersed Entangled Polymer Melts. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brandon L. Peters
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - K. Michael Salerno
- U. S. Army Research Laboratory, Aberdeen Proving Grounds, Aberdeen, Maryland 21005, United States
| | - Ting Ge
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Dvora Perahia
- Department of Chemistry and Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Gary S. Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
20
|
Rondina GG, Böhm MC, Müller-Plathe F. Predicting the Mobility Increase of Coarse-Grained Polymer Models from Excess Entropy Differences. J Chem Theory Comput 2020; 16:1431-1447. [DOI: 10.1021/acs.jctc.9b01088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gustavo G. Rondina
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Michael C. Böhm
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
21
|
Meinel MK, Müller-Plathe F. Loss of Molecular Roughness upon Coarse-Graining Predicts the Artificially Accelerated Mobility of Coarse-Grained Molecular Simulation Models. J Chem Theory Comput 2020; 16:1411-1419. [DOI: 10.1021/acs.jctc.9b00943] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Melissa K. Meinel
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, D-64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, D-64287 Darmstadt, Germany
| |
Collapse
|
22
|
Abstract
We have developed a coarse-grained (CG) model of a polymer-clay system consisting of organically modified montmorillonite (oMMT) nanoclay as the nanoparticle in accordance with the MARTINI force field. We have used mechanical properties and cleavage free energy of the clay particle to respectively parameterize bonded and nonbonded interaction parameters for an oMMT clay particle, where intergallery Na+ ions are replaced by tetramethylammonium (TMA) ions. The mechanical properties were determined from the slope of the stress-strain curve and cleavage free energy was determined by allowing for full surface reconstruction corresponding to a slow equilibrium cleavage process. Individual dispersive and polar contributions to oMMT cleavage energy were used for determination of appropriate MARTINI bead types for the CG oMMT sheet. The self-consistency of the developed MARTINIFF parameters for the TMA-montmorillonite-polymer system was verified by comparing estimates for select structural, thermodynamic, and dynamic properties obtained in all-atomistic simulations with that obtained in CG simulations. We have determined the influence of clay particles on properties of three polymer melts (polyethylene, polypropylene, and polystyrene) at two temperatures to establish transferability of the developed parameters. We have also shown that the effect of clay-polymer interactions on structure-property relationships in the polymer-clay nanocomposite system is well captured by Rosenfeld's excess entropy scaling.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Chemical Engineering , Indian Institute of Technology Delhi , New Delhi 110016 , India
| | - Gaurav Goel
- Department of Chemical Engineering , Indian Institute of Technology Delhi , New Delhi 110016 , India
| |
Collapse
|
23
|
Finkelstein J, Fiorin G, Seibold B. Comparison of modern Langevin integrators for simulations of coarse-grained polymer melts. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1649493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J. Finkelstein
- Department of Mathematics, Temple University, Philadelphia, PA, USA
| | - G. Fiorin
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, USA
- National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - B. Seibold
- Department of Mathematics, Temple University, Philadelphia, PA, USA
| |
Collapse
|
24
|
Liu M, Oswald J. Coarse–grained molecular modeling of the microphase structure of polyurea elastomer. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Karatrantos A, Composto RJ, Winey KI, Kröger M, Clarke N. Modeling of Entangled Polymer Diffusion in Melts and Nanocomposites: A Review. Polymers (Basel) 2019; 11:E876. [PMID: 31091725 PMCID: PMC6571671 DOI: 10.3390/polym11050876] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 11/29/2022] Open
Abstract
This review concerns modeling studies of the fundamental problem of entangled (reptational) homopolymer diffusion in melts and nanocomposite materials in comparison to experiments. In polymer melts, the developed united atom and multibead spring models predict an exponent of the molecular weight dependence to the polymer diffusion very similar to experiments and the tube reptation model. There are rather unexplored parameters that can influence polymer diffusion such as polymer semiflexibility or polydispersity, leading to a different exponent. Models with soft potentials or slip-springs can estimate accurately the tube model predictions in polymer melts enabling us to reach larger length scales and simulate well entangled polymers. However, in polymer nanocomposites, reptational polymer diffusion is more complicated due to nanoparticle fillers size, loading, geometry and polymer-nanoparticle interactions.
Collapse
Affiliation(s)
- Argyrios Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland.
| | - Nigel Clarke
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK.
| |
Collapse
|
26
|
Hall KW, Percec S, Klein ML. Polymer nucleation under high-driving force, long-chain conditions: Heat release and the separation of time scales. J Chem Phys 2019; 150:114901. [PMID: 30902014 DOI: 10.1063/1.5084773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study reveals important features of polymer crystal formation at high-driving forces in entangled polymer melts based on simulations of polyethylene. First and in contrast to small-molecule crystallization, the heat released during polymer crystallization does not appreciably influence structural details of early-stage, crystalline clusters (crystal nuclei). Second, early-stage polymer crystallization (crystal nucleation) can occur without substantial chain-level relaxation and conformational changes. This study's results indicate that local structures and environments guide crystal nucleation in entangled polymer melts under high-driving force conditions. Given that such conditions are often used to process polyethylene, local structures and the separation of time scales associated with crystallization and chain-level processes are anticipated to be of substantial importance to processing strategies. This study highlights new research directions for understanding polymer crystallization.
Collapse
Affiliation(s)
- Kyle Wm Hall
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Simona Percec
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Michael L Klein
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
27
|
Li Y, Agrawal V, Oswald J. Systematic coarse‐graining of semicrystalline polyethylene. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yiyang Li
- School for the Engineering of Matter Transport and Energy Arizona State University P.O. Box 876106, Tempe Arizona, 85287‐6106
| | - Vipin Agrawal
- School for the Engineering of Matter Transport and Energy Arizona State University P.O. Box 876106, Tempe Arizona, 85287‐6106
| | - Jay Oswald
- School for the Engineering of Matter Transport and Energy Arizona State University P.O. Box 876106, Tempe Arizona, 85287‐6106
| |
Collapse
|
28
|
Molecular dynamics simulation of linear polyethylene blends: Effect of molar mass bimodality on topological characteristics and mechanical behavior. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Liu L, den Otter WK, Briels WJ. Coarse-Grained Simulations of Three-Armed Star Polymer Melts and Comparison with Linear Chains. J Phys Chem B 2018; 122:10210-10218. [DOI: 10.1021/acs.jpcb.8b03104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Liu
- Department of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
| | | | - Wim J. Briels
- Forschungszentrum Jülich, ICS 3, D-52425 Jülich, Germany
| |
Collapse
|
30
|
Salerno KM, Bernstein N. Role of many-body interactions in the structure of coarse-grained polymers. Phys Rev E 2018; 98:023310. [PMID: 30253532 DOI: 10.1103/physreve.98.023310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 11/07/2022]
Abstract
In developing coarse-grained (CG) polymer models it is important to reproduce both local and molecule-scale structure. We develop a procedure for fast calculation of the bond-orientation correlation and the internal squared distance 〈R^{2}(M)〉 through evaluation of the probability distribution functions that represent a CG model. Different CG models inherently contain or omit correlations between CG variables. Here, we construct CG models that contain specific correlations between CG variables. The importance of different correlations is tested on CG models of polyethylene, polytetrafluoroethylene, and poly-L-lactic acid. The chain stiffness and 〈R^{2}(M)〉 are calculated using both analytic evaluation and Monte Carlo sampling, and approximate model results are compared with exact results from all-atom simulations. For polymers with an exponential correlation decay, the bond-orientation correlation and 〈R^{2}(M)〉 indicate which CG variable correlations are most important to reproduce molecule-scale structure. Analysis of the bond-orientation correlation and internal-squared distance indicates that for poly-L-lactic acid the bond-orientation correlation requires qualitatively different additional terms in CG models and quantifies the error in neglecting this important behavior.
Collapse
Affiliation(s)
- K Michael Salerno
- NRC Research Associate, Resident at Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375
| | - Noam Bernstein
- US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375
| |
Collapse
|
31
|
Wijesinghe S, Perahia D, Grest GS. Polymer Topology Effects on Dynamics of Comb Polymer Melts. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sidath Wijesinghe
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Dvora Perahia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Gary S. Grest
- Sandia
National
Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
32
|
Jacinto-Méndez D, Villada-Balbuena M, Cruz y Cruz SG, Carbajal-Tinoco MD. Static structure of sodium polystyrene sulfonate solutions obtained through a coarse-grained model. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1471225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Damián Jacinto-Méndez
- Instituto Politécnico Nacional, UPIITA, Cd. de México, Mexico
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Cd. de México, Mexico
| | - Mario Villada-Balbuena
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Cd. de México, Mexico
| | | | - Mauricio D. Carbajal-Tinoco
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Cd. de México, Mexico
| |
Collapse
|
33
|
Peters BL, Salerno KM, Ge T, Perahia D, Grest GS. Effect of Chain Length Dispersity on the Mobility of Entangled Polymers. PHYSICAL REVIEW LETTERS 2018; 121:057802. [PMID: 30118305 DOI: 10.1103/physrevlett.121.057802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Indexed: 06/08/2023]
Abstract
While nearly all theoretical and computational studies of entangled polymer melts have focused on uniform samples, polymer synthesis routes always result in some dispersity, albeit narrow, of distribution of molecular weights (Đ_{M}=M_{w}/M_{n}∼1.02-1.04). Here, the effects of dispersity on chain mobility are studied for entangled, disperse melts using a coarse-grained model for polyethylene. Polymer melts with chain lengths set to follow a Schulz-Zimm distribution for the same average M_{w}=36 kg/mol with Đ_{M}=1.0 to 1.16, were studied for times of 600-800 μs using molecular dynamics simulations. This time frame is longer than the time required to reach the diffusive regime. We find that dispersity in this range does not affect the entanglement time or tube diameter. However, while there is negligible difference in the average mobility of chains for the uniform distribution Đ_{M}=1.0 and Đ_{M}=1.02, the shortest chains move significantly faster than the longest ones offering a constraint release pathway for the melts for larger Đ_{M}.
Collapse
Affiliation(s)
- Brandon L Peters
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | | | - Ting Ge
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Dvora Perahia
- Department of Chemistry and Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
34
|
Volgin I, Larin S, Lyulin A, Lyulin S. Coarse-grained molecular-dynamics simulations of nanoparticle diffusion in polymer nanocomposites. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Ramos J, Vega J, Martínez-Salazar J. Predicting experimental results for polyethylene by computer simulation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Song J, Hsu DD, Shull KR, Phelan FR, Douglas JF, Xia W, Keten S. Energy Renormalization Method for the Coarse-Graining of Polymer Viscoelasticity. Macromolecules 2018; 51:10.1021/acs.macromol.7b02560. [PMID: 30996476 PMCID: PMC6463302 DOI: 10.1021/acs.macromol.7b02560] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing temperature transferable coarse-grained (CG) models is essential for the computational prediction of polymeric glass-forming (GF) material behavior, but their dynamics are often greatly altered from those of all-atom (AA) models mainly because of the reduced fluid configurational entropy under coarse-graining. To address this issue, we have recently introduced an energy renormalization (ER) strategy that corrects the activation free energy of the CG polymer model by renormalizing the cohesive interaction strength ε as a function of temperature T, i.e., ε(T), thus semiempirically preserving the T-dependent dynamics of the AA model. Here we apply our ER method to consider-in addition to T-dependency-the frequency f-dependent polymer viscoelasticity. Through smallamplitude oscillatory shear molecular dynamics simulations, we show that changing the imposed oscillation f on the CG systems requires changes in ε values (i.e., ε(T, f)) to reproduce the AA viscoelasticity. By accounting for the dynamic fragility of polymers as a material parameter, we are able to predict ε(T, f) under coarse-graining in order to capture the AA viscoelasticity, and consequently the activation energy, across a wide range of T and f in the GF regime. Specifically, we showcase our achievements on two representative polymers of distinct fragilities, polybutadiene (PB) and polystyrene (PS), and show that our CG models are able to sample viscoelasticity up to the megahertz regime, which approaches state-of-the-art experimental resolutions, and capture results sampled via AA simulations and prior experiments.
Collapse
Affiliation(s)
- Jake Song
- Department of Materials Science & Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - David D. Hsu
- Department of Physics and Engineering, Wheaton College, 501 College Avenue, Wheaton, Illinois 60187, United States
| | - Kenneth R. Shull
- Department of Materials Science & Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Frederick R. Phelan
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wenjie Xia
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Center for Hierarchical Materials Design, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sinan Keten
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| |
Collapse
|
37
|
Wu C. Multiscale Modeling Scheme for Simulating Polymeric Melts: Application to Poly(Ethylene Oxide). MACROMOL THEOR SIMUL 2017. [DOI: 10.1002/mats.201700066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- C. Wu
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials; Hunan University of Humanities Science & Technology; Dixing Road 487, Louxing District Loudi 417000 Hunan Province P. R. China
- College of Materials and Environment Engineering; Hunan University of Humanities Science & Technology; Dixing Road 487, Louxing District Loudi 417000 Hunan Province P. R. China
| |
Collapse
|
38
|
Alasiri H, Chapman WG. Dissipative particle dynamics (DPD) study of the interfacial tension for alkane/water systems by using COSMO-RS to calculate interaction parameters. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|