1
|
Gentili D, Ori G. Reversible assembly of nanoparticles: theory, strategies and computational simulations. NANOSCALE 2022; 14:14385-14432. [PMID: 36169572 DOI: 10.1039/d2nr02640f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The significant advances in synthesis and functionalization have enabled the preparation of high-quality nanoparticles that have found a plethora of successful applications. The unique physicochemical properties of nanoparticles can be manipulated through the control of size, shape, composition, and surface chemistry, but their technological application possibilities can be further expanded by exploiting the properties that emerge from their assembly. The ability to control the assembly of nanoparticles not only is required for many real technological applications, but allows the combination of the intrinsic properties of nanoparticles and opens the way to the exploitation of their complex interplay, giving access to collective properties. Significant advances and knowledge gained over the past few decades on nanoparticle assembly have made it possible to implement a growing number of strategies for reversible assembly of nanoparticles. In addition to being of interest for basic studies, such advances further broaden the range of applications and the possibility of developing innovative devices using nanoparticles. This review focuses on the reversible assembly of nanoparticles and includes the theoretical aspects related to the concept of reversibility, an up-to-date assessment of the experimental approaches applied to this field and the advanced computational schemes that offer key insights into the assembly mechanisms. We aim to provide readers with a comprehensive guide to address the challenges in assembling reversible nanoparticles and promote their applications.
Collapse
Affiliation(s)
- Denis Gentili
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Guido Ori
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Rue du Loess 23, F-67034 Strasbourg, France.
| |
Collapse
|
2
|
Ortiz Peña N, Ihiawakrim D, Creţu S, Cotin G, Kiefer C, Begin-Colin S, Sanchez C, Portehault D, Ersen O. In situ liquid transmission electron microscopy reveals self-assembly-driven nucleation in radiolytic synthesis of iron oxide nanoparticles in organic media. NANOSCALE 2022; 14:10950-10957. [PMID: 35860928 DOI: 10.1039/d2nr01511k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have investigated the early stages of the formation of iron oxide nanoparticles from iron stearate precursors in the presence of sodium stearate in an organic solvent by in situ liquid phase transmission electron microscopy (IL-TEM). Before nucleation, we have evidenced the spontaneous formation of vesicular assemblies made of iron polycation-based precursors sandwiched between stearate layers. Nucleation of iron oxide nanoparticles occurs within the walls of the vesicles, which subsequently collapse upon the consumption of the iron precursors and the growth of the nanoparticles. We then evidenced that fine control of the electron dose, and therefore of the local concentration of reactive iron species in the vicinity of the nuclei, enables controlling crystal growth and selecting the morphology of the resulting iron oxide nanoparticles. Such a direct observation of the nucleation process templated by vesicular assemblies in a hydrophobic organic solvent sheds new light on the formation process of metal oxide nanoparticles and therefore opens ways for the synthesis of inorganic colloidal systems with tunable shape and size.
Collapse
Affiliation(s)
- Nathaly Ortiz Peña
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS Université de Strasbourg, BP 43 Strasbourg Cedex 2, France.
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, 75013 Paris, France
| | - Dris Ihiawakrim
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS Université de Strasbourg, BP 43 Strasbourg Cedex 2, France.
| | - Sorina Creţu
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS Université de Strasbourg, BP 43 Strasbourg Cedex 2, France.
| | - Geoffrey Cotin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS Université de Strasbourg, BP 43 Strasbourg Cedex 2, France.
| | - Céline Kiefer
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS Université de Strasbourg, BP 43 Strasbourg Cedex 2, France.
| | - Sylvie Begin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS Université de Strasbourg, BP 43 Strasbourg Cedex 2, France.
| | - Clément Sanchez
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005, Paris, France
- University of Strasbourg Institute for Advanced Studies (USIAS), 67083 Strasbourg, France
| | - David Portehault
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005, Paris, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS Université de Strasbourg, BP 43 Strasbourg Cedex 2, France.
| |
Collapse
|
3
|
Meng Y, Zhang H, Hu N, Zhang B, Qiu Z, Hu J, Zheng G, Zhang L, Xu X. Construction of silver nanoparticles by the triple helical polysaccharide from black fungus and the antibacterial activities. Int J Biol Macromol 2021; 182:1170-1178. [PMID: 33895177 DOI: 10.1016/j.ijbiomac.2021.04.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 02/01/2023]
Abstract
Size controllable silver nanoparticles (AgNPs) were synthesized in situ on the polysaccharides-based nanotubes, which were formed by the triple-helix polysaccharide extracted from black fungus (AF1). The results of transmission electron microscope (TEM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) proved that AgNPs with the size from 10-25 nm were uniformly dispersed on the surface of AF1 dendritic nanotubes without affecting their tubular morphology. Moreover, due to the tubular structure, the loaded silver content of the composites (AgNPs and AF1 nanotube, AF1-Ag) could reach about 50% by thermogravimetric analysis (TG) evaluation. Thus, the smaller size of AgNPs and higher silver loading content suggest that the composites could be applied in the biomedical field. The antibacterial properties of AF1-Ag were evaluated as an example in the present work. As expected, the culture medium contained a few of AF1-Ag (10% ω%, c = 50 μg/mL) exhibited obvious antibacterial properties, and the effect of bacteriostasis increased with the increase of the amount of supported silver content. Taken together, the AF1-Ag with good antibacterial activity and good stability has the potential to be applied in the antibacterial field.
Collapse
Affiliation(s)
- Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Hui Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Na Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Baohui Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Lina Zhang
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China; Hubei Engineering Center of Natural Polymers-based Medical Materials, Wuhan University, Wuhan 430072, China.
| |
Collapse
|