1
|
Nguyen Thi Minh N, König C. The role of microenvironments on computed vibrationally-resolved emission spectra: The case of oxazines. J Comput Chem 2024; 45:2232-2241. [PMID: 38831461 DOI: 10.1002/jcc.27385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024]
Abstract
Oxazine dyes act as reporters of their near environment by the response of their fluorescence spectra. At the same time, their fluorescence spectra exhibit a pronounced vibrational progression. In this work, we computationally investigate the impact of near-environment models consisting of aggregated water as well as betaine molecules on the vibrational profile of fluorescence spectra of different oxazine derivatives. For aggregated betaine and a water molecule located above the plane of the dyes, we observe a distinct modification of the vibrational profile, which is more pronounced than the effect of a continuum description of a solvent environment. Our analysis shows that this effect cannot be explained by a pure change in the electronic structure, but that also vibrational degrees of freedom of the environment can be decisive for the vibrational profile and should, hence, not generally be neglected.
Collapse
Affiliation(s)
- Nghia Nguyen Thi Minh
- Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, Hannover, Germany
| | - Carolin König
- Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
2
|
Petrusevich EF, Reis H, Ośmiałowski B, Jacquemin D, Luis JM, Zaleśny R. One- and two-photon absorption spectra of organoboron complexes: vibronic and environmental effects. Phys Chem Chem Phys 2024; 26:13239-13250. [PMID: 38634828 DOI: 10.1039/d4cp01089b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
We synthesized a series of four parent aza-β-ketoiminate organoboron complexes and performed spectroscopic studies using both experimental and computational techniques. We studied how benzannulation influences the vibronic structure of the UV/Vis absorption bands with a focus on the bright lowest-energy π → π* electronic excitation. Theoretical simulations, accounting for inhomogeneous broadening effects using different embedding schemes, allowed gaining in-depth insights into the observed differences in band shapes induced by structural modifications. We observed huge variations in the distributions of vibronic transitions depending on the position of benzannulation. By and large, the harmonic approximation combined with the adiabatic hessian model delivers qualitatively correct band shapes for the one-photon absorption spectra, except in one case. We also assessed the importance of non-Condon effects (accounted for by the linear term in Herzberg-Teller expansion of the dipole moment) for S0 → S1 band shapes. It turned out that non-Condon contributions have no effect on the band shape in one-photon absorption spectra. In contrast, these effects significantly change the Franck-Condon band shapes of the two-photon absorption spectra. For one of the studied organoboron complexes we also performed a preliminary exploration of mechanical anharmonicity, resulting in an increase of the intensity of the 0-0 transition, which improves the agreement with the experimental data compared to the harmonic model.
Collapse
Affiliation(s)
- Elizaveta F Petrusevich
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003, Girona, Catalonia, Spain.
| | - Heribert Reis
- Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), Vassileos Constantinou Ave 48th, 116 35 Athens, Greece
| | - Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Josep M Luis
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003, Girona, Catalonia, Spain.
| | - Robert Zaleśny
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
3
|
Sitkiewicz SP, Matito E, Luis JM, Zaleśny R. Pitfall in simulations of vibronic TD-DFT spectra: diagnosis and assessment. Phys Chem Chem Phys 2023; 25:30193-30197. [PMID: 37905423 DOI: 10.1039/d3cp04276f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In this Communication, we study the effect of spurious oscillations in the profiles of energy derivatives with respect to nuclear coordinates calculated with density functional approximations (DFAs) for formaldehyde, pyridine, and furan in their ground and electronic excited states. These spurious oscillations, which can only be removed using extensive integration grids that increase enormously the CPU cost of DFA calculations, are significant in the case of third- and fourth-order energy derivatives of the ground and excited states computed by M06-2X and ωB97X functionals. The errors in question propagate to anharmonic vibronic spectra computed under the Franck-Condon approximation, i.e., positions and intensities of vibronic transitions are affected to a large extent (shifts as significant as hundreds of cm-1 were observed). On the other hand, the LC-BLYP and CAM-B3LYP functionals show a much less pronounced effect due to spurious oscillations. Based on the results presented herein, we recommend either LC-BLYP or CAM-B3LYP with integration grids (250, 974) (or larger) for numerically stable simulations of vibronic spectra including anharmonic effects.
Collapse
Affiliation(s)
- Sebastian P Sitkiewicz
- Wrocław Centre for Networking and Supercomputing, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław PL-50370, Poland.
| | - Eduard Matito
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, Donostia 20018, Euskadi, Spain
- Ikerbasque Foundation for Science, Bilbao 48011, Euskadi, Spain
| | - Josep M Luis
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003, Girona, Catalonia, Spain.
| | - Robert Zaleśny
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland.
| |
Collapse
|
4
|
Petrusevich EF, Bousquet MHE, Ośmiałowski B, Jacquemin D, Luis JM, Zaleśny R. Cost-Effective Simulations of Vibrationally-Resolved Absorption Spectra of Fluorophores with Machine-Learning-Based Inhomogeneous Broadening. J Chem Theory Comput 2023; 19:2304-2315. [PMID: 37096370 PMCID: PMC10134414 DOI: 10.1021/acs.jctc.2c01285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The results of electronic and vibrational structure simulations are an invaluable support for interpreting experimental absorption/emission spectra, which stimulates the development of reliable and cost-effective computational protocols. In this work, we contribute to these efforts and propose an efficient first-principle protocol for simulating vibrationally-resolved absorption spectra, including nonempirical estimations of the inhomogeneous broadening. To this end, we analyze three key aspects: (i) a metric-based selection of density functional approximation (DFA) so to benefit from the computational efficiency of time-dependent density function theory (TD-DFT) while safeguarding the accuracy of the vibrationally-resolved spectra, (ii) an assessment of two vibrational structure schemes (vertical gradient and adiabatic Hessian) to compute the Franck-Condon factors, and (iii) the use of machine learning to speed up nonempirical estimations of the inhomogeneous broadening. In more detail, we predict the absorption band shapes for a set of 20 medium-sized fluorescent dyes, focusing on the bright ππ★ S0 → S1 transition and using experimental results as references. We demonstrate that, for the studied 20-dye set which includes structures with large structural variability, the preselection of DFAs based on an easily accessible metric ensures accurate band shapes with respect to the reference approach and that range-separated functionals show the best performance when combined with the vertical gradient model. As far as band widths are concerned, we propose a new machine-learning-based approach for determining the inhomogeneous broadening induced by the solvent microenvironment. This approach is shown to be very robust offering inhomogeneous broadenings with errors as small as 2 cm-1 with respect to genuine electronic-structure calculations, with a total CPU time reduced by 98%.
Collapse
Affiliation(s)
- Elizaveta F. Petrusevich
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | | | - Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina Street 7, PL-87-100 Toruń, Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Josep M. Luis
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| |
Collapse
|
5
|
Nguyen VT, Huynh TKC, Ho GTT, Nguyen THA, Le Anh Nguyen T, Dao DQ, Mai TVT, Huynh LK, Hoang TKD. Metal complexes of benzimidazole-derived as potential anti-cancer agents: synthesis, characterization, combined experimental and computational studies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220659. [PMID: 36147940 PMCID: PMC9490329 DOI: 10.1098/rsos.220659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/26/2022] [Indexed: 05/10/2023]
Abstract
In this study, a series of 14 Cu (II), Zn (II), Ni (II) and Ag (I) complexes containing bis-benzimidazole derivatives were successfully designed and synthesized from 2-(1H-benzimidazole-2-yl)-phenol derivatives and corresponding metal salt solutions. The compound structures were identified by FT-IR, 1H-NMR, powder X-ray diffraction and ESI-MS analyses, and the presence of the metal in the complexes was confirmed by ultraviolet-visible spectroscopy and ICP optical emission spectrometry. Electronic structure calculations were also carried out to describe the detailed structures in addition to the electronic absorption spectra of the ligands. The cytotoxic activity of the complexes was evaluated against three human cancer cell lines: lung (A549), breast (MDA-MB-231) and prostate (PC3) cancer cells. All complexes inhibited anti-proliferative cancer cells better than free ligands, especially Zn (II) and Ag (I) complexes, which are most sensitive to MDA-MB-231 cells. In addition, showing the growth inhibition of three cancer cell lines with IC50 < 10.4 µM, complexes C1 , C3 and C14 could be considered potential multi-targeted anti-cancer agents.
Collapse
Affiliation(s)
- Van-Thanh Nguyen
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Thi-Kim-Chi Huynh
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology – VAST, 18 Hoang Quoc Viet Street, Nghia Do Ward, Cau Giay District, Hanoi 100000, Vietnam
| | - Gia-Thien-Thanh Ho
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City 700000, Vietnam
| | - Thi-Hong-An Nguyen
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 50000, Vietnam
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 50000, Vietnam
| | - Tam V. T. Mai
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- University of Science, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Lam K. Huynh
- University of Science, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
- International University, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thi-Kim-Dung Hoang
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology – VAST, 18 Hoang Quoc Viet Street, Nghia Do Ward, Cau Giay District, Hanoi 100000, Vietnam
| |
Collapse
|
6
|
Nguyen VT, Huynh TKC, Ho GTT, Nguyen THA, Le Anh Nguyen T, Dao DQ, Mai TVT, Huynh LK, Hoang TKD. Metal complexes of benzimidazole-derived as potential anti-cancer agents: synthesis, characterization, combined experimental and computational studies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220659. [PMID: 36147940 DOI: 10.6084/m9.figshare.c.6197452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/26/2022] [Indexed: 05/25/2023]
Abstract
In this study, a series of 14 Cu (II), Zn (II), Ni (II) and Ag (I) complexes containing bis-benzimidazole derivatives were successfully designed and synthesized from 2-(1H-benzimidazole-2-yl)-phenol derivatives and corresponding metal salt solutions. The compound structures were identified by FT-IR, 1H-NMR, powder X-ray diffraction and ESI-MS analyses, and the presence of the metal in the complexes was confirmed by ultraviolet-visible spectroscopy and ICP optical emission spectrometry. Electronic structure calculations were also carried out to describe the detailed structures in addition to the electronic absorption spectra of the ligands. The cytotoxic activity of the complexes was evaluated against three human cancer cell lines: lung (A549), breast (MDA-MB-231) and prostate (PC3) cancer cells. All complexes inhibited anti-proliferative cancer cells better than free ligands, especially Zn (II) and Ag (I) complexes, which are most sensitive to MDA-MB-231 cells. In addition, showing the growth inhibition of three cancer cell lines with IC50 < 10.4 µM, complexes C1 , C3 and C14 could be considered potential multi-targeted anti-cancer agents.
Collapse
Affiliation(s)
- Van-Thanh Nguyen
- Institute of Chemical Technology - VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Thi-Kim-Chi Huynh
- Institute of Chemical Technology - VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology - VAST, 18 Hoang Quoc Viet Street, Nghia Do Ward, Cau Giay District, Hanoi 100000, Vietnam
| | - Gia-Thien-Thanh Ho
- Institute of Chemical Technology - VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City 700000, Vietnam
| | - Thi-Hong-An Nguyen
- Institute of Chemical Technology - VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 50000, Vietnam
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 50000, Vietnam
| | - Tam V T Mai
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- University of Science, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Lam K Huynh
- University of Science, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
- International University, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thi-Kim-Dung Hoang
- Institute of Chemical Technology - VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology - VAST, 18 Hoang Quoc Viet Street, Nghia Do Ward, Cau Giay District, Hanoi 100000, Vietnam
| |
Collapse
|
7
|
Lin KH, Corminboeuf C. FB-REDA: fragment-based decomposition analysis of the reorganization energy for organic semiconductors. Phys Chem Chem Phys 2020; 22:11881-11890. [PMID: 32436535 DOI: 10.1039/d0cp01722a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a fragment-based decomposition analysis tool (FB-REDA) for the reorganisation energy (λ). This tool delivers insights on how to rationally design low-λ organic semiconductors. The contribution of the fragment vibrational modes to the reorganization energy is exploited to identity the individual contributions of the molecular building blocks. The usefulness of the approach is demonstrated by offering three strategies to reduce the reorganization energy of a promising dopant-free hole transport material (TPA1PM, λ = 213 meV). A reduction of nearly 50% (TPD3PM, λ = 108 meV) is achieved. The proposed design principles are likely transferable to other organic semiconductors exploiting common molecular building blocks.
Collapse
Affiliation(s)
- Kun-Han Lin
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fedérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fedérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
8
|
Saucedo LI, Roacho RI, Tu P, Metta‐Magaña AJ, Belmonte‐Vázquez JL, Peña‐Cabrera E, Pannell KH. 8‐Amido‐BODIPYs: Synthesis, Structure and Optical Properties Illustrating Amine to Amide, Blue to Green Emission. ChemistrySelect 2020. [DOI: 10.1002/slct.201904583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laura I. Saucedo
- Department of Chemistry University of Texas at El Paso El Paso, TX. 79968-0513 USA
| | - Robinson I. Roacho
- Department of Chemistry University of Texas at El Paso El Paso, TX. 79968-0513 USA
| | - Peiyu Tu
- Department of Chemistry University of Texas at El Paso El Paso, TX. 79968-0513 USA
| | | | - José L. Belmonte‐Vázquez
- Departamento de Química Universidad de Guanajuato. Col. Noria Alta S/N. Guanajuato, Gto. 36050 MX
| | - Eduardo Peña‐Cabrera
- Departamento de Química Universidad de Guanajuato. Col. Noria Alta S/N. Guanajuato, Gto. 36050 MX
| | - Keith H. Pannell
- Department of Chemistry University of Texas at El Paso El Paso, TX. 79968-0513 USA
| |
Collapse
|
9
|
Effects of gold nanoparticles on photophysical behaviour of chlorophyll and pheophytin. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Abstract
A review of intramolecular hydrogen bonding in ortho-hydroxyaryl Schiff bases, ortho-hydroxyaryl Mannich bases, dipyrrins, ortho-hydroxyaryl ketones, ortho-hydroxyaryl amides, and 4-Bora-3a,4a-diaza-s-indacene (BODIPY) dyes with tautomeric sensors as substituents is presented in this paper. Ortho-hydroxy Schiff and Mannich base derivatives are known as model molecules for analysing the properties of intramolecular hydrogen bonding. The compounds under discussion possess physicochemical features modulated by the presence of strong intramolecular hydrogen bonds. The equilibrium between intra- and inter-molecular hydrogen bonds in BODIPY is discussed. Therefore, the summary can serve as a knowledge compendium of the influence of the hydrogen bond on the molecular properties of aromatic compounds.
Collapse
|
11
|
Suellen C, Freitas RG, Loos PF, Jacquemin D. Cross-Comparisons between Experiment, TD-DFT, CC, and ADC for Transition Energies. J Chem Theory Comput 2019; 15:4581-4590. [DOI: 10.1021/acs.jctc.9b00446] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Cinthia Suellen
- Departamento de Quimica, Laboratorio Computacional de Materiais, Universidade Federal de Mato Grosso, Cuiaba, Mato Grosso 78060, Brazil
| | - Renato Garcia Freitas
- Departamento de Quimica, Laboratorio Computacional de Materiais, Universidade Federal de Mato Grosso, Cuiaba, Mato Grosso 78060, Brazil
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 31062 Cedex 9 Toulouse, France
| | - Denis Jacquemin
- Laboratoire CEISAM—UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Cedex 3 Nantes, France
| |
Collapse
|
12
|
Gelfand N, Freidzon A, Vovna V. Theoretical insights into UV-Vis absorption spectra of difluoroboron β-diketonates with an extended π system: An analysis based on DFT and TD-DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:161-172. [PMID: 30897377 DOI: 10.1016/j.saa.2019.02.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
The UV-Vis absorption spectra of difluoroboron β-diketonates with aromatic substituents at the β-carbon are studied thoroughly using DFT and TD-DFT with the CAM-B3LYP functional. The complicated experimental spectra of these dyes can be correctly interpreted by considering their structural features. A closer look at the calculated data shows that the conformational flexibility of these compounds markedly influences their spectral shape. For the complexes with an extended π system, several conformers with significantly different absorption spectra are present in the equilibrium mixture in solution. Introducing a donor group alters the electronic structure of the complexes, so the charge distribution asymmetry in the molecules increases and the nature of the electronic transitions changes. Thus, both types of substituents, aromatic and donor ones, affect the spectral shape. Understanding their roles may help one to explain the absorption spectra of these and similar compounds and predict their response to analytes and other factors.
Collapse
Affiliation(s)
- Natalia Gelfand
- School of Natural Sciences, Far Eastern Federal University, ul. Sukhanova 8, Vladivostok 690091, Russia.
| | - Alexandra Freidzon
- Photochemistry Center of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, ul. Novatorov 7a, Moscow 119421, Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye shosse 31, Moscow 115409, Russia
| | - Vitaliy Vovna
- School of Natural Sciences, Far Eastern Federal University, ul. Sukhanova 8, Vladivostok 690091, Russia
| |
Collapse
|
13
|
Ghosh S, Verma P, Cramer CJ, Gagliardi L, Truhlar DG. Combining Wave Function Methods with Density Functional Theory for Excited States. Chem Rev 2018; 118:7249-7292. [PMID: 30044618 DOI: 10.1021/acs.chemrev.8b00193] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We review state-of-the-art electronic structure methods based both on wave function theory (WFT) and density functional theory (DFT). Strengths and limitations of both the wave function and density functional based approaches are discussed, and modern attempts to combine these two methods are presented. The challenges in modeling excited-state chemistry using both single-reference and multireference methods are described. Topics covered include background, combining density functional theory with single-configuration wave function theory, generalized Kohn-Sham (KS) theory, global hybrids, range-separated hybrids, local hybrids, using KS orbitals in many-body theory (including calculations of the self-energy and the GW approximation), Bethe-Salpeter equation, algorithms to accelerate GW calculations, combining DFT with multiconfigurational WFT, orbital-dependent correlation functionals based on multiconfigurational WFT, building multiconfigurational wave functions from KS configurations, adding correlation functionals to multiconfiguration self-consistent-field (MCSCF) energies, combining DFT with configuration-interaction singles by means of time-dependent DFT, using range separation to combine DFT with MCSCF, embedding multiconfigurational WFT in DFT, and multiconfiguration pair-density functional theory.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Pragya Verma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| |
Collapse
|
14
|
Zuehlsdorff TJ, Isborn CM. Combining the ensemble and Franck-Condon approaches for calculating spectral shapes of molecules in solution. J Chem Phys 2018; 148:024110. [PMID: 29331131 DOI: 10.1063/1.5006043] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The correct treatment of vibronic effects is vital for the modeling of absorption spectra of many solvated dyes. Vibronic spectra for small dyes in solution can be easily computed within the Franck-Condon approximation using an implicit solvent model. However, implicit solvent models neglect specific solute-solvent interactions on the electronic excited state. On the other hand, a straightforward way to account for solute-solvent interactions and temperature-dependent broadening is by computing vertical excitation energies obtained from an ensemble of solute-solvent conformations. Ensemble approaches usually do not account for vibronic transitions and thus often produce spectral shapes in poor agreement with experiment. We address these shortcomings by combining zero-temperature vibronic fine structure with vertical excitations computed for a room-temperature ensemble of solute-solvent configurations. In this combined approach, all temperature-dependent broadening is treated classically through the sampling of configurations and quantum mechanical vibronic contributions are included as a zero-temperature correction to each vertical transition. In our calculation of the vertical excitations, significant regions of the solvent environment are treated fully quantum mechanically to account for solute-solvent polarization and charge-transfer. For the Franck-Condon calculations, a small amount of frozen explicit solvent is considered in order to capture solvent effects on the vibronic shape function. We test the proposed method by comparing calculated and experimental absorption spectra of Nile red and the green fluorescent protein chromophore in polar and non-polar solvents. For systems with strong solute-solvent interactions, the combined approach yields significant improvements over the ensemble approach. For systems with weak to moderate solute-solvent interactions, both the high-energy vibronic tail and the width of the spectra are in excellent agreement with experiments.
Collapse
Affiliation(s)
- T J Zuehlsdorff
- School of Natural Sciences, University of California Merced, N. Lake Road, Merced, California 95344, USA
| | - C M Isborn
- School of Natural Sciences, University of California Merced, N. Lake Road, Merced, California 95344, USA
| |
Collapse
|
15
|
In-silico analysis of substituent effect on the static first order hyperpolarizability of electron donating mono substituted Chalcone derivatives. J Mol Model 2018; 24:126. [DOI: 10.1007/s00894-018-3650-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/06/2018] [Indexed: 11/26/2022]
|
16
|
Benković T, Kenđel A, Parlov-Vuković J, Kontrec D, Chiş V, Miljanić S, Galić N. Multiple dynamics of aroylhydrazone induced by mutual effect of solvent and light - spectroscopic and computational study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Bednarska J, Zaleśny R, Tian G, Murugan NA, Ågren H, Bartkowiak W. Nonempirical Simulations of Inhomogeneous Broadening of Electronic Transitions in Solution: Predicting Band Shapes in One- and Two-Photon Absorption Spectra of Chalcones. Molecules 2017; 22:E1643. [PMID: 28973973 PMCID: PMC6151831 DOI: 10.3390/molecules22101643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 11/23/2022] Open
Abstract
We have examined several approaches relying on the Polarizable Embedding (PE) scheme to predict optical band shapes for two chalcone molecules in methanol solution. The PE-TDDFT and PERI-CC2 methods were combined with molecular dynamics simulations, where the solute geometry was kept either as rigid, flexible or partly-flexible (restrained) body. The first approach, termed RBMD-PE-TDDFT, was employed to estimate the inhomogeneous broadening for subsequent convolution with the vibrationally-resolved spectra of the molecule in solution determined quantum-mechanically (QM). As demonstrated, the RBMD-PE-TDDFT/QM-PCM approach delivers accurate band widths, also reproducing their correct asymmetric shapes. Further refinement can be obtained by the estimation of the inhomogeneous broadening using the RBMD-PERI-CC2 method. On the other hand, the remaining two approaches (FBMD-PE-TDDFT and ResBMD-PE-TDDFT), which lack quantum-mechanical treatment of molecular vibrations, lead to underestimated band widths. In this study, we also proposed a simple strategy regarding the rapid selection of the exchange-correlation functional for the simulations of vibrationally-resolved one- and two-photon absorption spectra based on two easy-to-compute metrics.
Collapse
Affiliation(s)
- Joanna Bednarska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland.
| | - Robert Zaleśny
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland.
| | - Guangjun Tian
- Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Natarajan Arul Murugan
- Division of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden.
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden.
| | - Wojciech Bartkowiak
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland.
| |
Collapse
|