1
|
Nottoli M, Vanich E, Cupellini L, Scalmani G, Pelosi C, Lipparini F. Importance of Polarizable Embedding for Computing Optical Rotation: The Case of Camphor in Ethanol. J Phys Chem Lett 2024:7992-7999. [PMID: 39078659 DOI: 10.1021/acs.jpclett.4c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Solvation effects on optical rotation are notoriously challenging to model for computational chemistry, as the specific rotatory power of a molecule can vary wildly going from apolar to polar or even protic solvents. To address such a problem, we present a polarizable embedding implementation of an electric and magnetic response property based on density functional theory and the AMOEBA polarizable force field, and apply such an implementation to the study of the optical rotation of camphor in ethanol. By comparing a continuum model, and electrostatic and polarizable embedding QM/MM models, we observe that accounting for the environment's polarization gives rise to not only a different quantitative prediction, in very good agreement with experiments for the QM/AMOEBA model, but also to a very different qualitative picture, with the values of the optical rotation computed along a classical molecular dynamics trajectory with electrostatic embedding being statistically uncorrelated to the ones obtained with the polarizable description.
Collapse
Affiliation(s)
- Michele Nottoli
- Institute of Applied Analysis and Numerical Simulation, Universität Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany
| | - Edoardo Vanich
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Giovanni Scalmani
- Gaussian, Inc., 340 Quinnipiac Street Building 40, Wallingford, Connecticut 06492, United States
| | - Chiara Pelosi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
2
|
Gómez S, Ambrosetti M, Giovannini T, Cappelli C. Close-Up Look at Electronic Spectroscopic Signatures of Common Pharmaceuticals in Solution. J Phys Chem B 2024; 128:2432-2446. [PMID: 38416564 DOI: 10.1021/acs.jpcb.3c07795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Simulating electronic properties and spectral signals requires robust computational approaches that need tuning with the system's peculiarities. In this paper, we test implicit and fully atomistic solvation models for the calculation of UV-vis and electronic circular dichroism (ECD) spectra of two pharmaceutically relevant molecules, namely, (2S)-captopril and (S)-naproxen, dissolved in aqueous solution. Room temperature molecular dynamics simulations reveal that these two drugs establish strong contacts with the surrounding solvent molecules via hydrogen bonds. Such specific interactions, which play a major role in the spectral response and are neglected in implicit approaches, are further characterized and quantified with natural bond orbital methods. Our calculations show that simulated spectra, and especially ECD, are in good agreement with experiments solely when conformational and configurational dynamics, mutual polarization, and solute-solvent repulsion effects are considered.
Collapse
Affiliation(s)
- Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Matteo Ambrosetti
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Tommaso Giovannini
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| |
Collapse
|
3
|
Creutzberg J, Hedegård ED. Polarizable Embedding Complex Polarization Propagator in Four- and Two-Component Frameworks. J Chem Theory Comput 2022; 18:3671-3686. [PMID: 35549262 DOI: 10.1021/acs.jctc.1c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Explicit embedding methods combined with the complex polarization propagator (CPP) enable the modeling of spectroscopy for increasingly complex systems with a high density of states. We present the first derivation and implementation of the CPP in four- and exact-two-component (X2C) polarizable embedding (PE) frameworks. We denote the developed methods PE-4c-CPP and PE-X2C-CPP, respectively. We illustrate the methods by estimating the solvent effect on ultraviolet-visible (UV-vis) and X-ray atomic absorption (XAS) spectra of [Rh(H2O)6]3+ and [Ir(H2O)6]3+ immersed in aqueous solution. We moreover estimate solvent effects on UV-vis spectra of a platinum complex that can be photochemically activated (in water) to kill cancer cells. Our results clearly show that the inclusion of the environment is required: UV-vis and (to a lesser degree) XAS spectra can become qualitatively different from vacuum calculations. Comparison of PE-4c-CPP and PE-X2C-CPP methods shows that X2C essentially reproduces the solvent effect obtained with the 4c methods.
Collapse
Affiliation(s)
- Joel Creutzberg
- Division of Theoretical Chemistry, Lund University, SE-223 62 Lund, Sweden
| | - Erik D Hedegård
- Division of Theoretical Chemistry, Lund University, SE-223 62 Lund, Sweden.,Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
4
|
Computational analysis of altered one- and two-photon CD of sterols inside a protein binding pocket. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Prioli S, Kongsted J. Modeling environmental effects in two-photon circular dichroism calculations. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Kaminský J, Andrushchenko V, Bouř P. Natural and magnetic circular dichroism spectra of nucleosides: effect of the dynamics and environment. RSC Adv 2021; 11:8411-8419. [PMID: 35423314 PMCID: PMC8695171 DOI: 10.1039/d1ra00076d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Chiroptical spectroscopic methods are excellent tools to study structure and interactions of biomolecules. However, their sensitivity to different structural aspects varies. To understand the dependence of absorption, electronic and magnetic circular dichroism (ECD, MCD) intensities on the structure, dynamics and environment, we measured and simulated spectra of nucleosides and other nucleic acid model components. The conformation space was explored by molecular dynamics (MD), the electronic spectra were generated using time dependent density functional theory (TDDFT). The sum over state (SOS) method was employed for MCD. The results show that accounting for the dynamics is crucial for reproduction of the experiment. While unpolarized absorption spectroscopy is relatively indifferent, ECD reflects the conformation and geometry dispersion more. MCD spectra provide variable response dependent on the wavelength and structural change. In general, MCD samples the structure more locally than ECD. Simple computational tests suggest that the optical spectroscopies coupled with the computational tools provide useful information about nucleic acid components, including base pairing and stacking.
Collapse
Affiliation(s)
- Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| |
Collapse
|
7
|
Migliore M, Bonvicini A, Tognetti V, Guilhaudis L, Baaden M, Oulyadi H, Joubert L, Ségalas-Milazzo I. Characterization of β-turns by electronic circular dichroism spectroscopy: a coupled molecular dynamics and time-dependent density functional theory computational study. Phys Chem Chem Phys 2020; 22:1611-1623. [PMID: 31894790 DOI: 10.1039/c9cp05776e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electronic circular dichroism is one of the most used spectroscopic techniques for peptide and protein structural characterization. However, while valuable experimental spectra exist for α-helix, β-sheet and random coil secondary structures, previous studies showed important discrepancies for β-turns, limiting their use as a reference for structural studies. In this paper, we simulated circular dichroism spectra for the best-characterized β-turns in peptides, namely types I, II, I' and II'. In particular, by combining classical molecular dynamics simulations and state-of-the-art quantum time-dependent density functional theory (with the polarizable embedding multiscale model) computations, two common electronic circular dichroism patterns were found for couples of β-turn types (namely, type I/type II' and type II/type I'), at first for a minimal di-peptide model (Ace-Ala-Ala-NHMe), but also for all sequences tested with non-aromatic residues in the central positions. On the other hand, as expected, aromatic substitution causes important perturbations to the previously found ECD patterns. Finally, by applying suitable approximations, these patterns were subsequently rationalized based on the exciton chirality rule. All these results provide useful predictions and pave the way for a possible experimental characterization of β-turns based on circular dichroism spectroscopy.
Collapse
Affiliation(s)
- Mattia Migliore
- Normandy Univ., COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont St Aignan, Cedex, France.
| | - Andrea Bonvicini
- Normandy Univ., COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont St Aignan, Cedex, France.
| | - Vincent Tognetti
- Normandy Univ., COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont St Aignan, Cedex, France.
| | - Laure Guilhaudis
- Normandy Univ., COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont St Aignan, Cedex, France.
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Hassan Oulyadi
- Normandy Univ., COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont St Aignan, Cedex, France.
| | - Laurent Joubert
- Normandy Univ., COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont St Aignan, Cedex, France.
| | - Isabelle Ségalas-Milazzo
- Normandy Univ., COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont St Aignan, Cedex, France.
| |
Collapse
|
8
|
Stendevad J, Kongsted J, Steinmann C. Combining polarizable embedding with the Frenkel exciton model: applications to absorption spectra with overlapping solute–solvent bands. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Reinholdt P, Nørby MS, Kongsted J. Modeling of Magnetic Circular Dichroism and UV/Vis Absorption Spectra Using Fluctuating Charges or Polarizable Embedding within a Resonant-Convergent Response Theory Formalism. J Chem Theory Comput 2018; 14:6391-6404. [DOI: 10.1021/acs.jctc.8b00660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Morten S. Nørby
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
10
|
|
11
|
Padula D, Cerezo J, Pescitelli G, Santoro F. The shape of the electronic circular dichroism spectrum of (2,6-dimethylphenyl)(phenyl)methanol: interplay between conformational equilibria and vibronic effects. Phys Chem Chem Phys 2017; 19:32349-32360. [DOI: 10.1039/c7cp06369e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Analysis of the interplay between conformational equilibria, solvent effects and vibronic contributions in the ECD spectra.
Collapse
Affiliation(s)
- Daniele Padula
- Department of Chemistry
- University of Liverpool
- Liverpool L69 7ZD
- UK
| | - Javier Cerezo
- Departamento de Química Física
- Universidad de Murcia
- 30100 Murcia
- Spain
| | - Gennaro Pescitelli
- Università di Pisa
- Dipartimento di Chimica e Chimica Industriale
- I-56124 Pisa
- Italy
| | - Fabrizio Santoro
- Consiglio Nazionale delle Ricerche – CNR
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR)
- Pisa
- Italy
| |
Collapse
|