1
|
Guo Y, Pernal K. Spinless formulation of linearized adiabatic connection approximation and its comparison with the second order N-electron valence state perturbation theory. Faraday Discuss 2024; 254:332-358. [PMID: 39114978 DOI: 10.1039/d4fd00054d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The adiabatic connection (AC) approximation, along with its linearized variant AC0, was introduced as a method of obtaining dynamic correlation energy. When using a complete active space self-consistent field (CASSCF) wave function as a reference, the AC0 approximation is considered one of the most efficient multi-reference perturbation theories. It only involves the use of 1st- and 2nd-order reduced density matrices. However, some numerical results have indicated that the excitation energies predicted by AC0 are not as reliable as those from the second-order N-electron valence state perturbation theory (NEVPT2). In this study, we develop a spinless formulation of AC0 based on the Dyall Hamiltonian and provide a detailed comparison between AC0 and NEVPT2 approaches. We demonstrate the components within the correlation energy expressions that are common to both methods and those unique to either AC0 or NEVPT2. We investigate the role of the terms exclusive to NEVPT2 and explore the possibility of enhancing AC0's performance in this regard.
Collapse
Affiliation(s)
- Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland.
| |
Collapse
|
2
|
Fujimoto KJ, Tsuji R, Wang-Otomo ZY, Yanai T. Prominent Role of Charge Transfer in the Spectral Tuning of Photosynthetic Light-Harvesting I Complex. ACS PHYSICAL CHEMISTRY AU 2024; 4:499-509. [PMID: 39346607 PMCID: PMC11428290 DOI: 10.1021/acsphyschemau.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 10/01/2024]
Abstract
Purple bacteria possess two ring-shaped protein complexes, light-harvesting 1 (LH1) and 2 (LH2), both of which function as antennas for solar energy utilization for photosynthesis but exhibit distinct absorption properties. The two antennas have differing amounts of bacteriochlorophyll (BChl) a; however, their significance in spectral tuning remains elusive. Here, we report a high-precision evaluation of the physicochemical factors contributing to the variation in absorption maxima between LH1 and LH2, namely, BChl a structural distortion, protein electrostatic interaction, excitonic coupling, and charge transfer (CT) effects, as derived from detailed spectral calculations using an extended version of the exciton model, in the model purple bacterium Rhodospirillum rubrum. Spectral analysis confirmed that the electronic structure of the excited state in LH1 extended to the BChl a 16-mer. Further analysis revealed that the LH1-specific redshift (∼61% in energy) is predominantly accounted for by the CT effect resulting from the closer inter-BChl distance in LH1 than in LH2. Our analysis explains how LH1 and LH2, both with chemically identical BChl a chromophores, use distinct physicochemical effects to achieve a progressive redshift from LH2 to LH1, ensuring efficient energy transfer to the reaction center special pair.
Collapse
Affiliation(s)
- Kazuhiro J. Fujimoto
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Rio Tsuji
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | | | - Takeshi Yanai
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Fujimoto KJ, Seki T, Minoda T, Yanai T. Spectral Tuning and Excitation-Energy Transfer by Unique Carotenoids in Diatom Light-Harvesting Antenna. J Am Chem Soc 2024; 146:3984-3991. [PMID: 38236721 PMCID: PMC10870758 DOI: 10.1021/jacs.3c12045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/15/2024]
Abstract
The light-harvesting antennae of diatoms and spinach are composed of similar chromophores; however, they exhibit different absorption wavelengths. Recent advances in cryoelectron microscopy have revealed that the diatom light-harvesting antenna fucoxanthin chlorophyll a/c-binding protein (FCPII) forms a tetramer and differs from the spinach antenna in terms of the number of protomers; however, the detailed molecular mechanism remains elusive. Herein, we report the physicochemical factors contributing to the characteristic light absorption of the diatom light-harvesting antenna based on spectral calculations using an exciton model. Spectral analysis reveals the significant contribution of unique fucoxanthin molecules (fucoxanthin-S) in FCPII to the diatom-specific spectrum, and further analysis determines their essential role in excitation-energy transfer to chlorophyll. It was revealed that the specificity of these fucoxanthin-S molecules is caused by the proximity between protomers associated with the tetramerization of FCPII. The findings of this study demonstrate that diatoms employ fucoxanthin-S to harvest energy under the ocean in the absence of long-wavelength sunlight and can provide significant information about the survival strategies of photosynthetic organisms to adjust to their living environment.
Collapse
Affiliation(s)
- Kazuhiro J. Fujimoto
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Takuya Seki
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Takumi Minoda
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Takeshi Yanai
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Park JW. Dynamic Correlation on the Adaptive Sampling Configuration Interaction (ASCI) Reference Function: ASCI-DSRG-MRPT2. J Chem Theory Comput 2023; 19:6263-6272. [PMID: 37611192 DOI: 10.1021/acs.jctc.3c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A balanced description of static and dynamic electron correlations is at the heart of quantum chemical methods. To obtain accurate results in strongly correlated systems using wave-function-based methods, a large active space is necessary to ensure correct descriptions of static correlations. Correcting the results for dynamic correlations is also necessary. In this work, we present implementations of second-order perturbation theory for dynamic correlations based on the adaptive sampling configuration interaction self-consistent field (ASCI-SCF) method. In particular, we implemented spin-free driven similarity renormalization group second-order multireference perturbation theory (DSRG-MRPT2). The extrapolation of the ASCI + PT2 energy based on the relaxed Hamiltonian in DSRG-MRPT2 gives a reasonable approximation of DSRG-MRPT2 based on CASSCF. We demonstrate the application of the ASCI-DSRG-MRPT2 method in evaluations of the spin-state energy gaps in iron porphyrins, polyacenes, and periacenes along with the reaction energies of methane oxidation by FeO+ and electrocyclic ring formation in cethrene.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
5
|
Iino T, Shiozaki T, Yanai T. Algorithm for analytic nuclear energy gradients of state averaged DMRG-CASSCF theory with newly derived coupled-perturbed equations. J Chem Phys 2023; 158:054107. [PMID: 36754810 DOI: 10.1063/5.0130636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We present an algorithm for evaluating analytic nuclear energy gradients of the state-averaged density matrix renormalization group complete-active-space self-consistent field (SA-DMRG-CASSCF) theory based on the newly derived coupled-perturbed (CP) DMRG-CASSCF equations. The Lagrangian for the conventional SA-CASSCF analytic gradient theory is extended to the SA-DMRG-CASSCF variant that can fully consider a whole set of constraints on the parameters of multi-root canonical matrix product states formed at all the DMRG block configurations. An efficient algorithm to solve the CP-DMRG-CASSCF equations for determining the multipliers was developed. The complexity of the resultant analytic gradient algorithm is overall the same as that of the unperturbed SA-DMRG-CASSCF algorithm. In addition, a reduced-scaling approach was developed to directly compute the SA reduced density matrices (SA-RDMs) and their perturbed ones without calculating separate state-specific RDMs. As part of our implementation scheme, we neglect the term associated with the constraint on the active orbitals in terms of the active-active rotation in the Lagrangian. Thus, errors from the true analytic gradients may be caused in this scheme. The proposed gradient algorithm was tested with the spin-adapted implementation by checking how accurately the computed analytic energy gradients reproduce numerical gradients of the SA-DMRG-CASSCF energies using a common number of renormalized bases. The illustrative applications show that the errors are sufficiently small when using a typical number of the renormalized bases, which is required to attain adequate accuracy in DMRG's total energies.
Collapse
Affiliation(s)
- Tsubasa Iino
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| | - Toru Shiozaki
- Quantum Simulation Technologies, Inc., Boston, Massachusetts 02135, USA
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
6
|
Nishida M, Akama T, Kobayashi M, Taketsugu T. Time-dependent Hartree–Fock–Bogoliubov method for molecular systems: An alternative excited-state methodology including static electron correlation. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
7
|
Barcza G, Pershin A, Gali A, Legeza Ö. Excitation spectra of fully correlated donor-acceptor complexes by density matrix renormalisation group. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2130834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Gergely Barcza
- Wigner Research Centre for Physics, Budapest, Hungary
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Anton Pershin
- Wigner Research Centre for Physics, Budapest, Hungary
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Adam Gali
- Wigner Research Centre for Physics, Budapest, Hungary
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Örs Legeza
- Wigner Research Centre for Physics, Budapest, Hungary
- Fachbereich Physik, Philipps-Universität Marburg, Marburg, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
8
|
Sudarkova SM, Ioffe IN. E/ Z photoisomerization pathway in pristine and fluorinated di(3-furyl)ethenes. Phys Chem Chem Phys 2022; 24:23749-23757. [PMID: 36156663 DOI: 10.1039/d2cp02563a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an XMCQDPT2 study of the E/Z photoisomerization in a series of fluorinated di(3-furyl)ethenes (3DFEs). Upon excitation, pristine and low-fluorinated 3DFE show conventional behavior of many diarylethenes: unhindered twisting motion toward the pyramidalized zwitterionic state where relaxation to the ground state occurs. However, deep fluorination of 3DFEs can hamper E-to-Z isomerization by giving rise to an alternative excited-state relaxation pathway: an out-of-plane motion of a ring fluorine atom. Importantly, the case of fluorinated 3DFEs reveals serious deficiencies of the popular TDDFT approach. With some commonly used exchange-correlation functionals, the alternative relaxation pathway is not reproduced and, moreover, an irrelevant ring rotation coordinate is predicted instead. Nevertheless, TDDFT remains qualitatively adequate for the E-to-Z twisting coordinate taken alone.
Collapse
Affiliation(s)
- Svetlana M Sudarkova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Ilya N Ioffe
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
9
|
Nomoto A, Inai N, Yanai T, Okuno Y. Substituent and Solvent Effects on the Photoisomerization of Cinnamate Derivatives: An XMS-CASPT2 Study. J Phys Chem A 2022; 126:497-505. [PMID: 35067053 DOI: 10.1021/acs.jpca.1c08504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cinnamate derivatives show a variety of photo-induced reactions. Among them is trans-cis photoisomerization, which may involve the nonradiative decay (NRD) process. The extended multistate complete active space second-order perturbation (XMS-CASPT2) method was used in this study as a suitable theory for treating multireference electronic nature, which was frequently manifested in the photoisomerization process. The minimum energy paths of the trans-cis photoisomerization process of cinnamate derivatives were determined, and the activation energies were estimated using the resulting intrinsic reaction coordinate (IRC) paths. Natural orbital analysis revealed that the transition state's (TS) electronic structure is zwitterionic-like, elucidating the solvent and substituent effect on the energy barrier of photoisomerization paths. Furthermore, it was found that the charge on the pyramidalized carbon atom at the TS structure was strongly correlated with the activation energy barrier for the cinnamate derivatives. Thus, it seemingly provided a physical picture of the photoisomerization of cinnamates and was a good descriptor potentially applicable to molecular design for controlling the rate constant of the photoisomerization reaction.
Collapse
Affiliation(s)
- Atsuro Nomoto
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 250-0193, Japan
| | - Naoto Inai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Yukihiro Okuno
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 250-0193, Japan
| |
Collapse
|
10
|
Cheng Y, Xie Z, Ma H. Post-Density Matrix Renormalization Group Methods for Describing Dynamic Electron Correlation with Large Active Spaces. J Phys Chem Lett 2022; 13:904-915. [PMID: 35049302 DOI: 10.1021/acs.jpclett.1c04078] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ab initio density matrix renormalization group (DMRG) method has been well-established and has become one of the most accurate numerical methods for the precise electronic structure solution of large active spaces. In the past few years, to capture the missing dynamic correlation, various post-DMRG approaches have been proposed through the combination of DMRG and multireference quantum chemical methods or density functional theory. With this in mind, this work provides a brief overview of ab initio DMRG principles and the new developments within post-DMRG methods. For clarity, post-DMRG methods are classified into two main categories depending on whether high-order n-electron reduced density matrices are used, and their merits and disadvantages are properly discussed. Finally, we conclude by discussing unsolved bottlenecks and giving development perspectives of post-DMRG approaches, which are expected to yield quantitative descriptions of complex electronic structures in large strongly correlated molecules and materials.
Collapse
Affiliation(s)
- Yifan Cheng
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Zhaoxuan Xie
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Mazin IM, Sokolov AY. Multireference Algebraic Diagrammatic Construction Theory for Excited States: Extended Second-Order Implementation and Benchmark. J Chem Theory Comput 2021; 17:6152-6165. [PMID: 34553937 DOI: 10.1021/acs.jctc.1c00684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an implementation and benchmark of new approximations in multireference algebraic diagrammatic construction theory for simulations of neutral electronic excitations and UV/vis spectra of strongly correlated molecular systems (MR-ADC). Following our work on the first-order MR-ADC approximation [J. Chem. Phys. 2018, 149, 204113], we report the strict and extended second-order MR-ADC methods (MR-ADC(2) and MR-ADC(2)-X) that combine the description of static and dynamic electron correlation in the ground and excited electronic states without relying on state-averaged reference wave functions. We present an extensive benchmark of the new MR-ADC methods for excited states in several small molecules, including the carbon dimer, ethylene, and butadiene. Our results demonstrate that, for weakly correlated electronic states, the MR-ADC(2) and MR-ADC(2)-X methods outperform the third-order single-reference ADC approximation and are competitive with the results from equation-of-motion coupled cluster theory. For states with multireference character, the performance of the MR-ADC methods is similar to that of an N-electron valence perturbation theory. In contrast to conventional multireference perturbation theories, the MR-ADC methods have many attractive features, such as a straightforward and efficient calculation of excited-state properties and a direct access to excitations outside of the frontier (active) orbitals.
Collapse
Affiliation(s)
- Ilia M Mazin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Park JW. Analytical Gradient Theory for Resolvent-Fitted Second-Order Extended Multiconfiguration Perturbation Theory (XMCQDPT2). J Chem Theory Comput 2021; 17:6122-6133. [PMID: 34582217 DOI: 10.1021/acs.jctc.1c00613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We present the formulation and implementation of an analytical gradient algorithm for extended multiconfiguration quasidegenerate perturbation theory (XMCQDPT2) with the resolvent-fitting approximation by Granovsky. This algorithm is powerful when optimizing molecular configurations with a moderate-sized active space and many electronic states. First, we present the powerfulness and accuracy of resolvent-fitting approximations compared to canonical XMCQDPT2 theory. Then, we demonstrate the utility of the current algorithm in frequency analyses, optimizing the minimum energy conical intersection geometries of the retinal chromophore model RPSB6 and evaluating nuclear gradients when there are many electronic states. Furthermore, we parallelize the algorithm using the OpenMP/MPI hybrid approach. Additionally, we report the computational cost and parallel efficiency of the program.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
13
|
Khedkar A, Roemelt M. Modern multireference methods and their application in transition metal chemistry. Phys Chem Chem Phys 2021; 23:17097-17112. [PMID: 34355719 DOI: 10.1039/d1cp02640b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal chemistry is a challenging playground for quantum chemical methods owing to the simultaneous presence of static and dynamic electron correlation effects in many systems. Wavefunction based multireference (MR) methods constitute a physically sound and systematically improvable Ansatz to deal with this complexity but suffer from some conceptual difficulties and high computational costs. The latter problem partially arises from the unfavorable scaling of the Full Configuration Interaction (Full-CI) problem which in the majority of MR methods is solved for a subset of the molecular orbital space, the so-called active space. In the last years multiple methods such as modern variants of selected CI, Full-CI Quantum Monte Carlo (FCIQMC) and the density matrix renormalization group (DMRG) have been developed that solve the Full-CI problem approximately for a fraction of the computational cost required by conventional techniques thereby significantly extending the range of applicability of modern MR methods. This perspective review outlines recent advancements in the field of MR electronic structure methods together with the resulting chances and challenges for theoretical studies in the field of transition metal chemistry. In light of its emerging importance a special focus is put on the selection of adequate active spaces and the concomitant development of numerous selection aides in recent years.
Collapse
Affiliation(s)
- Abhishek Khedkar
- Lehrstuhl für theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| | | |
Collapse
|
14
|
Guo Y, Sivalingam K, Neese F. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). I. Revisiting the NEVPT2 construction. J Chem Phys 2021; 154:214111. [PMID: 34240991 DOI: 10.1063/5.0051211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over the last decade, the second-order N-electron valence state perturbation theory (NEVPT2) has developed into a widely used multireference perturbation method. To apply NEVPT2 to systems with large active spaces, the computational bottleneck is the construction of the fourth-order reduced density matrix. Both its generation and storage become quickly problematic beyond the usual maximum active space of about 15 active orbitals. To reduce the computational cost of handling fourth-order density matrices, the cumulant approximation (CU) has been proposed in several studies. A more conventional strategy to address the higher-order density matrices is the pre-screening approximation (PS), which is the default one in the ORCA program package since 2010. In the present work, the performance of the CU, PS, and extended PS (EPS) approximations for the fourth-order density matrices is compared. Following a pedagogical introduction to NEVPT2, contraction schemes, as well as the approximations to density matrices, and the intruder state problem are discussed. The CU approximation, while potentially leading to large computational savings, virtually always leads to intruder states. With the PS approximation, the computational savings are more modest. However, in conjunction with conservative cutoffs, it produces stable results. The EPS approximation to the fourth-order density matrices can reproduce very accurate NEVPT2 results without any intruder states. However, its computational cost is not much lower than that of the canonical algorithm. Moreover, we found that a good indicator of intrude states problems in any approximation to high order density matrices is the eigenspectra of the Koopmans matrices.
Collapse
Affiliation(s)
- Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
15
|
Inai N, Yokogawa D, Yanai T. Investigating the Nonradiative Decay Pathway in the Excited State of Silepin Derivatives: A Study with Second-Order Multireference Perturbation Wavefunction Theory. J Phys Chem A 2021; 125:559-569. [PMID: 33416309 DOI: 10.1021/acs.jpca.0c08738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The fluorescence quantum yield for fluorescent organic molecules is an important molecular property, and tuning it up is desired for various applications. For the computational estimation of the fluorescence quantum yield, the theoretical prediction of the nonradiative decay rate constant has become an attractive subject of study. The rate constant of thermally activated nonradiative decay is related to the activation energy in the photoreaction; thus, the accuracy and reliability of the excited-state potential energies in the quantum chemical computation are critical. In this study, we employed a second-order multireference perturbation wavefunction theory for studying the thermally activated decay via conical intersection (CI) of 1,1-dimethyldibenzo[b,f]silepin derivatives. The correlation between the computed activation energy to reach the CI geometry in the S1 state and the experimentally determined fluorescence quantum yield implied that silepins nonradiatively decay via the CI triggered by the twisting of the central C-C bond. Geometry optimization of the transition state using multireference perturbation theory drastically reduced the estimated activation energy. Our computation gave reasonable predictions of the activation free energies of photoexcited 1,1-dimethyldibenzo[b,f]silepin. The energy profiles and geometry optimizations using proper quantum chemical methods played a critical role in reliable estimation of the rate constant and fluorescence quantum yield.
Collapse
Affiliation(s)
- Naoto Inai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Daisuke Yokogawa
- Department of Basic Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
16
|
Abstract
We present a Perspective on what the future holds for full configuration interaction (FCI) theory, with an emphasis on conceptual rather than technical details. Upon revisiting the early history of FCI, a number of its key contemporary approximations are compared on as equal a footing as possible, using a recent blind challenge on the benzene molecule as a testbed [Eriksen et al., J. Phys. Chem. Lett., 2020 11, 8922]. In the process, we review the scope of applications for which FCI continues to prove indispensable, and the required traits in terms of robustness, efficacy, and reliability its modern approximations must satisfy are discussed. We close by conveying a number of general observations on the merits offered by the state-of-the-art alongside some of the challenges still faced to this day. While the field has altogether seen immense progress over the years-the past decade, in particular-it remains clear that our community as a whole has a substantial way to go in enhancing the overall applicability of near-exact electronic structure theory for systems of general composition and increasing size.
Collapse
Affiliation(s)
- Janus J Eriksen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
17
|
Wang T, Ma Y, Zhao L, Jiang J. Portably parallel construction of a configuration-interaction wave function from a matrix-product state using the Charm++ framework. J Comput Chem 2020; 41:2707-2721. [PMID: 32986283 DOI: 10.1002/jcc.26424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/16/2020] [Accepted: 09/02/2020] [Indexed: 11/10/2022]
Abstract
The construction of configuration-interaction (CI) expansions from a matrix product state (MPS) involves numerous matrix operations and the skillful sampling of important configurations in a large Hilbert space. In this work, we present an efficient procedure for constructing CI expansions from MPS employing the parallel object-oriented Charm++ programming framework, upon which automatic load-balancing and object migrating facilities can be employed. This procedure was employed in the MPS-to-CI utility (Moritz et al., J. Chem. Phys. 2007, 126, 224109), the sampling-reconstructed complete active-space algorithm (SR-CAS, Boguslawski et al., J. Chem. Phys. 2011, 134, 224101), and the entanglement-driven genetic algorithm (EDGA, Luo et al., J. Chem. Theory Comput. 2017, 13, 4699). It enhances productivity and allows the sampling programs to evolve to their population-expansion versions, for example, EDGA with population expansion (PE-EDGA). Further, examples of 1,2-dioxetanone and firefly dioxetanone anion (FDO- ) molecules demonstrated the following: (a) parallel efficiencies can be persistently improved by simply by increasing the proportions of the asynchronous executions and (b) a sampled CAS-type CI wave function of a bi-radical-state FDO- molecule utilizing the full valence (30e,26o) active space can be constructed within a few hours with using thousands of cores.
Collapse
Affiliation(s)
- Ting Wang
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China.,Center of Scientific Computing Applications and Research, Chinese Academy of Sciences, Beijing, China.,School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Yingjin Ma
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China.,Center of Scientific Computing Applications and Research, Chinese Academy of Sciences, Beijing, China
| | - Lian Zhao
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China.,Center of Scientific Computing Applications and Research, Chinese Academy of Sciences, Beijing, China
| | - Jinrong Jiang
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China.,Center of Scientific Computing Applications and Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Calvin JA, Peng C, Rishi V, Kumar A, Valeev EF. Many-Body Quantum Chemistry on Massively Parallel Computers. Chem Rev 2020; 121:1203-1231. [DOI: 10.1021/acs.chemrev.0c00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Justus A. Calvin
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chong Peng
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Varun Rishi
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ashutosh Kumar
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
19
|
Conti I, Cerullo G, Nenov A, Garavelli M. Ultrafast Spectroscopy of Photoactive Molecular Systems from First Principles: Where We Stand Today and Where We Are Going. J Am Chem Soc 2020; 142:16117-16139. [PMID: 32841559 PMCID: PMC7901644 DOI: 10.1021/jacs.0c04952] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Computational spectroscopy is becoming a mandatory tool for the interpretation of the
complex, and often congested, spectral maps delivered by modern non-linear multi-pulse
techniques. The fields of Electronic Structure Methods,
Non-Adiabatic Molecular Dynamics, and Theoretical
Spectroscopy represent the three pillars of the virtual ultrafast
optical spectrometer, able to deliver transient spectra in
silico from first principles. A successful simulation strategy requires a
synergistic approach that balances between the three fields, each one having its very
own challenges and bottlenecks. The aim of this Perspective is to demonstrate that,
despite these challenges, an impressive agreement between theory and experiment is
achievable now regarding the modeling of ultrafast photoinduced processes in complex
molecular architectures. Beyond that, some key recent developments in the three fields
are presented that we believe will have major impacts on spectroscopic simulations in
the very near future. Potential directions of development, pending challenges, and
rising opportunities are illustrated.
Collapse
Affiliation(s)
- Irene Conti
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
20
|
Chatterjee K, Sokolov AY. Extended Second-Order Multireference Algebraic Diagrammatic Construction Theory for Charged Excitations. J Chem Theory Comput 2020; 16:6343-6357. [DOI: 10.1021/acs.jctc.0c00778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koushik Chatterjee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Ren J, Li W, Jiang T, Shuai Z. A general automatic method for optimal construction of matrix product operators using bipartite graph theory. J Chem Phys 2020; 153:084118. [PMID: 32872857 DOI: 10.1063/5.0018149] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Constructing matrix product operators (MPOs) is at the core of the modern density matrix renormalization group (DMRG) and its time dependent formulation. For the DMRG to be conveniently used in different problems described by different Hamiltonians, in this work, we propose a new generic algorithm to construct the MPO of an arbitrary operator with a sum-of-products form based on the bipartite graph theory. We show that the method has the following advantages: (i) it is automatic in that only the definition of the operator is required; (ii) it is symbolic thus free of any numerical error; (iii) the complementary operator technique can be fully employed so that the resulting MPO is globally optimal for any given order of degrees of freedom; and (iv) the symmetry of the system could be fully employed to reduce the dimension of MPO. To demonstrate the effectiveness of the new algorithm, the MPOs of Hamiltonians ranging from the prototypical spin-boson model and the Holstein model to the more complicated ab initio electronic Hamiltonian and the anharmonic vibrational Hamiltonian with the sextic force field are constructed. It is found that for the former three cases, our automatic algorithm can reproduce exactly the same MPOs as the optimally hand-crafted ones already known in the literature.
Collapse
Affiliation(s)
- Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
22
|
Phung QM, Komori Y, Yanai T, Sommerfeld T, Ehara M. Combination of a Voronoi-Type Complex Absorbing Potential with the XMS-CASPT2 Method and Pilot Applications. J Chem Theory Comput 2020; 16:2606-2616. [PMID: 32105477 DOI: 10.1021/acs.jctc.9b01032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Electronic resonances are metastable (N + 1) electron states, in other words, discrete states embedded in an electronic continuum. While great progress has been made for certain types of resonances-for example, temporary anions created by attaching one excess electron to a closed shell neutral-resonances in general remain a great challenge of quantum chemistry because a successful description of the decay requires a balanced description of the bound and continuum aspect of the resonance. Here, a smoothed Voronoi complex absorbing potential (CAP) is combined with the XMS-CASPT2 method, which enables us to address the balance challenge by appropriate choice of the CAS space. To reduce the computational cost, the method is implemented in the projected scheme. In this pilot application, three temporary anions serve as benchmarks: the π* resonance state of formaldehyde; the π* and σ* resonance states of chloroethene as functions of the C-Cl bond dissociation coordinate; and the 4Πu and 2Πu resonance states of N2-. The convergence of the CAP/XMS-CASPT2 results has been systematically examined with respect to the size of the active space. Resonance parameters predicted by the CAP/XMS-CASPT2 method agree well with CAP/SAC-CI results (deviations of about 0.15 eV); however, as expected, CAP/XMS-CASPT2 has clear advantages in the bond dissociation region. The advantages of CAP/XMS-CASPT2 are further demonstrated in the calculations of 4Πu and 2Πu resonance states of N2- including their 3Σu+ and 3Δu parent states. Three of the involved states (2Πu, 3Σu+, and 3Δu) possess multireference character, and CAP/XMS-CASPT2 can easily describe these states with a relatively modest active space.
Collapse
Affiliation(s)
- Quan Manh Phung
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yuki Komori
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Thomas Sommerfeld
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, Louisiana 70402, United States
| | - Masahiro Ehara
- Institute for Molecular Science and Research Center for Computational Science, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
23
|
Abstract
We introduce a computational approach to study porphyrin-like transition metal complexes, bridging density functional theory and exact many-body techniques, such as the density matrix renormalization group (DMRG). We first derive a multi-orbital Anderson impurity Hamiltonian starting from first principles considerations that qualitatively reproduce generalized gradient approximation (GGA)+U results when ignoring inter-orbital Coulomb repulsion U ′ and Hund exchange J. An exact canonical transformation is used to reduce the dimensionality of the problem and make it amenable to DMRG calculations, including all many-body terms (both intra- and inter-orbital), which are treated in a numerically exact way. We apply this technique to FeN 4 centers in graphene and show that the inclusion of these terms has dramatic effects: as the iron orbitals become single occupied due to the Coulomb repulsion, the inter-orbital interaction further reduces the occupation, yielding a non-monotonic behavior of the magnetic moment as a function of the interactions, with maximum polarization only in a small window at intermediate values of the parameters. Furthermore, U ′ changes the relative position of the peaks in the density of states, particularly on the iron d z 2 orbital, which is expected to affect the binding of ligands greatly.
Collapse
|
24
|
Anderson RJ, Shiozaki T, Booth GH. Efficient and stochastic multireference perturbation theory for large active spaces within a full configuration interaction quantum Monte Carlo framework. J Chem Phys 2020; 152:054101. [DOI: 10.1063/1.5140086] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Robert J. Anderson
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| | - Toru Shiozaki
- Quantum Simulation Technologies, Inc., Cambridge, Massachusetts 02139, USA
| | - George H. Booth
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
25
|
Mahajan A, Blunt NS, Sabzevari I, Sharma S. Multireference configuration interaction and perturbation theory without reduced density matrices. J Chem Phys 2019; 151:211102. [DOI: 10.1063/1.5128115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ankit Mahajan
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| | - Nick S. Blunt
- Department of Chemistry, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Iliya Sabzevari
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| |
Collapse
|
26
|
Park JW. Analytical Gradient Theory for Quasidegenerate N-Electron Valence State Perturbation Theory (QD-NEVPT2). J Chem Theory Comput 2019; 16:326-339. [DOI: 10.1021/acs.jctc.9b00919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
27
|
Sand AM, Kidder KM, Truhlar DG, Gagliardi L. Calculation of Chemical Reaction Barrier Heights by Multiconfiguration Pair-Density Functional Theory with Correlated Participating Orbitals. J Phys Chem A 2019; 123:9809-9817. [PMID: 31609619 DOI: 10.1021/acs.jpca.9b08134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The accurate description of reaction barrier heights is challenging for quantum mechanical methods due to the need for a balanced treatment of dynamic and static correlation energies because their importance varies during the course of a chemical reaction. While some regions of potential energy surfaces are well-described by a single-reference wave function or by Kohn-Sham density functional theory, in other cases a multireference treatment is needed. For systems with many active electrons, most accurate multireference methods have prohibitive computational scalings with system size. Multiconfiguration pair-density functional theory, MC-PDFT, is a more affordable multireference approach that computes the total electron correlation energy in a single step by using the multiconfiguration kinetic energy, density, and on-top pair density and an on-top density functional. In this work, we apply MC-PDFT to a benchmark database (DBH24/18) of 24 diverse reaction barrier heights. We explore the role of active space and basis set selection on the performance of MC-PDFT. We find that MC-PDFT is able to calculate reaction barrier heights with a similar accuracy to complete active space second order perturbation theory, CASPT2, but at a lower computational cost, and we find that MC-PDFT is less dependent on basis set selection than CASPT2.
Collapse
Affiliation(s)
- Andrew M Sand
- Department of Chemistry, Chemical Theory Center, and the Minnesota Supercomputing Institute , The University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry and Biochemistry , Butler University , Indianapolis , Indiana 46208 , United States
| | - Katherine M Kidder
- Department of Chemistry, Chemical Theory Center, and the Minnesota Supercomputing Institute , The University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and the Minnesota Supercomputing Institute , The University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and the Minnesota Supercomputing Institute , The University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
28
|
Chatterjee K, Sokolov AY. Second-Order Multireference Algebraic Diagrammatic Construction Theory for Photoelectron Spectra of Strongly Correlated Systems. J Chem Theory Comput 2019; 15:5908-5924. [DOI: 10.1021/acs.jctc.9b00528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koushik Chatterjee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
29
|
Cao Y, Romero J, Olson JP, Degroote M, Johnson PD, Kieferová M, Kivlichan ID, Menke T, Peropadre B, Sawaya NPD, Sim S, Veis L, Aspuru-Guzik A. Quantum Chemistry in the Age of Quantum Computing. Chem Rev 2019; 119:10856-10915. [PMID: 31469277 DOI: 10.1021/acs.chemrev.8b00803] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Practical challenges in simulating quantum systems on classical computers have been widely recognized in the quantum physics and quantum chemistry communities over the past century. Although many approximation methods have been introduced, the complexity of quantum mechanics remains hard to appease. The advent of quantum computation brings new pathways to navigate this challenging and complex landscape. By manipulating quantum states of matter and taking advantage of their unique features such as superposition and entanglement, quantum computers promise to efficiently deliver accurate results for many important problems in quantum chemistry, such as the electronic structure of molecules. In the past two decades, significant advances have been made in developing algorithms and physical hardware for quantum computing, heralding a revolution in simulation of quantum systems. This Review provides an overview of the algorithms and results that are relevant for quantum chemistry. The intended audience is both quantum chemists who seek to learn more about quantum computing and quantum computing researchers who would like to explore applications in quantum chemistry.
Collapse
Affiliation(s)
- Yudong Cao
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Jonathan Romero
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Jonathan P Olson
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Matthias Degroote
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Department of Chemistry , University of Toronto , Toronto , Ontario M5G 1Z8 , Canada.,Department of Computer Science , University of Toronto , Toronto , Ontario M5G 1Z8 , Canada
| | - Peter D Johnson
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Mária Kieferová
- Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States.,Department of Physics and Astronomy , Macquarie University , Sydney , NSW 2109 , Australia.,Institute for Quantum Computing and Department of Physics and Astronomy , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Ian D Kivlichan
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Department of Physics , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Tim Menke
- Department of Physics , Harvard University , Cambridge , Massachusetts 02138 , United States.,Research Laboratory of Electronics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,Department of Physics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Borja Peropadre
- Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Nicolas P D Sawaya
- Intel Laboratories , Intel Corporation , Santa Clara , California 95054 United States
| | - Sukin Sim
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry , Academy of Sciences of the Czech Republic v.v.i. , Doleǰskova 3 , 18223 Prague 8, Czech Republic
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States.,Department of Chemistry , University of Toronto , Toronto , Ontario M5G 1Z8 , Canada.,Department of Computer Science , University of Toronto , Toronto , Ontario M5G 1Z8 , Canada.,Canadian Institute for Advanced Research , Toronto , Ontario M5G 1Z8 , Canada.,Vector Institute for Artificial Intelligence , Toronto , Ontario M5S 1M1 , Canada
| |
Collapse
|
30
|
Bozkaya U. Efficient Implementation of the Second-Order Quasidegenerate Perturbation Theory with Density-Fitting and Cholesky Decomposition Approximations: Is It Possible To Use Hartree–Fock Orbitals for a Multiconfigurational Perturbation Theory? J Chem Theory Comput 2019; 15:4415-4429. [DOI: 10.1021/acs.jctc.9b00378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Uğur Bozkaya
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
31
|
Park JW, Al-Saadon R, Strand NE, Shiozaki T. Imaginary Shift in CASPT2 Nuclear Gradient and Derivative Coupling Theory. J Chem Theory Comput 2019; 15:4088-4098. [DOI: 10.1021/acs.jctc.9b00368] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States
- Department of Chemistry, Chungbuk National University, Chungdae-ro 1, Cheongju, Chungbuk 28644, Korea
| | - Rachael Al-Saadon
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States
| | - Nils E. Strand
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States
| |
Collapse
|
32
|
Park JW. Single-State Single-Reference and Multistate Multireference Zeroth-Order Hamiltonians in MS-CASPT2 and Conical Intersections. J Chem Theory Comput 2019; 15:3960-3973. [DOI: 10.1021/acs.jctc.9b00067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
33
|
Li C, Lindh R, Evangelista FA. Dynamically weighted multireference perturbation theory: Combining the advantages of multi-state and state-averaged methods. J Chem Phys 2019; 150:144107. [DOI: 10.1063/1.5088120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Roland Lindh
- Department of Chemistry–BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Uppsala Center for Computational Chemistry, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
34
|
Scheit S, Goswami S, Meyer HD, Köppel H. Fully quantal treatment of nonadiabatic molecular photodynamics: General considerations and application to the benzene cation. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Jarota A, Pastorczak E, Tawfik W, Xue B, Kania R, Abramczyk H, Kobayashi T. Exploring the ultrafast dynamics of a diarylethene derivative using sub-10 fs laser pulses. Phys Chem Chem Phys 2019; 21:192-204. [DOI: 10.1039/c8cp05882b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fast internal conversion S1 → S0 of a diarylethenes photoswitch, facilitated by two vibrational stretching modes, results in a low quantum yield of the ring-opening reaction.
Collapse
Affiliation(s)
- Arkadiusz Jarota
- Institute of Applied Radiation Chemistry, Lodz University of Technology
- 93-590 Łódź
- Poland
- Advanced Ultrafast Laser Research Center, University of Electro-Communications
- Chofu
| | - Ewa Pastorczak
- Institute of Physics, Lodz University of Technology
- 90-924 Łódź
- Poland
| | - Walid Tawfik
- Advanced Ultrafast Laser Research Center, University of Electro-Communications
- Chofu
- Japan
- National Institute of Laser Enhanced Sciences NILES, Cairo University
- Cairo
| | - Bing Xue
- Advanced Ultrafast Laser Research Center, University of Electro-Communications
- Chofu
- Japan
| | - Rafał Kania
- Institute of Applied Radiation Chemistry, Lodz University of Technology
- 93-590 Łódź
- Poland
| | - Halina Abramczyk
- Institute of Applied Radiation Chemistry, Lodz University of Technology
- 93-590 Łódź
- Poland
| | - Takayoshi Kobayashi
- Advanced Ultrafast Laser Research Center, University of Electro-Communications
- Chofu
- Japan
- Brain Science Inspired Life Support Research Center, The University of Electro-Communications
- Chofu
| |
Collapse
|
36
|
Sokolov AY. Multi-reference algebraic diagrammatic construction theory for excited states: General formulation and first-order implementation. J Chem Phys 2018; 149:204113. [DOI: 10.1063/1.5055380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
37
|
Sharma P, Bernales V, Knecht S, Truhlar DG, Gagliardi L. Density matrix renormalization group pair-density functional theory (DMRG-PDFT): singlet-triplet gaps in polyacenes and polyacetylenes. Chem Sci 2018; 10:1716-1723. [PMID: 30842836 PMCID: PMC6368241 DOI: 10.1039/c8sc03569e] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/23/2018] [Indexed: 11/21/2022] Open
Abstract
The density matrix renormalization group (DMRG) is a powerful method to treat static correlation.
The density matrix renormalization group (DMRG) is a powerful method to treat static correlation. Here we present an inexpensive way to calculate correlation energy starting from a DMRG wave function using pair-density functional theory (PDFT). We applied this new approach, called DMRG-PDFT, to study singlet–triplet gaps in polyacenes and polyacetylenes that require active spaces larger than the feasibility limit of the conventional complete active-space self-consistent field (CASSCF) method. The results match reasonably well with the most reliable literature values and have only a moderate dependence on the compression of the initial DMRG wave function. Furthermore, DMRG-PDFT is significantly less expensive than other commonly applied ways of adding additional correlation to DMRG, such as DMRG followed by multireference perturbation theory or multireference configuration interaction.
Collapse
Affiliation(s)
- Prachi Sharma
- Department of Chemistry , Chemical Theory Center , Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455 , USA . ;
| | - Varinia Bernales
- Department of Chemistry , Chemical Theory Center , Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455 , USA . ;
| | - Stefan Knecht
- Laboratory of Physical Chemistry , ETH Zürich , Vladimir-Prelog-Weg 2 , CH-8093 Zürich , Switzerland .
| | - Donald G Truhlar
- Department of Chemistry , Chemical Theory Center , Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455 , USA . ;
| | - Laura Gagliardi
- Department of Chemistry , Chemical Theory Center , Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455 , USA . ;
| |
Collapse
|
38
|
Manna S, Ray SS, Ghosh P, Chattopadhyay S. On the conversion XCN ⟷ XNC via an efficient and economic perturbative wave function approach. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1464224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Shovan Manna
- Department of Chemistry, Indian Institute of Engineering Science and Technology , Shibpur, India
| | - Suvonil Sinha Ray
- Department of Chemistry, Indian Institute of Engineering Science and Technology , Shibpur, India
| | - Pradipta Ghosh
- Department of Chemistry, Jhargram Raj College , Jhargram, India
| | - Sudip Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology , Shibpur, India
| |
Collapse
|
39
|
Sen S, Schapiro I. A comprehensive benchmark of the XMS-CASPT2 method for the photochemistry of a retinal chromophore model. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1501112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Saumik Sen
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
40
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
41
|
Sand AM, Hoyer CE, Truhlar DG, Gagliardi L. State-interaction pair-density functional theory. J Chem Phys 2018; 149:024106. [DOI: 10.1063/1.5036727] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Andrew M. Sand
- Department of Chemistry, Chemical Theory Center, and The Minnesota Supercomputing Institute, The University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Chad E. Hoyer
- Department of Chemistry, Chemical Theory Center, and The Minnesota Supercomputing Institute, The University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and The Minnesota Supercomputing Institute, The University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and The Minnesota Supercomputing Institute, The University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
42
|
Wen J, Uto T, Chalupský J, Casher DL, Raabe G, Fleischhauer J, Yanai T, Tsuji H, Komatsu K, Michl J. Magnetic circular dichroism of an unaromatic planar [8]annulene. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jin Wen
- Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Takayuki Uto
- Kyoto University Institute for Chemical Research Kyoto Japan
| | - Jakub Chalupský
- Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Deborah L. Casher
- Department of Chemistry and Biochemistry University of Colorado Boulder CO U.S.A
| | - Gerhard Raabe
- Institut für Organische Chemie, Rheinisch‐Westfälische Technische Hochschule Aachen Aachen Germany
| | - Joerg Fleischhauer
- Institut für Organische Chemie, Rheinisch‐Westfälische Technische Hochschule Aachen Aachen Germany
| | - Takeshi Yanai
- Department of Theoretical and Computational Molecular Science Institute for Molecular Science Okazaki, Aichi Japan
- JST PRESTO Honcho, Kawaguchi‐shi Saitama Japan
| | - Hayato Tsuji
- Kyoto University Institute for Chemical Research Kyoto Japan
| | - Koichi Komatsu
- Kyoto University Institute for Chemical Research Kyoto Japan
| | - Josef Michl
- Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic Prague Czech Republic
- Department of Chemistry and Biochemistry University of Colorado Boulder CO U.S.A
| |
Collapse
|
43
|
Li C, Evangelista FA. Driven similarity renormalization group for excited states: A state-averaged perturbation theory. J Chem Phys 2018; 148:124106. [DOI: 10.1063/1.5019793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|