1
|
Rihon J, Mattelaer CA, Montalvão RW, Froeyen M, Pinheiro VB, Lescrinier E. Structural insights into the morpholino nucleic acid/RNA duplex using the new XNA builder Ducque in a molecular modeling pipeline. Nucleic Acids Res 2024; 52:2836-2847. [PMID: 38412249 PMCID: PMC11014352 DOI: 10.1093/nar/gkae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
The field of synthetic nucleic acids with novel backbone structures [xenobiotic nucleic acids (XNAs)] has flourished due to the increased importance of XNA antisense oligonucleotides and aptamers in medicine, as well as the development of XNA processing enzymes and new XNA genetic materials. Molecular modeling on XNA structures can accelerate rational design in the field of XNAs as it contributes in understanding and predicting how changes in the sugar-phosphate backbone impact on the complementation properties of the nucleic acids. To support the development of novel XNA polymers, we present a first-in-class open-source program (Ducque) to build duplexes of nucleic acid analogs with customizable chemistry. A detailed procedure is described to extend the Ducque library with new user-defined XNA fragments using quantum mechanics (QM) and to generate QM-based force field parameters for molecular dynamics simulations within standard packages such as AMBER. The tool was used within a molecular modeling workflow to accurately reproduce a selection of experimental structures for nucleic acid duplexes with ribose-based as well as non-ribose-based nucleosides. Additionally, it was challenged to build duplexes of morpholino nucleic acids bound to complementary RNA sequences.
Collapse
Affiliation(s)
- Jérôme Rihon
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
| | - Charles-Alexandre Mattelaer
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
- Quantum Chemistry and Physical Chemistry, Celestijnenlaan 200f, Box 2404, B-3001, Leuven, Belgium
| | - Rinaldo Wander Montalvão
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
- Gain Therapeutics sucursal en España, Barcelona Science Park, Baldiri Reixac 4-10, 08028 Barcelona, Spain
| | - Mathy Froeyen
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
| | - Vitor Bernardes Pinheiro
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
| | - Eveline Lescrinier
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
| |
Collapse
|
2
|
Mattelaer CA, Mattelaer HP, Rihon J, Froeyen M, Lescrinier E. Efficient and Accurate Potential Energy Surfaces of Puckering in Sugar-Modified Nucleosides. J Chem Theory Comput 2021; 17:3814-3823. [PMID: 34000809 DOI: 10.1021/acs.jctc.1c00270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Puckering of the sugar unit in nucleosides and nucleotides is an important structural aspect that directly influences the helical structure of nucleic acids. The preference for specific puckering modes in nucleic acids can be analyzed via in silico conformational analysis, but the large amount of conformations and the accuracy of the analysis leads to an extensive amount of computational time. In this paper, we show that the combination of geometry optimizations with the HF-3c method with single point energies at the RI-MP2 level results in accurate results for the puckering potential energy surface (PES) of DNA and RNA nucleosides while significantly reducing the necessary computational time. Applying this method to a series of known xeno nucleic acids (XNAs) allowed us to rapidly explore the puckering PES of each of the respective nucleosides and to explore the puckering PES of six-membered modified XNA (HNA and β-homo-DNA) for the first time.
Collapse
Affiliation(s)
- Charles-Alexandre Mattelaer
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000 Leuven, Belgium
| | - Henri-Philippe Mattelaer
- Campus Drie Eiken, Laboratory of Medicinal Chemistry, UAntwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Jérôme Rihon
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000 Leuven, Belgium
| | - Matheus Froeyen
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000 Leuven, Belgium
| | - Eveline Lescrinier
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Mattelaer CA, Maiti M, Smets L, Maiti M, Schepers G, Mattelaer HP, Rosemeyer H, Herdewijn P, Lescrinier E. Stable Hairpin Structures Formed by Xylose-Based Nucleic Acids. Chembiochem 2021; 22:1638-1645. [PMID: 33427360 DOI: 10.1002/cbic.202000803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/06/2021] [Indexed: 12/21/2022]
Abstract
Xenobiology explores synthetic nucleic acid polymers as alternative carriers of genetic information to expand the central dogma. The xylo- and deoxyxylo-nucleic acids (XyNA and dXyNA), containing 3' epimers of riboses and deoxyriboses, are considered to be potential candidates for an orthogonal system. In this study, thermal and spectroscopic analyses show that XyNA and dXyNA form stable hairpins. The dXyNA hairpin structure determined by NMR spectroscopy contains a flexible loop that locks the stem into a stable ladder-like duplex with marginal right-handed helicity. The reduced flexibility of the dXyNA duplex observed in the stem of the hairpin demonstrates that folding of dXyNA yields more stable structures described so far.
Collapse
Affiliation(s)
- Charles-Alexandre Mattelaer
- Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Box 1041, 3000, Leuven, Belgium
| | - Mohitosh Maiti
- Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Box 1041, 3000, Leuven, Belgium
| | - Laurent Smets
- Research Centre for Operations Management, Faculty of Economics and Business, KU Leuven, Naamsestraat 69, 3000, Leuven, Belgium
| | - Munmun Maiti
- Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Box 1041, 3000, Leuven, Belgium
| | - Guy Schepers
- Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Box 1041, 3000, Leuven, Belgium
| | - Henri-Philippe Mattelaer
- Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Box 1041, 3000, Leuven, Belgium.,Present address: Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven (Arenberg), Celestijnenlaan 200f, Box 2454, 3001, Leuven, Belgium
| | - Helmut Rosemeyer
- Organische Materialchemie (OMC), Universität Osnabrück, Institut für Chemie neuer Materialien, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Piet Herdewijn
- Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Box 1041, 3000, Leuven, Belgium
| | - Eveline Lescrinier
- Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Box 1041, 3000, Leuven, Belgium
| |
Collapse
|
4
|
Alenaizan A, Barnett JL, Hud NV, Sherrill CD, Petrov AS. The proto-Nucleic Acid Builder: a software tool for constructing nucleic acid analogs. Nucleic Acids Res 2021; 49:79-89. [PMID: 33300028 PMCID: PMC7797056 DOI: 10.1093/nar/gkaa1159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
The helical structures of DNA and RNA were originally revealed by experimental data. Likewise, the development of programs for modeling these natural polymers was guided by known structures. These nucleic acid polymers represent only two members of a potentially vast class of polymers with similar structural features, but that differ from DNA and RNA in the backbone or nucleobases. Xeno nucleic acids (XNAs) incorporate alternative backbones that affect the conformational, chemical, and thermodynamic properties of XNAs. Given the vast chemical space of possible XNAs, computational modeling of alternative nucleic acids can accelerate the search for plausible nucleic acid analogs and guide their rational design. Additionally, a tool for the modeling of nucleic acids could help reveal what nucleic acid polymers may have existed before RNA in the early evolution of life. To aid the development of novel XNA polymers and the search for possible pre-RNA candidates, this article presents the proto-Nucleic Acid Builder (https://github.com/GT-NucleicAcids/pnab), an open-source program for modeling nucleic acid analogs with alternative backbones and nucleobases. The torsion-driven conformation search procedure implemented here predicts structures with good accuracy compared to experimental structures, and correctly demonstrates the correlation between the helical structure and the backbone conformation in DNA and RNA.
Collapse
Affiliation(s)
- Asem Alenaizan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,Center for Computational Molecular Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Joshua L Barnett
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - C David Sherrill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,Center for Computational Molecular Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0765, USA
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| |
Collapse
|
5
|
Sharpe DJ, Röder K, Wales DJ. Energy Landscapes of Deoxyxylo- and Xylo-Nucleic Acid Octamers. J Phys Chem B 2020; 124:4062-4068. [PMID: 32336100 PMCID: PMC7304908 DOI: 10.1021/acs.jpcb.0c01420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Artificial
analogues of the natural nucleic acids have attracted
interest as a diverse class of information storage molecules capable
of self-replication. In this study, we use the computational potential
energy landscape framework to investigate the structural and dynamical
properties of xylo- and deoxyxylo-nucleic acids (XyNA and dXyNA),
which are derived from their respective RNA and DNA analogues by inversion
of a single chiral center in the sugar moiety of the nucleotides.
For an octameric XyNA sequence and the analogue dXyNA, we observe
facile conformational transitions between a left-handed helix, which
is the free energy global minimum, and a ladder-type structure with
approximately zero helicity. The competing ensembles are better separated
in the dXyNA, making it a more suitable candidate for a molecular
switch, whereas the XyNA exhibits additional flexibility. Both energy
landscapes exhibit greater frustration than we observe in RNA or DNA,
in agreement with the higher degree of optimization expected from
the principle of minimal frustration in evolved biomolecules.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Konstantin Röder
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
6
|
The furanosidic scaffold of d-ribose: a milestone for cell life. Biochem Soc Trans 2020; 47:1931-1940. [PMID: 31697320 DOI: 10.1042/bst20190749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 01/15/2023]
Abstract
The recruitment of the furanosidic scaffold of ribose as the crucial step for nucleotides and then for nucleic acids synthesis is presented. Based on the view that the selection of molecules to be used for relevant metabolic purposes must favor structurally well-defined molecules, the inadequacy of ribose as a preferential precursor for nucleotides synthesis is discussed. The low reliability of ribose in its furanosidic hemiacetal form must have played ab initio against the choice of d-ribose for the generation of d-ribose-5-phosphate, the fundamental precursor of the ribose moiety of nucleotides. The latter, which is instead generated through the 'pentose phosphate pathway' is strictly linked to the affordable and reliable pyranosidic structure of d-glucose.
Collapse
|
7
|
Kumar A, Patwari GN. Probing the role of dispersion energy on structural transformation of double-stranded xylo- and ribo-nucleic acids. Phys Chem Chem Phys 2019; 21:3842-3848. [PMID: 30698574 DOI: 10.1039/c8cp06305b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The structural transformation of double-stranded octameric xyloNA and RNA were probed by modulating the dispersion energy. For the RNA, the increase and the decrease in dispersion energy lead to over-winding and unwinding of the helix. These structural transformations resemble the features observed due to the action of the topoisomerases and helicases enzymes, respectively. On the other hand, an increase in the dispersion energy has minimal effect on the structural transformation of double-strand xyloNA, whilst a decrease in the dispersion energy results in a structural transformation which happens due to the action of the helicases. The unresponsive behaviour of xyloNA to an increase in the dispersion energy is attributed to the presence of an Lpπ interaction between the oxygen atom of the xylose sugar and the adjacent nucleobase.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | | |
Collapse
|
8
|
Subedi GP, Sinitskiy AV, Roberts JT, Patel KR, Pande VS, Barb AW. Intradomain Interactions in an NMDA Receptor Fragment Mediate N-Glycan Processing and Conformational Sampling. Structure 2018; 27:55-65.e3. [PMID: 30482728 DOI: 10.1016/j.str.2018.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/02/2018] [Accepted: 09/19/2018] [Indexed: 11/18/2022]
Abstract
The structural and functional roles of highly conserved asparagine-linked (N)-glycans on the extracellular ligand-binding domain (LBD) of the N-methyl-D-aspartate receptors are poorly understood. We applied solution- and computation-based methods that identified N-glycan-mediated intradomain and interglycan interactions. Nuclear magnetic resonance (NMR) spectra of the GluN1 LBD showed clear signals corresponding to each of the three N-glycans and indicated the reducing end of glycans at N440 and N771 potentially contacted nearby amino acids. Molecular dynamics simulations identified contacts between nearby amino acids and the N440- and N771-glycans that were consistent with the NMR spectra. The distal portions of the N771-glycan also contacted the core residues of the nearby N471-glycan. This result was consistent with mass spectrometry data indicating the limited N471-glycan core fucosylation and reduced branch processing of the N771-glycan could be explained by interglycan contacts. We discuss a potential role for the GluN1 LBD N-glycans in interdomain contacts formed in NMDA receptors.
Collapse
Affiliation(s)
- Ganesh P Subedi
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive Molecular Biology Building, Room 4210, Ames, IA 50011, USA
| | - Anton V Sinitskiy
- Department of Bioengineering, Stanford University, 318 Campus Drive, Room S295, Stanford, CA 94305, USA
| | - Jacob T Roberts
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive Molecular Biology Building, Room 4210, Ames, IA 50011, USA
| | - Kashyap R Patel
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive Molecular Biology Building, Room 4210, Ames, IA 50011, USA
| | - Vijay S Pande
- Department of Bioengineering, Stanford University, 318 Campus Drive, Room S295, Stanford, CA 94305, USA
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive Molecular Biology Building, Room 4210, Ames, IA 50011, USA.
| |
Collapse
|