1
|
Alvarado-Jiménez D, Pietropolli Charmet A, Stoppa P, Tasinato N. The Radiative Efficiency and Global Warming Potential of HCFC-132b. Chemphyschem 2024:e202400632. [PMID: 39365614 DOI: 10.1002/cphc.202400632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
Hydro-chloro-fluoro-carbons (HCFCs) are potent greenhouse gases which strongly absorb the infrared (IR) radiation within the 8-12 μm atmospheric windows. Despite international policies schedule their phasing out by 2020 for developed countries and 2030 globally, HCFC-132b (CH2ClCClF2) has been recently detected with significant atmospheric concentration. In this scenario, detailed climate metrics are of paramount importance for understanding the capacity of anthropogenic pollutants to contribute to global warming. In this work, the radiative efficiency (RE) of HCFC-132b is experimentally measured for the first time and used to determine its global warming potential (GWP) over 20-, 100- and 500-year time horizon. Vibrational- and rotational-spectroscopic properties of this molecule are first characterized by exploiting a synergism between Fourier-transform IR (FTIR) spectroscopy experiments and quantum chemical calculations. Equilibrium geometry, rotational parameters and vibrational properties predicted theoretically beyond the double-harmonic approximation are employed to assist the vibrational assignment of the experimental trace. Finally, FTIR spectra measured over a range of pressures are used to determine the HCFC-132b absorption cross section spectrum from 150 to 3000 cm-1, from which istantaneous and effective REs are derived and, in turn, used for GWP evaluation.
Collapse
Affiliation(s)
| | | | - Paolo Stoppa
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia
| | | |
Collapse
|
2
|
Buschmann P, Lengsfeld KG, Djahandideh J, Grabow JU. From rotational resolved spectra to an extended increment system of planar moments allowing ad-hoc conformational identification – Exemplification by the broadband microwave spectrum of α-hydroxyisobutyric acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Barone V, Puzzarini C, Mancini G. Integration of theory, simulation, artificial intelligence and virtual reality: a four-pillar approach for reconciling accuracy and interpretability in computational spectroscopy. Phys Chem Chem Phys 2021; 23:17079-17096. [PMID: 34346437 DOI: 10.1039/d1cp02507d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The established pillars of computational spectroscopy are theory and computer based simulations. Recently, artificial intelligence and virtual reality are becoming the third and fourth pillars of an integrated strategy for the investigation of complex phenomena. The main goal of the present contribution is the description of some new perspectives for computational spectroscopy, in the framework of a strategy in which computational methodologies at the state of the art, high-performance computing, artificial intelligence and virtual reality tools are integrated with the aim of improving research throughput and achieving goals otherwise not possible. Some of the key tools (e.g., continuous molecular perception model and virtual multifrequency spectrometer) and theoretical developments (e.g., non-periodic boundaries, joint variational-perturbative models) are shortly sketched and their application illustrated by means of representative case studies taken from recent work by the authors. Some of the results presented are already well beyond the state of the art in the field of computational spectroscopy, thereby also providing a proof of concept for other research fields.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | | | | |
Collapse
|
4
|
Gawrilow M, Suhm MA. Quantifying Conformational Isomerism in Chain Molecules by Linear Raman Spectroscopy: The Case of Methyl Esters. Molecules 2021; 26:molecules26154523. [PMID: 34361676 PMCID: PMC8348275 DOI: 10.3390/molecules26154523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 02/01/2023] Open
Abstract
The conformational preferences of the ester group have the potential to facilitate the large amplitude folding of long alkyl chains in the gas phase. They are monitored by Raman spectroscopy in supersonic jet expansions for the model system methyl butanoate, after establishing a quantitative relationship with quantum-chemical predictions for methyl methanoate. This requires a careful analysis of experimental details, and a simulation of the rovibrational contours for near-symmetric top molecules. The technique is shown to be complementary to microwave spectroscopy in quantifying coexisting conformations. It confirms that a C-O-C(=O)-C-C chain segment can be collapsed into a single all-trans conformation by collisional cooling, whereas alkyl chain isomerism beyond this five-membered chain largely survives the jet expansion. This sets the stage for the investigation of linear alkyl alkanoates in terms of dispersion-induced stretched-chain to hairpin transitions by Raman spectroscopy.
Collapse
|
5
|
Léon I, Tasinato N, Spada L, Alonso ER, Mata S, Balbi A, Puzzarini C, Alonso JL, Barone V. Looking for the Elusive Imine Tautomer of Creatinine: Different States of Aggregation Studied by Quantum Chemistry and Molecular Spectroscopy. Chempluschem 2021; 86:1374-1386. [PMID: 34255935 PMCID: PMC8519097 DOI: 10.1002/cplu.202100224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/22/2021] [Indexed: 01/06/2023]
Abstract
New spectroscopic experiments and state-of-the-art quantum-chemical computations of creatinine in different aggregation states unequivocally unveiled a significant tuning of tautomeric equilibrium by the environment: from the exclusive presence of the amine tautomer in the solid state and aqueous solution to a mixture of amine and imine tautomers in the gas phase. Quantum-chemical calculations predict the amine species as the most stable tautomer by about 30 kJ mol-1 in condensed phases. On the contrary, moving to the isolated forms, both Z and E imine isomers become more stable by about 7 kJ mol-1 . Since the imine isomers and one amine tautomer are separated by significant energy barriers, all of them should be present in the gas phase. This prediction has indeed been confirmed by high-resolution rotational spectroscopy, which provides the first experimental characterization of the elusive imine tautomer. The interpretation of the complicated hyperfine structure of the rotational spectrum, originated by three 14 N nuclei, makes it possible to use the spectral signatures as a sort of fingerprint for each individual tautomer in the complex sample.
Collapse
Affiliation(s)
- Iker Léon
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia Parque Cientifico UVa, Universidad de Valladolid, 47011, Valladolid, Spain
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| | - Lorenzo Spada
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy.,Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum -, Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Elena R Alonso
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia Parque Cientifico UVa, Universidad de Valladolid, 47011, Valladolid, Spain
| | - Santiago Mata
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia Parque Cientifico UVa, Universidad de Valladolid, 47011, Valladolid, Spain
| | - Alice Balbi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| | - Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum -, Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Jose L Alonso
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia Parque Cientifico UVa, Universidad de Valladolid, 47011, Valladolid, Spain
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| |
Collapse
|
6
|
Barone V, Alessandrini S, Biczysko M, Cheeseman JR, Clary DC, McCoy AB, DiRisio RJ, Neese F, Melosso M, Puzzarini C. Computational molecular spectroscopy. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00034-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Barone V, Puzzarini C. Looking for the bricks of the life in the interstellar medium: The fascinating world of astrochemistry. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202024600021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The discovery in the interstellar medium of molecules showing a certain degree of complexity, and in particular those with a prebiotic character, has attracted great interest. A complex chemistry takes place in space, but the processes that lead to the production of molecular species are a matter of intense discussion, the knowledge still being at a rather primitive stage. Debate on the origins of interstellar molecules has been further stimulated by the identification of biomolecular building blocks, such as nucleobases and amino acids, in meteorites and comets. Since many of the molecules found in space play a role in the chemistry of life, the issue of their molecular genesis and evolution might be related to the profound question of the origin of life itself. Understanding the underlying chemical processes, including the production, reactions and destruction of compounds, requires the concomitant study of spectroscopy, gas-phase reactivity, and heterogeneous processes on dust-grains. The aim of this contribution is to provide a general view of a complex and multifaceted challenge, while focusing on the role played by molecular spectroscopy and quantum-chemical computations. In particular, the derivation of the molecular spectroscopic features and the investigation of gas-phase formation routes of prebiotic species in the interstellar medium are addressed from a computational point of view.
Collapse
|
8
|
Barone V, Ceselin G, Fusè M, Tasinato N. Accuracy Meets Interpretability for Computational Spectroscopy by Means of Hybrid and Double-Hybrid Functionals. Front Chem 2020; 8:584203. [PMID: 33195078 PMCID: PMC7645164 DOI: 10.3389/fchem.2020.584203] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
Accuracy and interpretability are often seen as the devil and holy grail in computational spectroscopy and their reconciliation remains a primary research goal. In the last few decades, density functional theory has revolutionized the situation, paving the way to reliable yet effective models for medium size molecules, which could also be profitably used by non-specialists. In this contribution we will compare the results of some widely used hybrid and double hybrid functionals with the aim of defining the most suitable recipe for all the spectroscopic parameters of interest in rotational and vibrational spectroscopy, going beyond the rigid rotor/harmonic oscillator model. We will show that last-generation hybrid and double hybrid functionals in conjunction with partially augmented double- and triple-zeta basis sets can offer, in the framework of second order vibrational perturbation theory, a general, robust, and user-friendly tool with unprecedented accuracy for medium-size semi-rigid molecules.
Collapse
Affiliation(s)
- Vincenzo Barone
- SMART Laboratory, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Giorgia Ceselin
- SMART Laboratory, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Marco Fusè
- SMART Laboratory, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Nicola Tasinato
- SMART Laboratory, Scuola Normale Superiore di Pisa, Pisa, Italy
| |
Collapse
|
9
|
Alessandrini S, Dell'Isola V, Spada L, Barone V, Puzzarini C. A computational journey in the CH 2O 2S land: an accurate rotational and ro-vibrational analysis of the sulfene molecule and the O,S- and O,O-monothiocarbonic acids. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1766707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- S. Alessandrini
- Scuola Normale Superiore, Pisa, Italy
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Bologna, Italy
| | - V. Dell'Isola
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Bologna, Italy
| | - L. Spada
- Scuola Normale Superiore, Pisa, Italy
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Bologna, Italy
| | - V. Barone
- Scuola Normale Superiore, Pisa, Italy
| | - C. Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Bologna, Italy
| |
Collapse
|
10
|
Cerqueira HBA, Santos JC, Fantuzzi F, Ribeiro FDA, Rocco MLM, Oliveira RR, Rocha AB. Structure, Stability, and Spectroscopic Properties of Small Acetonitrile Cation Clusters. J Phys Chem A 2020; 124:6845-6855. [PMID: 32702984 DOI: 10.1021/acs.jpca.0c03529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ionization and fragmentation pathways induced by ionizing agents are key to understanding the formation of complex molecules in astrophysical environments. Acetonitrile (CH3CN), the simplest organic nitrile, is an important molecule present in the interstellar medium. In this work, DFT and MP2 calculations were performed in order to obtain the low energy structures of the most relevant cations formed from electron-stimulated ion desorption of CH3CN ices. Selected reaction pathways and spectroscopic properties were also calculated. Our results indicate that the most stable acetonitrile cation structure is CH2CNH+ and that hydrogenation can occur successively without isomerization steps until its complete saturation. Moreover, the stability of distinct cluster families formed from the interaction of acetonitrile with small fragments, such as CHn+, C2Hn+, and CHnCNH+, is discussed in terms of their respective binding energies. Some of these molecular clusters are stabilized by hydrogen bonds, leading to species whose infrared features are characterized by a strong redshift of the N-H stretching mode. Finally, the rotational spectra of CH3CN and protonated acetonitrile, CH3CNH+, were simulated using distinct computational protocols based on DFT, MP2, and CCSD(T) considering centrifugal distortion, vibrational-rotational coupling, and vibrational anharmonicity corrections. By adopting an empirical scaling procedure for calculating spectroscopic parameters, we were able to estimate the rotational frequencies of CH3CNH+ with an expected average error below 1 MHz for J values up to 10.
Collapse
Affiliation(s)
- Henrique B A Cerqueira
- Instituto de Quı́mica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Julia C Santos
- Instituto de Quı́mica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Felipe Fantuzzi
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | | | - Maria Luiza M Rocco
- Instituto de Quı́mica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Ricardo R Oliveira
- Instituto de Quı́mica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Alexandre B Rocha
- Instituto de Quı́mica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| |
Collapse
|
11
|
Baiano C, Lupi J, Tasinato N, Puzzarini C, Barone V. The Role of State-of-the-Art Quantum-Chemical Calculations in Astrochemistry: Formation Route and Spectroscopy of Ethanimine as a Paradigmatic Case. Molecules 2020; 25:E2873. [PMID: 32580443 PMCID: PMC7357107 DOI: 10.3390/molecules25122873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
The gas-phase formation and spectroscopic characteristics of ethanimine have been re-investigated as a paradigmatic case illustrating the accuracy of state-of-the-art quantum-chemical (QC) methodologies in the field of astrochemistry. According to our computations, the reaction between the amidogen, NH, and ethyl, C2H5, radicals is very fast, close to the gas-kinetics limit. Although the main reaction channel under conditions typical of the interstellar medium leads to methanimine and the methyl radical, the predicted amount of the two E,Z stereoisomers of ethanimine is around 10%. State-of-the-art QC and kinetic models lead to a [E-CH3CHNH]/[Z-CH3CHNH] ratio of ca. 1.4, slightly higher than the previous computations, but still far from the value determined from astronomical observations (ca. 3). An accurate computational characterization of the molecular structure, energetics, and spectroscopic properties of the E and Z isomers of ethanimine combined with millimeter-wave measurements up to 300 GHz, allows for predicting the rotational spectrum of both isomers up to 500 GHz, thus opening the way toward new astronomical observations.
Collapse
Affiliation(s)
- Carmen Baiano
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; (C.B.); (J.L.); (N.T.)
| | - Jacopo Lupi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; (C.B.); (J.L.); (N.T.)
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; (C.B.); (J.L.); (N.T.)
| | - Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; (C.B.); (J.L.); (N.T.)
| |
Collapse
|
12
|
Pérez-Villa A, Pietrucci F, Saitta AM. Reply to comments on "Prebiotic chemistry and origins of life research with atomistic computer simulations". Phys Life Rev 2020; 34-35:153-155. [PMID: 32482440 DOI: 10.1016/j.plrev.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 11/17/2022]
|
13
|
DFT meets the segmented polarization consistent basis sets: Performances in the computation of molecular structures, rotational and vibrational spectroscopic properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127886] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Boussessi R, Tasinato N, Pietropolli Charmet A, Stoppa P, Barone V. Sextic centrifugal distortion constants: interplay of density functional and basis set for accurate yet feasible computations. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1734678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | | | | | - Paolo Stoppa
- Università Ca’ Foscari Venezia, Dipartimento di Scienze Molecolari e Nanosistemi, Mestre Venezia, Italy
| | | |
Collapse
|
15
|
A never-ending story in the sky: The secrets of chemical evolution. Phys Life Rev 2020; 32:59-94. [DOI: 10.1016/j.plrev.2019.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 01/13/2023]
|
16
|
Puzzarini C, Barone V. The challenging playground of astrochemistry: an integrated rotational spectroscopy - quantum chemistry strategy. Phys Chem Chem Phys 2020; 22:6507-6523. [PMID: 32163090 DOI: 10.1039/d0cp00561d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While it is now well demonstrated that the interstellar medium (ISM) is characterized by a diverse and complex chemistry, a significant number of features in radioastronomical spectra are still unassigned and call for new laboratory efforts, which are increasingly based on integrated experimental and computational strategies. In parallel, the identification of an increasing number of molecules containing more than five atoms and at least one carbon atom (the so-called "interstellar" complex organic molecules), which can play a relevant role in the chemistry of life, raises the additional issue of how these species can be produced in the typical harsh conditions of the ISM. On these grounds, this perspective aims to present an integrated rotational spectroscopy - quantum chemistry approach for supporting radioastronomical observations and a computational strategy for contributing to the elucidation of chemical reactivity in the interstellar space.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via F. Selmi 2, I-40126 Bologna, Italy.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, I-56126, Italy
| |
Collapse
|
17
|
Yao F, Gong N, Fang W, Men Z. Spectroscopic evidence of a particular intermolecular interaction in iodomethane–ethanol mixtures: the cooperative effect of halogen bonding, hydrogen bonding, and the solvent effect. Phys Chem Chem Phys 2020; 22:5702-5710. [DOI: 10.1039/c9cp05886a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The particular intermolecular interaction of an iodomethane–ethanol mixture is revealed by NIR, Raman, DFT calculation, and 2D correlation analysis.
Collapse
Affiliation(s)
- Fei Yao
- School of Science, Changchun University of Science and Technology
- Changchun
- China
| | - Nan Gong
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory
- College of Physics
- Jilin University
- Changchun 130012
- China
| | - Wenhui Fang
- School of Science, Changchun University of Science and Technology
- Changchun
- China
| | - Zhiwei Men
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory
- College of Physics
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
18
|
Puzzarini C, Barone V. Challenges in astrochemistry: The spectroscopic point of view: Comment on "Prebiotic chemistry and origins of life research with atomistic computer simulations" by A. Pérez-Villa, F. Pietrucci, and A.M. Saitta. Phys Life Rev 2019; 34-35:143-146. [PMID: 31761732 DOI: 10.1016/j.plrev.2019.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, I-40126 Bologna, Italy.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| |
Collapse
|
19
|
Puzzarini C, Bloino J, Tasinato N, Barone V. Accuracy and Interpretability: The Devil and the Holy Grail. New Routes across Old Boundaries in Computational Spectroscopy. Chem Rev 2019; 119:8131-8191. [DOI: 10.1021/acs.chemrev.9b00007] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, I-40126 Bologna, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
20
|
Puzzarini C, Tasinato N, Bloino J, Spada L, Barone V. State-of-the-art computation of the rotational and IR spectra of the methyl-cyclopropyl cation: hints on its detection in space. Phys Chem Chem Phys 2019; 21:3431-3439. [PMID: 30110028 DOI: 10.1039/c8cp04629h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent measurements by the Cassini Ion Neutral Mass Spectrometer demonstrated the presence of numerous carbocations in Titan's upper atmosphere. In [Ali et al., Planet. Space Sci., 2013, 87, 96], an analysis of these measurements revealed the formation of the three-membered cyclopropenyl cation and its methyl derivatives. As a starting point of a future coordinated effort of laboratory experiments, quantum-chemical calculations, and astronomical observations, in the present work the molecular structure and spectroscopic properties of the methyl-cyclopropenyl cation have been investigated by means of state-of-the-art computational approaches in order to simulate its rotational and infrared spectra. Rotational parameters have been predicted with an expected accuracy better than 0.1% for rotational constants and on the order of 1-2% for centrifugal-distortion terms. As for the infrared spectrum, despite the challenge of a large amplitude motion, fundamental transitions have been computed to a good accuracy, i.e., the uncertainties are expected to be smaller than 5-10 wavenumbers.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via F. Selmi 2, I-40126 Bologna, Italy.
| | | | | | | | | |
Collapse
|
21
|
Li W, Spada L, Tasinato N, Rampino S, Evangelisti L, Gualandi A, Cozzi PG, Melandri S, Barone V, Puzzarini C. Theory Meets Experiment for Noncovalent Complexes: The Puzzling Case of Pnicogen Interactions. Angew Chem Int Ed Engl 2018; 57:13853-13857. [DOI: 10.1002/anie.201807751] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/20/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Weixing Li
- Dipartimento di Chimica “Giacomo Ciamician”University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Lorenzo Spada
- Dipartimento di Chimica “Giacomo Ciamician”University of Bologna Via Selmi 2 40126 Bologna Italy
- Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Nicola Tasinato
- Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Sergio Rampino
- Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Luca Evangelisti
- Dipartimento di Chimica “Giacomo Ciamician”University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Gualandi
- Dipartimento di Chimica “Giacomo Ciamician”University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica “Giacomo Ciamician”University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Sonia Melandri
- Dipartimento di Chimica “Giacomo Ciamician”University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Vincenzo Barone
- Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”University of Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
22
|
Li W, Spada L, Tasinato N, Rampino S, Evangelisti L, Gualandi A, Cozzi PG, Melandri S, Barone V, Puzzarini C. Theory Meets Experiment for Noncovalent Complexes: The Puzzling Case of Pnicogen Interactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Weixing Li
- Dipartimento di Chimica “Giacomo Ciamician”University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Lorenzo Spada
- Dipartimento di Chimica “Giacomo Ciamician”University of Bologna Via Selmi 2 40126 Bologna Italy
- Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Nicola Tasinato
- Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Sergio Rampino
- Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Luca Evangelisti
- Dipartimento di Chimica “Giacomo Ciamician”University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Gualandi
- Dipartimento di Chimica “Giacomo Ciamician”University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica “Giacomo Ciamician”University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Sonia Melandri
- Dipartimento di Chimica “Giacomo Ciamician”University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Vincenzo Barone
- Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”University of Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
23
|
Zaleski DP, Prozument K. Automated assignment of rotational spectra using artificial neural networks. J Chem Phys 2018; 149:104106. [DOI: 10.1063/1.5037715] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniel P. Zaleski
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439,
USA
| | - Kirill Prozument
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439,
USA
| |
Collapse
|
24
|
Alessandrini S, Gauss J, Puzzarini C. Accuracy of Rotational Parameters Predicted by High-Level Quantum-Chemical Calculations: Case Study of Sulfur-Containing Molecules of Astrochemical Interest. J Chem Theory Comput 2018; 14:5360-5371. [PMID: 30141928 DOI: 10.1021/acs.jctc.8b00695] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The accuracy of rotational parameters obtained from high-level quantum-chemical calculations is discussed for molecules containing second-row atoms. The main focus is on computed rotational constants for which two statistical analyses have been carried out. A first benchmark study concerns sulfur-bearing species and involves 15 molecules (for a total of 74 isotopologues). By comparing 15 different computational approaches, all of them based on the coupled-cluster singles and doubles approach (CCSD) augmented by a perturbative treatment of triple excitations, CCSD(T), we have analyzed the effects on computed rotational constants due to ( i) extrapolation to the complete basis-set limit, ( ii) correlation of core electrons, and ( iii) vibrational corrections to rotational constants. To extend the analysis to other molecules containing second-row elements, as well as to understand the effect of higher excitations, a second benchmark study involving 11 molecules (for a total of 54 isotopologues) has been performed. Finally, the rotational parameters of seven sulfur-containing molecules of astrochemical interest (CCS, C3S, C4S, C5S, HCCS+, HC4S+, and HOCS+/HSCO+) have been computed and compared to experimental data, when available, also addressing the direct comparison of simulated and experimental rotational spectra.
Collapse
Affiliation(s)
- Silvia Alessandrini
- Dipartimento di Chimica "Giacomo Ciamician" , Università di Bologna , Via F. Selmi 2 , I-40126 Bologna , Italy
| | - Jürgen Gauss
- Institut für Physikalische Chemie , Johannes Gutenberg-Universität Mainz , D-55099 Mainz , Germany
| | - Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician" , Università di Bologna , Via F. Selmi 2 , I-40126 Bologna , Italy
| |
Collapse
|
25
|
Saielli G. Computational Spectroscopy of Ionic Liquids for Bulk Structure Elucidation. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Giacomo Saielli
- CNR Institute on Membrane Technology; Unit of Padova; Via Marzolo 1-35131 Padova Italy
- Department of Chemical Sciences; University of Padova; Via Marzolo 1-35131 Padova Italy
| |
Collapse
|
26
|
Rotational and Infrared Spectroscopy of Ethanimine: A Route toward Its Astrophysical and Planetary Detection. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-4357/aaa899] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Chandramouli B, Del Galdo S, Mancini G, Tasinato N, Barone V. Tailor-made computational protocols for precise characterization of small biological building blocks using QM and MM approaches. Biopolymers 2018. [DOI: 10.1002/bip.23109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Balasubramanian Chandramouli
- Scuola Normale Superiore, Piazza dei Cavalieri 7; Pisa 56126 Italy
- Compunet, Istituto Italiano di Tecnologia, via Morego 30; Genova Italy
| | - Sara Del Galdo
- Scuola Normale Superiore, Piazza dei Cavalieri 7; Pisa 56126 Italy
| | - Giordano Mancini
- Scuola Normale Superiore, Piazza dei Cavalieri 7; Pisa 56126 Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3; Pisa 56127 Italy
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7; Pisa 56126 Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7; Pisa 56126 Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3; Pisa 56127 Italy
| |
Collapse
|
28
|
Licari D, Fusè M, Salvadori A, Tasinato N, Mendolicchio M, Mancini G, Barone V. Towards the SMART workflow system for computational spectroscopy. Phys Chem Chem Phys 2018; 20:26034-26052. [DOI: 10.1039/c8cp03417f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Is it possible to convert highly specialized research in the field of computational spectroscopy into robust and user-friendly aids to experiments and industrial applications?
Collapse
Affiliation(s)
- Daniele Licari
- Scuola Normale Superiore
- 56126 Pisa
- Italy
- Istituto Italiano di Tecnologia
- 16163 Genova
| | | | | | | | | | | | | |
Collapse
|