1
|
Jiang T, Baumgarten MKA, Loos PF, Mahajan A, Scemama A, Ung SF, Zhang J, Malone FD, Lee J. Improved modularity and new features in ipie: Toward even larger AFQMC calculations on CPUs and GPUs at zero and finite temperatures. J Chem Phys 2024; 161:162502. [PMID: 39450727 DOI: 10.1063/5.0225596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
ipie is a Python-based auxiliary-field quantum Monte Carlo (AFQMC) package that has undergone substantial improvements since its initial release [Malone et al., J. Chem. Theory Comput. 19(1), 109-121 (2023)]. This paper outlines the improved modularity and new capabilities implemented in ipie. We highlight the ease of incorporating different trial and walker types and the seamless integration of ipie with external libraries. We enable distributed Hamiltonian simulations of large systems that otherwise would not fit on a single central processing unit node or graphics processing unit (GPU) card. This development enabled us to compute the interaction energy of a benzene dimer with 84 electrons and 1512 orbitals with multi-GPUs. Using CUDA and cupy for NVIDIA GPUs, ipie supports GPU-accelerated multi-slater determinant trial wavefunctions [Huang et al. arXiv:2406.08314 (2024)] to enable efficient and highly accurate simulations of large-scale systems. This allows for near-exact ground state energies of multi-reference clusters, [Cu2O2]2+ and [Fe2S2(SCH3)4]2-. We also describe implementations of free projection AFQMC, finite temperature AFQMC, AFQMC for electron-phonon systems, and automatic differentiation in AFQMC for calculating physical properties. These advancements position ipie as a leading platform for AFQMC research in quantum chemistry, facilitating more complex and ambitious computational method development and their applications.
Collapse
Affiliation(s)
- Tong Jiang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Moritz K A Baumgarten
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ankit Mahajan
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Shu Fay Ung
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Jinghong Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | - Joonho Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
2
|
Xiang C, Jia W, Fang WH, Li Z. Distributed Multi-GPU Ab Initio Density Matrix Renormalization Group Algorithm with Applications to the P-Cluster of Nitrogenase. J Chem Theory Comput 2024; 20:775-786. [PMID: 38198503 DOI: 10.1021/acs.jctc.3c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The presence of many degenerate d/f orbitals makes polynuclear transition-metal compounds, such as iron-sulfur clusters in nitrogenase, challenging for state-of-the-art quantum chemistry methods. To address this challenge, we present the first distributed multi-graphics processing unit (GPU) ab initio density matrix renormalization group (DMRG) algorithm suitable for modern high-performance computing (HPC) infrastructures. The central idea is to parallelize the most computationally intensive part─the multiplication of O(K2) operators with a trial wave function, where K is the number of spatial orbitals, by combining operator parallelism for distributing the workload with a batched algorithm for performing contractions on GPU. With this new implementation, we are able to reach an unprecedentedly large bond dimension D = 14,000 on 48 GPUs (NVIDIA A100 80 GB SXM) for an active space model (114 electrons in 73 active orbitals) of the P-cluster, which is nearly 3 times larger than the bond dimensions reported in previous DMRG calculations for the same system using only central processing units (CPUs).
Collapse
Affiliation(s)
- Chunyang Xiang
- State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weile Jia
- State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhendong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Zhai H, Larsson HR, Lee S, Cui ZH, Zhu T, Sun C, Peng L, Peng R, Liao K, Tölle J, Yang J, Li S, Chan GKL. Block2: A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond. J Chem Phys 2023; 159:234801. [PMID: 38108484 DOI: 10.1063/5.0180424] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio electronic structure Hamiltonians and implements many quantum chemistry extensions to the density matrix renormalization group, such as dynamical correlation theories. The code is designed with an emphasis on flexibility, extensibility, and efficiency and to support integration with external numerical packages. Here, we explain the design principles and currently supported features and present numerical examples in a range of applications.
Collapse
Affiliation(s)
- Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Henrik R Larsson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhi-Hao Cui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Tianyu Zhu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Chong Sun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Linqing Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ruojing Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ke Liao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Johannes Tölle
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Junjie Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Shuoxue Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
4
|
Han R, Luber S, Li Manni G. Magnetic Interactions in a [Co(II) 3Er(III)(OR) 4] Model Cubane through Forefront Multiconfigurational Methods. J Chem Theory Comput 2023; 19:2811-2826. [PMID: 37126736 DOI: 10.1021/acs.jctc.2c01318] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Strong electron correlation effects are one of the major challenges in modern quantum chemistry. Polynuclear transition metal clusters are peculiar examples of systems featuring such forms of electron correlation. Multireference strategies, often based on but not limited to the concept of complete active space, are adopted to accurately account for strong electron correlation and to resolve their complex electronic structures. However, transition metal clusters already containing four magnetic centers with multiple unpaired electrons make conventional active space based strategies prohibitively expensive, due to their unfavorable scaling with the size of the active space. In this work, forefront techniques, such as density matrix renormalization group (DMRG), full configuration interaction quantum Monte Carlo (FCIQMC), and multiconfiguration pair-density functional theory (MCPDFT), are employed to overcome the computational limitation of conventional multireference approaches and to accurately investigate the magnetic interactions taking place in a [Co(II)3Er(III)(OR)4] (chemical formula [Co(II)3Er(III)(hmp)4(μ2-OAc)2(OH)3(H2O)], hmp = 2-(hydroxymethyl)-pyridine) model cubane water oxidation catalyst. Complete active spaces with up to 56 electrons in 56 orbitals have been constructed for the seven energetically lowest different spin states. Relative energies, local spin, and spin-spin correlation values are reported and provide crucial insights on the spin interactions for this model system, pivotal in the rationalization of the catalytic activity of this system in the water-splitting reaction. A ferromagnetic ground state is found with a very small, ∼50 cm-1, highest-to-lowest spin gap. Moreover, for the energetically lowest states, S = 3-6, the three Co(II) sites exhibit parallel aligned spins, and for the lower states, S = 0-2, two Co(II) sites retain strong parallel spin alignment.
Collapse
Affiliation(s)
- Ruocheng Han
- Department of Chemistry A, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry A, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Giovanni Li Manni
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Weser O, Liebermann N, Kats D, Alavi A, Li Manni G. Spin Purification in Full-CI Quantum Monte Carlo via a First-Order Penalty Approach. J Phys Chem A 2022; 126:2050-2060. [PMID: 35298155 PMCID: PMC8978180 DOI: 10.1021/acs.jpca.2c01338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
In this article,
we demonstrate that a first-order spin penalty
scheme can be efficiently applied to the Slater determinant based
Full-CI Quantum Monte Carlo (FCIQMC) algorithm, as a practical route
toward spin purification. Two crucial applications are presented to
demonstrate the validity and robustness of this scheme: the 1Δg ← 3Σg vertical excitation in O2 and
key spin gaps in a [Mn3(IV)O4] cluster.
In the absence of a robust spin adaptation/purification technique,
both applications would be unattainable by Slater determinant based
ground state methods, with any starting wave function collapsing into
the higher-spin ground state during the optimization. This strategy
can be coupled to other algorithms that use the Slater determinant
based FCIQMC algorithm as configuration interaction eigensolver, including
the Stochastic Generalized Active Space, the similarity-transformed
FCIQMC, the tailored-CC, and second-order perturbation theory approaches.
Moreover, in contrast to the GUGA-FCIQMC technique, this strategy
features both spin projection and total spin adaptation, making it
appealing when solving anisotropic Hamiltonians. It also provides
spin-resolved reduced density matrices, important for the investigation
of spin-dependent properties in polynuclear transition metal clusters,
such as the hyperfine-coupling constants.
Collapse
Affiliation(s)
- Oskar Weser
- Max-Planck-Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Niklas Liebermann
- Max-Planck-Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Daniel Kats
- Max-Planck-Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Ali Alavi
- Max-Planck-Institute for Solid State Research, 70569 Stuttgart, Germany.,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Giovanni Li Manni
- Max-Planck-Institute for Solid State Research, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Ren J, Li W, Jiang T, Wang Y, Shuai Z. Time‐dependent density matrix renormalization group method for quantum dynamics in complex systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| |
Collapse
|
7
|
Song Y, Guo Y, Lei Y, Zhang N, Liu W. The Static-Dynamic-Static Family of Methods for Strongly Correlated Electrons: Methodology and Benchmarking. Top Curr Chem (Cham) 2021; 379:43. [PMID: 34724123 DOI: 10.1007/s41061-021-00351-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
A series of methods (SDSCI, SDSPT2, iCI, iCIPT2, iCISCF(2), iVI, and iCAS) is introduced to accurately describe strongly correlated systems of electrons. Born from the (restricted) static-dynamic-static (SDS) framework for designing many-electron wave functions, SDSCI is a minimal multireference (MR) configuration interaction (CI) approach that constructs and diagonalizes a [Formula: see text] matrix for [Formula: see text] states, regardless of the numbers of orbitals and electrons to be correlated. If the full molecular Hamiltonian H in the QHQ block (which describes couplings between functions of the first-order interaction space Q) of the SDSCI CI matrix is replaced with a zeroth-order Hamiltonian [Formula: see text] before the diagonalization is taken, we obtain SDSPT2, a CI-like second-order perturbation theory (PT2). Unlike most variants of MRPT2, SDSPT2 treats single and multiple states in the same way and is particularly advantageous in the presence of near degeneracy. On the other hand, if the SDSCI procedure is repeated until convergence, we will have iterative CI (iCI), which can converge quickly from the above to the exact solutions (full CI) even when starting with a poor guess. When further combined with the selection of important configurations followed by a PT2 treatment of dynamic correlation, iCI becomes iCIPT2, which is a near-exact theory for medium-sized systems. The microiterations of iCI for relaxing the coefficients of contracted many-electron functions can be generalized to an iterative vector interaction (iVI) approach for finding exterior or interior roots of a given matrix, in which the dimension of the search subspace is fixed by either the number of target roots or the user-specified energy window. Naturally, iCIPT2 can be employed as the active space solver of the complete active space (CAS) self-consistent field, leading to iCISCF(2), which can further be combined with iCAS for automated selection of active orbitals and assurance of the same CAS for all states and all geometries. The methods are calibrated by taking the Thiel set of benchmark systems as examples. Results for the corresponding cations, a new set of benchmark systems, are also reported.
Collapse
Affiliation(s)
- Yangyang Song
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, Shandong, China
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, Shandong, China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Shaanxi key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Ning Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, Shandong, China.
| |
Collapse
|
8
|
Li Manni G. Modeling magnetic interactions in high-valent trinuclear [Mn 3(IV)O 4] 4+ complexes through highly compressed multi-configurational wave functions. Phys Chem Chem Phys 2021; 23:19766-19780. [PMID: 34525156 DOI: 10.1039/d1cp03259c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we apply a quantum chemical framework, recently designed in our laboratories, to rationalize the low-energy electronic spectrum and the magnetic properties of an homo-valent trinuclear [Mn3(IV)O4]4+ model of the oxygen-evolving center in photosystem II. The method is based on chemically motivated molecular orbital unitary transformations, and the optimization of spin-adapted many-body wave functions, both for ground- and excited-states, in the transformed MO basis. In this basis, the configuration interaction Hamiltonian matrix of exchange-coupled multi-center clusters is extremely sparse and characterized by a unique block diagonal structure. This property leads to highly compressed wave functions (oligo- or single-reference) and crucially enables state-specific optimizations. This work is the first showing that compression and selective targeting of ground- and excited-states wave functions is possible for systems with three magnetic centers that are not exactly half-filled, and that potentially exhibit frustrated spin interactions. The reduced multi-reference character of the wave function greatly simplifies the interpretation of the ground- and excited-state electronic structures, and provides a route for the direct rationalization of magnetic interactions in these compounds, often considered a challenge in polynuclear transition-metal chemistry. In this study, strong electron correlation effects have explicitly been described by conventional and stochastic multiconfigurational methodologies, while dynamic correlation effects have been accounted for by multiconfigurational second order perturbation theory, CASPT2. Ab initio results for the [Mn3(IV)O4]4+ system have been mapped to a three-site Heisenberg model with two magnetic coupling constants. The magnetic coupling constants and the temperature dependence of the effective magnetic moment predicted by the ab initio calculations are in good agreement with the available experimental data, and confirm the antiferromagnetic interaction among the three magnetic centers, while providing a simple and rigorous description of the noncollinearity of the local spins, that characterize most of the low-energy states for this system.
Collapse
Affiliation(s)
- Giovanni Li Manni
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
| |
Collapse
|
9
|
Mihálka ZÉ, Surján PR, Szabados Á. Symmetry-Adapted Perturbation with Half-Projection for Spin Unrestricted Geminals. J Chem Theory Comput 2021; 17:4122-4143. [PMID: 34087072 DOI: 10.1021/acs.jctc.1c00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perturbative correction to a wave function built from singlet-triplet mixed two-electron functions (geminals) is derived in the context of symmetry-adapted schemes, applying partial spin-projection. Imposing the constraint of strong orthogonality of geminals results in a reference function that captures static correlation in a computationally feasible way. In case of a lack of spin purification, the product of spin-unrestricted geminals is generally spin-contaminated, potentially undermining performance of a subsequent dynamic correlation treatment. In this work, spin symmetry of the reference is partially restored by half-projection in a variation-after-projection scheme. Applying perturbation theory (PT) to recover the missing part of electron correlation is hampered by the fact that an obvious choice for a zero-order Hamiltonian is not provided. The situation is amended by adopting the formalism of symmetry-adapted PT. The resulting framework is tested on singlet-triplet gaps of biradicaloids, and it is found to perform well in situations where its unprojected counterpart fails because of spin contamination.
Collapse
Affiliation(s)
- Zs É Mihálka
- Laboratory of Theoretical Chemistry, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Budapest, Hungary.,Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - P R Surján
- Laboratory of Theoretical Chemistry, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Á Szabados
- Laboratory of Theoretical Chemistry, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
10
|
Zhai H, Chan GKL. Low communication high performance ab initio density matrix renormalization group algorithms. J Chem Phys 2021; 154:224116. [DOI: 10.1063/5.0050902] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
11
|
Li Manni G, Dobrautz W, Bogdanov NA, Guther K, Alavi A. Resolution of Low-Energy States in Spin-Exchange Transition-Metal Clusters: Case Study of Singlet States in [Fe(III) 4S 4] Cubanes. J Phys Chem A 2021; 125:4727-4740. [PMID: 34048648 PMCID: PMC8201447 DOI: 10.1021/acs.jpca.1c00397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Polynuclear transition-metal
(PNTM) clusters owe their catalytic
activity to numerous energetically low-lying spin states and stable
oxidation states. The characterization of their electronic structure
represents one of the greatest challenges of modern chemistry. We
propose a theoretical framework that enables the resolution of targeted
electronic states with ease and apply it to two [Fe(III)4S4] cubanes. Through direct access to their many-body
wave functions, we identify important correlation mechanisms and their
interplay with the geometrical distortions observed in these clusters,
which are core properties in understanding their catalytic activity.
The simulated magnetic coupling constants predicted by our strategy
allow us to make qualitative connections between spin interactions
and geometrical distortions, demonstrating its predictive power. Moreover,
despite its simplicity, the strategy provides magnetic coupling constants
in good agreement with the available experimental ones. The complexes
are intrinsically frustrated anti-ferromagnets, and the obtained spin
structures together with the geometrical distortions represent two
possible ways to release spin frustration (spin-driven Jahn–Teller
distortion). Our paradigm provides a simple, yet rigorous, route to
uncover the electronic structure of PNTM clusters and may be applied
to a wide variety of such clusters.
Collapse
Affiliation(s)
- Giovanni Li Manni
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Werner Dobrautz
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Nikolay A Bogdanov
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Kai Guther
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ali Alavi
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
12
|
Zhang N, Liu W, Hoffmann MR. Further Development of iCIPT2 for Strongly Correlated Electrons. J Chem Theory Comput 2021; 17:949-964. [PMID: 33410692 DOI: 10.1021/acs.jctc.0c01187] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The efficiency of the recently proposed iCIPT2 [iterative configuration interaction (iCI) with selection and second-order perturbation theory (PT2); J. Chem. Theory Comput. 2020, 16, 2296] for strongly correlated electrons is further enhanced (by up to 20×) by using (1) a new ranking criterion for configuration selection, (2) a new particle-hole algorithm for Hamiltonian construction over randomly selected configuration state functions (CSF), and (3) a new data structure for the quick sorting of the variational and first-order interaction spaces. Meanwhile, the memory requirement is also significantly reduced. As a result, this improved implementation of iCIPT2 can handle 1 order of magnitude more CSFs than the previous version, as revealed by taking the chromium dimer and an iron-sulfur cluster, [Fe2S2(SCH3)]42-, as examples.
Collapse
Affiliation(s)
- Ning Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Mark R Hoffmann
- Chemistry Department, University of North Dakota, Grand Forks, North Dakota 58202-9024, United States
| |
Collapse
|
13
|
Ren J, Li W, Jiang T, Shuai Z. A general automatic method for optimal construction of matrix product operators using bipartite graph theory. J Chem Phys 2020; 153:084118. [PMID: 32872857 DOI: 10.1063/5.0018149] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Constructing matrix product operators (MPOs) is at the core of the modern density matrix renormalization group (DMRG) and its time dependent formulation. For the DMRG to be conveniently used in different problems described by different Hamiltonians, in this work, we propose a new generic algorithm to construct the MPO of an arbitrary operator with a sum-of-products form based on the bipartite graph theory. We show that the method has the following advantages: (i) it is automatic in that only the definition of the operator is required; (ii) it is symbolic thus free of any numerical error; (iii) the complementary operator technique can be fully employed so that the resulting MPO is globally optimal for any given order of degrees of freedom; and (iv) the symmetry of the system could be fully employed to reduce the dimension of MPO. To demonstrate the effectiveness of the new algorithm, the MPOs of Hamiltonians ranging from the prototypical spin-boson model and the Holstein model to the more complicated ab initio electronic Hamiltonian and the anharmonic vibrational Hamiltonian with the sextic force field are constructed. It is found that for the former three cases, our automatic algorithm can reproduce exactly the same MPOs as the optimally hand-crafted ones already known in the literature.
Collapse
Affiliation(s)
- Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
14
|
Larsson HR, Jiménez-Hoyos CA, Chan GKL. Minimal Matrix Product States and Generalizations of Mean-Field and Geminal Wave Functions. J Chem Theory Comput 2020; 16:5057-5066. [DOI: 10.1021/acs.jctc.0c00463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Henrik R. Larsson
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Garnet Kin-Lic Chan
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
15
|
Abstract
Nitrogenase is the only enzyme capable of reducing N2 to NH3. This challenging reaction requires the coordinated transfer of multiple electrons from the reductase, Fe-protein, to the catalytic component, MoFe-protein, in an ATP-dependent fashion. In the last two decades, there have been significant advances in our understanding of how nitrogenase orchestrates electron transfer (ET) from the Fe-protein to the catalytic site of MoFe-protein and how energy from ATP hydrolysis transduces the ET processes. In this review, we summarize these advances, with focus on the structural and thermodynamic redox properties of nitrogenase component proteins and their complexes, as well as on new insights regarding the mechanism of ET reactions during catalysis and how they are coupled to ATP hydrolysis. We also discuss recently developed chemical, photochemical, and electrochemical methods for uncoupling substrate reduction from ATP hydrolysis, which may provide new avenues for studying the catalytic mechanism of nitrogenase.
Collapse
Affiliation(s)
- Hannah L Rutledge
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
16
|
Yang PJ, Sugiyama M, Tsuda K, Yanai T. Artificial Neural Networks Applied as Molecular Wave Function Solvers. J Chem Theory Comput 2020; 16:3513-3529. [PMID: 32320233 DOI: 10.1021/acs.jctc.9b01132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We use artificial neural networks (ANNs) based on the Boltzmann machine (BM) architectures as an encoder of ab initio molecular many-electron wave functions represented with the complete active space configuration interaction (CAS-CI) model. As first introduced by the work of Carleo and Troyer for physical systems, the coefficients of the electronic configurations in the CI expansion are parametrized with the BMs as a function of their occupancies that act as descriptors. This ANN-based wave function ansatz is referred to as the neural-network quantum state (NQS). The machine learning is used for training the BMs in terms of finding a variationally optimal form of the ground-state wave function on the basis of the energy minimization. It is relevant to reinforcement learning and does not use any reference data nor prior knowledge of the wave function, while the Hamiltonian is given based on a user-specified chemical structure in the first-principles manner. Carleo and Troyer used the restricted Boltzmann machine (RBM), which has hidden units, for the neural network architecture of NQS, while, in this study, we further introduce its replacement with the BM that has only visible units but with different orders of connectivity. For this hidden-node free BM, the second- and third-order BMs based on quadratic and cubic energy functions, respectively, were implemented. We denote these second- and third-order BMs as BM2 and BM3, respectively. The pilot implementation of the NQS solver into an exact diagonalization module of the quantum chemistry program was made to assess the capability of variants of the BM-based NQS. The test calculations were performed by determining the CAS-CI wave functions of illustrative molecular systems, indocyanine green, and dinitrogen dissociation. The simulated energies have been shown to converge to CAS-CI energy in most cases by improving RBM with an increasing number of hidden nodes. BM3 systematically yields lower energies than BM2, reproducing the CAS-CI energies of dinitrogen across potential energy curves within an error of 50 μEh.
Collapse
Affiliation(s)
- Peng-Jian Yang
- Department of Chemistry, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| | - Mahito Sugiyama
- National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Koji Tsuda
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.,Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Ibaraki 305-0047, Japan
| | - Takeshi Yanai
- Department of Chemistry, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
17
|
Baiardi A, Reiher M. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J Chem Phys 2020; 152:040903. [DOI: 10.1063/1.5129672] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Alberto Baiardi
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
18
|
Li Z, Guo S, Sun Q, Chan GKL. Electronic landscape of the P-cluster of nitrogenase as revealed through many-electron quantum wavefunction simulations. Nat Chem 2019; 11:1026-1033. [PMID: 31570817 DOI: 10.1038/s41557-019-0337-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/20/2019] [Indexed: 11/09/2022]
Abstract
The electronic structure of the nitrogenase metal cofactors is central to nitrogen fixation. However, the P-cluster and FeMo cofactor, each containing eight Fe atoms, have eluded detailed characterization of their electronic properties. We report on the low-energy electronic states of the P-cluster in three oxidation states through exhaustive many-electron wavefunction simulations enabled by new theoretical methods. The energy scales of orbital and spin excitations overlap, yielding a dense spectrum with features that we trace to the underlying atomic states and recouplings. The clusters exist in superpositions of spin configurations with non-classical spin correlations, complicating interpretation of magnetic spectroscopies, whereas the charges are mostly localized from reorganization of the cluster and its surroundings. On oxidation, the opening of the P-cluster substantially increases the density of states, which is intriguing given its proposed role in electron transfer. These results demonstrate that many-electron simulations stand to provide new insights into the electronic structure of the nitrogenase cofactors.
Collapse
Affiliation(s)
- Zhendong Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Sheng Guo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Qiming Sun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
19
|
Dobrautz W, Smart SD, Alavi A. Efficient formulation of full configuration interaction quantum Monte Carlo in a spin eigenbasis via the graphical unitary group approach. J Chem Phys 2019; 151:094104. [DOI: 10.1063/1.5108908] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Werner Dobrautz
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Simon D. Smart
- European Centre for Medium-Range Weather Forecasts, Shinfield Rd., Reading RG2 9AX, United Kingdom
| | - Ali Alavi
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
20
|
Baiardi A, Reiher M. Large-Scale Quantum Dynamics with Matrix Product States. J Chem Theory Comput 2019; 15:3481-3498. [DOI: 10.1021/acs.jctc.9b00301] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Alberto Baiardi
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
21
|
Li Z, Li J, Dattani NS, Umrigar CJ, Chan GKL. The electronic complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to quantum simulations. J Chem Phys 2019; 150:024302. [PMID: 30646701 DOI: 10.1063/1.5063376] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report that a recent active space model of the nitrogenase FeMo cofactor, proposed in the context of simulations on quantum computers, is not representative of the electronic structure of the FeMo cofactor ground-state. A more representative model does not affect much certain resource estimates for a quantum computer such as the cost of a Trotter step, while strongly affecting others such as the cost of adiabatic state preparation. Thus, conclusions should not be drawn from the complexity of quantum or classical simulations of the electronic structure of this system in this active space. We provide a different model active space for the FeMo cofactor that contains the basic open-shell qualitative character, which may be useful as a benchmark system for making resource estimates for classical and quantum computers.
Collapse
Affiliation(s)
- Zhendong Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Junhao Li
- Department of Physics, Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, New York 14853, USA
| | - Nikesh S Dattani
- National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - C J Umrigar
- Department of Physics, Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, New York 14853, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
22
|
|
23
|
Kawakami T, Miyagawa K, Sharma S, Saito T, Shoji M, Yamada S, Yamanaka S, Okumura M, Nakajima T, Yamaguchi K. UNO DMRG CAS CI calculations of binuclear manganese complex Mn(IV) 2 O 2 (NHCHCO 2 ) 4 : Scope and applicability of Heisenberg model. J Comput Chem 2018; 40:333-341. [PMID: 30341945 DOI: 10.1002/jcc.25602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/12/2018] [Accepted: 09/02/2018] [Indexed: 12/18/2022]
Abstract
Both direct exchange and super-exchange interactions cooperate to realize inter-spin magnetic interaction in binuclear manganese complex Mn(IV)2 O2 (NHCHCO2 )4 with a di-μ-oxo path. We revisited this spin system using DMRG CAS methods and CAS selection procedures. Our results indicate that our previous "dynamically extended spin polarization" (DE-SP) procedure for organic polyradicals and so forth does not work well. Thus, we have examined another selection procedure, the "dynamically extended super-exchange" (DE-SE) procedure. DMRG CASCI [18,18] by UB3LYP(HS)-UNO(DE-SE) can realize antiferromagnetic J values similar to experimental ones (-87 cm-1 ). In addition, all J values between all spin states (HS[septet],IS[quintet],IS[triplet],LS[singlet])were also shown to be correct under sufficiently large M values. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Takashi Kawakami
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.,Riken Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
| | - Koichi Miyagawa
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Ibaraki, 567-0047, Japan
| | - Sandeep Sharma
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, 80309
| | - Toru Saito
- Graduate School of Information Sciences, Hiroshima City University, Hiroshima, 731-3194, Japan
| | - Mitsuo Shoji
- Center of Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Satoru Yamada
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Ibaraki, 567-0047, Japan
| | - Shusuke Yamanaka
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Mitsutaka Okumura
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Takahito Nakajima
- Riken Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
| | - Kizashi Yamaguchi
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.,Riken Center for Computational Science, Kobe, Hyogo, 650-0047, Japan.,The Institute of Scientific and Industrial Research, Osaka University, Osaka, Ibaraki, 567-0047, Japan.,NanoScience Design Center, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
24
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
25
|
Guo S, Li Z, Chan GKL. A Perturbative Density Matrix Renormalization Group Algorithm for Large Active Spaces. J Chem Theory Comput 2018; 14:4063-4071. [DOI: 10.1021/acs.jctc.8b00273] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sheng Guo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zhendong Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
26
|
Taffet EJ, Scholes GD. Peridinin Torsional Distortion and Bond-Length Alternation Introduce Intramolecular Charge-Transfer and Correlated Triplet Pair Intermediate Excited States. J Phys Chem B 2018; 122:5835-5844. [DOI: 10.1021/acs.jpcb.8b02504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elliot J. Taffet
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
27
|
Ronca E, Li Z, Jimenez-Hoyos CA, Chan GKL. Time-Step Targeting Time-Dependent and Dynamical Density Matrix Renormalization Group Algorithms with ab Initio Hamiltonians. J Chem Theory Comput 2017; 13:5560-5571. [DOI: 10.1021/acs.jctc.7b00682] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Enrico Ronca
- Division of Chemistry and
Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zhendong Li
- Division of Chemistry and
Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Carlos A. Jimenez-Hoyos
- Division of Chemistry and
Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Garnet Kin-Lic Chan
- Division of Chemistry and
Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
28
|
Yanai T, Saitow M, Xiong XG, Chalupský J, Kurashige Y, Guo S, Sharma S. Multistate Complete-Active-Space Second-Order Perturbation Theory Based on Density Matrix Renormalization Group Reference States. J Chem Theory Comput 2017; 13:4829-4840. [DOI: 10.1021/acs.jctc.7b00735] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Takeshi Yanai
- Department
of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, 444-8585 Aichi Japan
- The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Masaaki Saitow
- The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Xiao-Gen Xiong
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jakub Chalupský
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16110 Prague 6, Czech Republic
| | - Yuki Kurashige
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyou-ku, Kyoto 606-8520, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Sheng Guo
- Division
of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sandeep Sharma
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Boulder, Colorado 80302, United States
| |
Collapse
|