1
|
Hooshmand Z, Bravo Flores JG, Pederson MR. Orbital dependent complications for close vs well-separated electrons in diradicals. J Chem Phys 2023; 159:234121. [PMID: 38117018 DOI: 10.1063/5.0174061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023] Open
Abstract
We investigate two limits in open-shell diradical systems: O3, in which the interesting orbitals are in close proximity to one another, and (C21H13)2, where there is a significant spatial separation between the two orbitals. In accord with earlier calculations, we find that standard density-functional approximations do not predict the open-shell character for the former case but uniformly predict the open-shell character for the latter case. We trace the qualitatively incorrect behavior in O3 predicted by these standard density functional approximations to self-interaction error and use the Fermi-Löwdin-orbital-self-interaction-corrected formalism to determine accurate triplet, closed-shell singlet, and open-shell broken-spin-symmetry electronic configurations. Analysis of the resulting many-electron overlap matrices allows us to unambiguously show that the broken-spin-symmetry configurations do not participate in the representation of the Ms = 0 triplet states and allows us to reliably extract the singlet-triplet splitting in O3 by analyzing the energy as a function of Fermi-orbital-descriptor permutations. The results of these analyses predict the percentage of open-shell character in O3, which agrees well with conventional wavefunction-based methods. While these techniques are expected to be required in cases near the Coulson-Fischer point, we find that they will be less necessary in diradical systems with well-separated electrons, such as (C21H13)2. Results based on energies from self-interaction-corrected generalized gradient, local density, and Hartree-Fock approximations and experimental results are in generally good agreement for O3. These results help form the basis for deriving extended Heisenberg-like Hamiltonians that are needed for descriptions of molecular magnets when there are competing low-energy electronic configurations.
Collapse
Affiliation(s)
- Zahra Hooshmand
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | | | - Mark R Pederson
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
2
|
Rossomme E, Hart-Cooper WM, Orts WJ, McMahan CM, Head-Gordon M. Computational Studies of Rubber Ozonation Explain the Effectiveness of 6PPD as an Antidegradant and the Mechanism of Its Quinone Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5216-5230. [PMID: 36961979 PMCID: PMC10079164 DOI: 10.1021/acs.est.2c08717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The discovery that the commercial rubber antidegradant 6PPD reacts with ozone (O3) to produce a highly toxic quinone (6PPDQ) spurred a significant research effort into nontoxic alternatives. This work has been hampered by lack of a detailed understanding of the mechanism of protection that 6PPD affords rubber compounds against ozone. Herein, we report high-level density functional theory studies into early steps of rubber and PPD (p-phenylenediamine) ozonation, identifying key steps that contribute to the antiozonant activity of PPDs. In this, we establish that our density functional theory approach can achieve chemical accuracy for many ozonation reactions, which are notoriously difficult to model. Using adiabatic energy decomposition analysis, we examine and dispel the notion that one-electron charge transfer initiates ozonation in these systems, as is sometimes argued. Instead, we find direct interaction between O3 and the PPD aromatic ring is kinetically accessible and that this motif is more significant than interactions with PPD nitrogens. The former pathway results in a hydroxylated PPD intermediate, which reacts further with O3 to afford 6PPD hydroquinone and, ultimately, 6PPDQ. This mechanism directly links the toxicity of 6PPDQ to the antiozonant function of 6PPD. These results have significant implications for development of alternative antiozonants, which are discussed.
Collapse
Affiliation(s)
- Elliot Rossomme
- Bioproducts
Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
- Berkeley
Center for Green Chemistry, University of
California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - William M. Hart-Cooper
- Bioproducts
Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| | - William J. Orts
- Bioproducts
Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| | - Colleen M. McMahan
- Bioproducts
Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| | - Martin Head-Gordon
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Shaik S, Danovich D, Hiberty PC. On The Nature of the Chemical Bond in Valence Bond Theory. J Chem Phys 2022; 157:090901. [DOI: 10.1063/5.0095953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This perspective outlines a panoramic description of the nature of the chemical bond according to valence bond theory. It describes single bonds, and charge-shift bonds (CSBs) in which the entire/most of the bond energy arises from the resonance between the covalent and ionic structures of the bond. Many CSBs are homonuclear bonds. Hypervalent molecules are CSBs. Then we describe multiply bonded molecules with emphasis on C2 and 3O2. The perspective outlines an effective methodology of peeling the electronic structure to the necessary minimum: a structure with a quadruple bond, and two minor structures with double bonds, which stabilize the quadruple bond by resonance. 3O2 is chosen because it is a persistent diradical. The persistence of 3O2 is due to the large CSB resonance interaction of the π-3-electron bonds. Subsequently, we describe the roles of π vs. σ in the geometric preferences in unsaturated molecules, and their Si-based analogs. Then, the perspective discusses bonding in clusters of univalent metal-atoms, which possess only parallel spins, and are nevertheless bonded due to multiple resonance interactions. The bond energy reaches ~40 kcal/mol for a pair of atoms (in n+1Cun; n~10-12). The final subsection discusses singlet excited states in ethene, ozone and SO2. It demonstrates the capability of the breathing-orbital VB method to yield an accurate description of a variety of excited states using 10 or less VB structures. Furthermore, the method underscores covalent structures which play a key role in the correct description and bonding of these excited states.
Collapse
Affiliation(s)
- Sason Shaik
- Hebrew University of Jerusalem Institute of Chemistry, Israel
| | - David Danovich
- Hebrew University of Jerusalem Institute of Chemistry, Israel
| | | |
Collapse
|
4
|
Reuter L, van Staalduinen N, Simons J, Ludovicy J, Lüchow A. Multi-center bonds as resonance hybrids: A real space perspective. J Chem Phys 2022; 156:224107. [PMID: 35705411 DOI: 10.1063/5.0090607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The concept of distinct bonds within molecules has proven to be successful in rationalizing chemical reactivity. However, bonds are not a well-defined physical concept, but rather vague entities, described by different and often contradicting models. With probability density analysis, which can-in principle-be applied to any wave function, bonds are recovered as spin-coupled positions within most likely electron arrangements in coordinate space. While the wave functions of many systems are dominated by a single electron arrangement that is built from two-center two-electron bonds, some systems require several different arrangements to be well described. In this work, a range of these multi-center bonded molecules are classified and investigated with probability density analysis. The results are compared with valence bond theory calculations and data from collision-induced dissociation experiments.
Collapse
Affiliation(s)
- L Reuter
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - N van Staalduinen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - J Simons
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - J Ludovicy
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - A Lüchow
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| |
Collapse
|
5
|
Salta Z, Vega-Teijido M, Katz A, Tasinato N, Barone V, Ventura ON. Dipolar 1,3-cycloaddition of thioformaldehyde S-methylide (CH 2 SCH 2 ) to ethylene and acetylene. A comparison with (valence) isoelectronic O 3 , SO 2 , CH 2 OO and CH 2 SO. J Comput Chem 2022; 43:1420-1433. [PMID: 35662073 DOI: 10.1002/jcc.26946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
Methods rooted in the density functional theory and in the coupled cluster ansatz were employed to investigate the cycloaddition reactions to ethylene and acetylene of 1,3-dipolar species including ozone and the derivatives issued from replacement of the central oxygen atom by the valence-isoelectronic sulfur atom, and/or of one or both terminal oxygen atoms by the isoelectronic CH2 group. This gives rise to five different 1,3-dipolar compounds, namely ozone itself (O3 ), sulfur dioxide (SO2 ), the simplest Criegee intermediate (CH2 OO), sulfine (CH2 SO), and thioformaldehyde S-methylide (CH2 SCH2 , TSM). The experimental and accurate theoretical data available for some of those molecules were employed to assess the accuracy of two last-generation composite methods employing conventional or explicitly correlated post-Hartree-Fock contributions (jun-Cheap and SVECV-f12, respectively), which were then applied to investigate the reactivity of TSM. The energy barriers provided by both composite methods are very close (the average values for the two composite methods are 7.1 and 8.3 kcal mol-1 for the addition to ethylene and acetylene, respectively) and comparable to those ruling the corresponding additions of ozone (4.0 and 7.7 kcal mol-1 , respectively). These and other evidences strongly suggest that, at least in the case of cycloadditions, the reactivity of TSM is similar to that of O3 and very different from that of SO2 .
Collapse
Affiliation(s)
- Zoi Salta
- SMART Lab, Scuola Normale Superiore, Pisa, Italy
| | - Mauricio Vega-Teijido
- Computational Chemistry and Biology Group, CCBG, DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Aline Katz
- Computational Chemistry and Biology Group, CCBG, DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | | | | | - Oscar N Ventura
- Computational Chemistry and Biology Group, CCBG, DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
6
|
Braïda B, Chen Z, Wu W, Hiberty PC. Valence Bond Alternative Yielding Compact and Accurate Wave Functions for Challenging Excited States. Application to Ozone and Sulfur Dioxide. J Chem Theory Comput 2020; 17:330-343. [PMID: 33319998 DOI: 10.1021/acs.jctc.0c00598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel state-averaged version of ab initio nonorthogonal valence bond method is described, for the sake of accurate theoretical studies of excited states in the valence bond framework. With respect to standard calculations in the molecular orbital framework, the state-averaged breathing-orbital valence bond (BOVB) method has the advantage to be free from the penalizing constraint for the ground and excited state(s) to share the same unique set of orbitals. The ability of the BOVB method to faithfully describe excited states and to compute accurate transition energies from the ground state is tested on the five lowest-lying singlet electronic states of ozone and sulfur dioxide, among which 11B2 and 21A1 are the challenging ones. As the 11A2, 11B1, and 11B2 states are of different symmetries than the ground state, they can be calculated at the state-specific BOVB level. On the other hand, the 21A1 states and the 11A1 ground states, which are of like symmetry, are calculated with the state-averaged BOVB technique. In all cases, the calculated vertical energies are close to the experimental values when available, and at par with the most sophisticated calculations in the molecular framework, despite the extreme compactness of the BOVB wave functions, made of no more than 5-9 valence bond structures in all cases. The features that allow the combination of compactness and accuracy in challenging cases are analyzed. For the "ionic" 11B2 states, which are the site of important charge fluctuations, it is because of the built-in dynamic correlation inherent to the BOVB method. For the 21A1 ones, this is the fact that these states have the degree of freedom of having different orbitals than the ground states, even though they are of like symmetry and calculated simultaneously using the newly implemented state-average BOVB algorithm. Finally, the description of the excited states in terms of Lewis structures is insightful, rationalizing the fast ring closure for the 21A1 state of ozone and predicting some diradical character in the so-called "ionic" 11B2 states.
Collapse
Affiliation(s)
- Benoît Braïda
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR7616 CNRS, Paris 75252 France
| | - Zhenhua Chen
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and the State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and the State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Philippe C Hiberty
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| |
Collapse
|
7
|
Estep ML, Moore KB, Schaefer HF. Assessing the Viability of the Methylsulfinyl Radical‐Ozone Reaction. Chemphyschem 2020; 21:1289-1294. [DOI: 10.1002/cphc.202000188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/21/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Marissa L. Estep
- Center for Computational Quantum Chemistry University of Georgia Athens GA 30602 USA
- Department of Applied Liberal Arts Patrick Henry College Purcellville VA 20132 USA
| | - Kevin B. Moore
- Center for Computational Quantum Chemistry University of Georgia Athens GA 30602 USA
| | - H. F. Schaefer
- Center for Computational Quantum Chemistry University of Georgia Athens GA 30602 USA
| |
Collapse
|
8
|
Reuter L, Lüchow A. On the connection between probability density analysis, QTAIM, and VB theory. Phys Chem Chem Phys 2020; 22:25892-25903. [PMID: 33159782 DOI: 10.1039/d0cp02209h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Classification of bonds is essential for understanding and predicting the reactivity of chemical compounds. This classification mainly manifests in the bond order and the contribution of different Lewis resonance structures. Here, we outline a first principles approach to obtain these orders and contributions for arbitrary wave functions in a manner that is both, related to the quantum theory of atoms in molecules and consistent with valence bond theory insight: the Lewis structures arise naturally as attractors of the all-electron probability density |Ψ|2. Doing so, we introduce a valence bond weight definition that does not collapse in the basis set limit.
Collapse
Affiliation(s)
- Leonard Reuter
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| | | |
Collapse
|
9
|
Stuyver T, Chen B, Zeng T, Geerlings P, De Proft F, Hoffmann R. Do Diradicals Behave Like Radicals? Chem Rev 2019; 119:11291-11351. [DOI: 10.1021/acs.chemrev.9b00260] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Thijs Stuyver
- Algemene Chemie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Bo Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca New York 14853, United States
| | - Tao Zeng
- Department of Chemistry, York University, Toronto, Ontario M3J1P3, Canada
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Paul Geerlings
- Algemene Chemie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Frank De Proft
- Algemene Chemie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Roald Hoffmann
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca New York 14853, United States
| |
Collapse
|
10
|
Diradical-singlet character of 1,3-dipoles affects reactivity of 1,3-dipolar cycloaddition reactions and intramolecular cyclization. J Mol Model 2019; 25:306. [DOI: 10.1007/s00894-019-4162-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/14/2019] [Indexed: 11/26/2022]
|
11
|
Stuyver T, Danovich D, Shaik S. Captodative Substitution Enhances the Diradical Character of Compounds, Reduces Aromaticity, and Controls Single-Molecule Conductivity Patterns: A Valence Bond Study. J Phys Chem A 2019; 123:7133-7141. [PMID: 31318209 DOI: 10.1021/acs.jpca.9b06096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present contribution uses a valence bond (VB) perspective to consider the captodative substitution strategy, a method to enhance the diradical character of (potentially aromatic) compounds. We confirm the qualitative reasoning that has generally been used to rationalize the diradical-character-enhancing effect of captodative substitution: this type of substitution scheme disproportionally stabilizes specific Dewar/diradical(oid) VB structures, thus increasing their weight in the full ground-state wave function. Furthermore, we assess the effect of captodative substitution on the aromaticity of the considered compound. We observe a clear trade-off between diradical character and aromaticity for our model systems: as one of these properties increases, the other decreases. This finding is especially significant within the field of single-molecule electronics because it enables unification of the previously observed inverse proportionality between the aromaticity of a compound and the magnitude of conductance through that molecule, with the observed proportionality between diradical character and the magnitude of conductance associated with a compound. To some extent, both properties, i.e., aromaticity and diradical character, appear to be the flip-sides of the same coin.
Collapse
Affiliation(s)
- Thijs Stuyver
- Department of Organic Chemistry and the Lise Meitner-Minerva Centre for Computational Quantum Chemistry , The Hebrew University , Jerusalem 91904 , Israel.,Algemene Chemie , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium
| | - David Danovich
- Department of Organic Chemistry and the Lise Meitner-Minerva Centre for Computational Quantum Chemistry , The Hebrew University , Jerusalem 91904 , Israel
| | - Sason Shaik
- Department of Organic Chemistry and the Lise Meitner-Minerva Centre for Computational Quantum Chemistry , The Hebrew University , Jerusalem 91904 , Israel
| |
Collapse
|
12
|
Alexander Voigt B, Steenbock T, Herrmann C. Structural diradical character. J Comput Chem 2019; 40:854-865. [PMID: 30592065 DOI: 10.1002/jcc.25768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/02/2018] [Accepted: 11/27/2018] [Indexed: 01/20/2023]
Abstract
A reliable first-principles description of singlet diradical character is essential for predicting nonlinear optical and magnetic properties of molecules. As diradical and closed-shell electronic structures differ in their distribution of single, double, triple, and aromatic bonds, modeling electronic diradical character requires accurate bond-length patterns, in addition to accurate absolute bond lengths. We therefore introduce structural diradical character, which we suggest as an additional measure for comparing first-principles calculations with experimental data. We employ this measure to identify suitable exchange-correlation functionals for predicting the bond length patterns and electronic diradical character of a biscobaltocene with the potential for photoswitchable nonlinear optical activity. Out of four popular approximate exchange-correlation functionals with different exact-exchange admixtures (BP86, TPSS, B3LYP, TPSSh), the two hybrid functionals TPSSh and B3LYP perform best for diradical bond length patterns, with TPSSh being best for the organometallic validation systems and B3LYP for the organic ones (for which the D3 dispersion correction was included). Still, none of the functionals is suitable for correctly describing relative bond lengths across the range of molecules studied, so that none can be recommended for predictive studies of (potential) diradicals without reservation. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bodo Alexander Voigt
- Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, University of Hamburg, 20146, Hamburg, Germany
| | - Torben Steenbock
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Carmen Herrmann
- Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, University of Hamburg, 20146, Hamburg, Germany
| |
Collapse
|
13
|
Trogolo D, Arey JS, Tentscher PR. Gas-Phase Ozone Reactions with a Structurally Diverse Set of Molecules: Barrier Heights and Reaction Energies Evaluated by Coupled Cluster and Density Functional Theory Calculations. J Phys Chem A 2019; 123:517-536. [DOI: 10.1021/acs.jpca.8b10323] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniela Trogolo
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - J. Samuel Arey
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Peter R. Tentscher
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
14
|
Valjus J, Tuononen HM, Laitinen RS, Chivers T. Computational investigations of 18-electron triatomic sulfur–nitrogen anions. CAN J CHEM 2018. [DOI: 10.1139/cjc-2018-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MRCI-SD/def2-QZVP and PBE0/def2-QZVP calculations have been employed for the analysis of geometries, stabilities, and bonding of isomers of the 18-electron anions N2S2−, NS2−, and NSO−. Isomers of the isoelectronic neutral molecules SO2, S2O, S3, and O3 are included for comparison. The sulfur-centered acyclic NSN2−, NSS−, and NSO− anions are the most stable isomers of their respective molecular compositions. However, the nitrogen-centered isomers SNS− and SNO− lie close enough in energy to their more stable counterparts to allow their occurrence. The experimental structural information, where available, is in good agreement with the optimized bond parameters. The bonding in all investigated species is qualitatively similar, though electron density analyses reveal important quantitative differences that arise from bond polarization. Most of the investigated systems can be described with a single configuration wave function, the two notable exceptions being isomers SSS and OOO that show some diradical character. The computed MRCI-SD/def2-QZVP absorption maxima for SNS− and NSS− are 342 and 327 nm, respectively. The corresponding PBE0/def2-QZVP values in acetonitrile are 353 and 333 nm. These data support the proposed initial formation of SNS− from electrochemical or chemical reduction of SSNS− based on experimental UV–vis spectra. The interconversion of SNS− and NSS− is calculated to be facile and reversible, leading to an equilibrium mixture that also includes the remarkably stable dianion SNSNSS2−. Thus, salts of either SNS− or NSS− with bulky organic cations represent feasible synthetic targets.
Collapse
Affiliation(s)
- Juuso Valjus
- Department of Chemistry, Nanoscience Centre, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Heikki M. Tuononen
- Department of Chemistry, Nanoscience Centre, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Risto S. Laitinen
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, P.O. Box 3000, FI-90014 University of Oulu, Finland
| | - Tristram Chivers
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
15
|
Xiao P, Yang JJ, Fang WH, Cui G. QM/MM studies on ozonolysis of α-humulene and Criegee reactions with acids and water at air–water/acetonitrile interfaces. Phys Chem Chem Phys 2018; 20:16138-16150. [DOI: 10.1039/c8cp01750f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
QM/MM electronic structure calculations reveal important mechanistic insights on the ozonolysis of α-humulene and Criegee reactions with acids and water at air–water/acetonitrile interfaces.
Collapse
Affiliation(s)
- Pin Xiao
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Jia-Jia Yang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| |
Collapse
|
16
|
Turek J, Braïda B, De Proft F. Bonding in Heavier Group 14 Zero-Valent Complexes-A Combined Maximum Probability Domain and Valence Bond Theory Approach. Chemistry 2017; 23:14604-14613. [DOI: 10.1002/chem.201703053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jan Turek
- Eenheid Algemene Chemie (ALGC), Member of the QCMM VUB-UGent Alliance Research Group; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium
| | - Benoît Braïda
- Sorbonne Universités; UPMC Univ Paris 06; UMR 7616, LCT F-75005; 4 place Jussieu 75252 Paris France
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Member of the QCMM VUB-UGent Alliance Research Group; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium
| |
Collapse
|