1
|
Iannetti L, Cambiaso S, Rasera F, Giacomello A, Rossi G, Bochicchio D, Tinti A. The surface tension of Martini 3 water mixtures. J Chem Phys 2024; 161:084707. [PMID: 39189655 DOI: 10.1063/5.0221199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
The Martini model, a coarse-grained forcefield for biomolecular simulations, has experienced a vast increase in popularity in the past decade. Its building-block approach balances computational efficiency with high chemical specificity, enabling the simulation of organic and inorganic molecules. The modeling of coarse-grained beads as Lennard-Jones particles poses challenges for the accurate reproduction of liquid-vapor interfacial properties, which are crucial in various applications, especially in the case of water. The latest version of the forcefield introduces refined interaction parameters for water beads, tackling the well-known artifact of Martini water freezing at room temperature. In addition, multiple sizes of water beads are available for simulating the solvation of small cavities, including the smallest pockets of proteins. This work focuses on studying the interfacial properties of Martini water, including surface tension and surface thickness. Employing the test-area method, we systematically compute the liquid-vapor surface tension across various combinations of water bead sizes and for temperatures from 300 to 350 K. These findings are of interest to the Martini community as they allow users to account for the low interfacial tension of Martini water by properly adjusting observables computed via coarse-grained simulations to allow for accurate matching against all-atom or experimental results. Surface tension data are also interpreted in terms of local enrichment of the various mixture components at the liquid-vapor interface by means of Gibbs' adsorption formalism. Finally, the critical scaling of the Martini surface tension with temperature is reported to be consistent with the critical exponent of the 3D Ising universality class.
Collapse
Affiliation(s)
- Lorenzo Iannetti
- Dipartimento di Ingegneria Meccanica ed Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
| | - Sonia Cambiaso
- Dipartimento di Fisica, Università of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Fabio Rasera
- Dipartimento di Ingegneria Meccanica ed Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica ed Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
| | - Giulia Rossi
- Dipartimento di Fisica, Università of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Davide Bochicchio
- Dipartimento di Fisica, Università of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Antonio Tinti
- Dipartimento di Ingegneria Meccanica ed Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
| |
Collapse
|
2
|
Hendrikse RL, Amador C, Wilson MR. A many-body dissipative particle dynamics parametrisation scheme to study behaviour at air-water interfaces. SOFT MATTER 2023; 19:3590-3604. [PMID: 37161599 DOI: 10.1039/d3sm00276d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this article, we present a general parametrisation scheme for many-body dissipative particle dynamics (MDPD). The scheme is based on matching model components to experimental surface tensions and chemical potentials. This allows us to obtain the correct surface and mixing behaviours of complex, multicomponent systems. The methodology is tested by modelling the behaviour of nonionic polyoxyethylene alkyl ether surfactants at an air/water interface. In particular, the influence of the number of ethylene oxide units in the surfactant head group is investigated. We find good agreement with many experimentally obtained parameters, such as minimum surface area per molecule; and a decrease in the surface tension with increasing surfactant surface density. Moreover, we observe an orientational transition, from surfactants lying directly on the water surface at low surface coverage, to surfactants lying parallel or tilted with respect to the surface normal at high surface coverage. The parametrisation scheme is also extended to cover the zwitterionic surfactant lauryldimethylamine oxide (LDAO), where we provide good predictions for the surface tension at maximum surface coverage. Here, if we exceed this coverage, we are able to demonstrate the spontaneous production of micelles from the surface surfactant layer.
Collapse
Affiliation(s)
| | - Carlos Amador
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | - Mark R Wilson
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
3
|
Hernández Velázquez JD, Sánchez-Balderas G, Gama Goicochea A, Pérez E. The effective interfacial tensions between pure liquids and rough solids: a coarse-grained simulation study. Phys Chem Chem Phys 2023; 25:10325-10334. [PMID: 36987944 DOI: 10.1039/d2cp04321a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The effective solid-liquid interfacial tension (SL-IFT) between pure liquids and rough solid surfaces is studied through coarse-grained simulations. Using the dissipative particle dynamics method, we design solid-liquid interfaces, confining a pure liquid between two explicit solid surfaces with different roughness degrees. The roughness of the solid phase is characterized by Wenzel's roughness factor and the effective SL-IFT is reported as a function of it also. Two solid-liquid systems, different from each other by their solid-liquid repulsion strength, are studied to measure the effects caused by the surface roughness on the calculation of . It is found that the roughness changes the structure of the liquid, which is observed in the first layer of liquid near the solid. These changes are responsible for the effective SL-IFT increase, as surface roughness increases. Although there is a predominance of surface roughness in the calculation of it is found that the effective SL-IFT is directly proportional to the magnitude of the solid-liquid repulsion strength. The insights provided by these simulations suggest that the increase of Wenzel's roughness factor increases the number of effective solid-liquid interactions between particles, yielding significant changes in the local values of the normal and tangential components of the pressure tensor.
Collapse
Affiliation(s)
- J D Hernández Velázquez
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, 55210, Ecatepec de Morelos, Estado de México, Mexico.
| | - G Sánchez-Balderas
- Instituto de Física, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, SLP, Mexico.
| | - A Gama Goicochea
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, 55210, Ecatepec de Morelos, Estado de México, Mexico.
| | - E Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
4
|
Weiand E, Ewen JP, Koenig PH, Roiter Y, Page SH, Angioletti-Uberti S, Dini D. Coarse-grained molecular models of the surface of hair. SOFT MATTER 2022; 18:1779-1792. [PMID: 35112700 DOI: 10.1039/d1sm01720a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We present a coarse-grained molecular model of the surface of human hair, which consists of a supported lipid monolayer, in the MARTINI framework. Using coarse-grained molecular dynamics (MD) simulations, we identify a lipid grafting distance that yields a monolayer thickness consistent with both atomistic MD simulations and experimental measurements of the hair surface. Coarse-grained models for fully-functionalised, partially damaged, and fully damaged hair surfaces are created by randomly replacing neutral thioesters with anionic sulfonate groups. This mimics the progressive removal of fatty acids from the hair surface by bleaching and leads to chemically heterogeneous surfaces. Using molecular dynamics (MD) simulations, we study the island structures formed by the lipid monolayers at different degrees of damage in vacuum and in the presence of polar (water) and non-polar (n-hexadecane) solvents. We also use MD simulations to compare the wetting behaviour of water and n-hexadecane droplets on the model surfaces through contact angle measurements, which are compared to experiments using virgin and bleached hair. The model surfaces capture the experimentally-observed transition of the hair surface from hydrophobic (and oleophilic) to hydrophilic (and oleophobic) as the level of bleaching damage increases. By selecting surfaces with specific damage ratios, we obtain contact angles from the MD simulations that are in good agreement with experiments for both solvents on virgin and bleached human hairs. To negate the possible effects of microscale curvature and roughness of real hairs on wetting, we also conduct additional experiments using biomimetic surfaces that are co-functionalised with fatty acids and sulfonate groups. In both the MD simulations and experiments, the cosine of the water contact angle increases linearly with the sulfonate group surface coverage with a similar slope. We expect that the proposed systems will be useful for future molecular dynamics simulations of the adsorption and tribological behaviour of hair, as well as other chemically heterogeneous surfaces.
Collapse
Affiliation(s)
- Erik Weiand
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK.
- Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
- Thomas Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - James P Ewen
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK.
- Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
- Thomas Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - Peter H Koenig
- Corporate Functions Analytical and Data & Modeling Sciences, Mason Business Center, The Procter and Gamble Company, Cincinnati, 45224 Ohio, USA
| | - Yuri Roiter
- Corporate Functions Analytical and Data & Modeling Sciences, Mason Business Center, The Procter and Gamble Company, Cincinnati, 45224 Ohio, USA
| | - Steven H Page
- Corporate Functions Analytical and Data & Modeling Sciences, Mason Business Center, The Procter and Gamble Company, Cincinnati, 45224 Ohio, USA
| | - Stefano Angioletti-Uberti
- Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
- Thomas Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
- Department of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK.
- Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
- Thomas Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| |
Collapse
|
5
|
Correlation between Ion Composition of Oligomineral Water and Calcium Oxalate Crystal Formation. CRYSTALS 2021. [DOI: 10.3390/cryst11121507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ion content of drinking water might be associated with urinary stone formation, representing a keystone of conservative nephrolithiasis management. However, the effects of specific ions on calcium oxalate crystal formation and their mechanism of action are still highly controversial. We report an investigation of the effects of oligomineral waters with similar total salt amount but different ion composition on calcium oxalate (CaOx) precipitation in vitro, combining gravimetric and microscopic assays. The results suggest that the “collective” physicochemical properties of the aqueous medium, deriving from the ion combination rather than from a single ionic species, are of importance. Particularly, the ability of ions to strengthen/weaken the aqueous medium structure determines an increase/decrease in the interfacial energy, modulating the formation and growth of CaOx crystals.
Collapse
|
6
|
Wang X, Santo KP, Neimark AV. Modeling Gas-Liquid Interfaces by Dissipative Particle Dynamics: Adsorption and Surface Tension of Cetyl Trimethyl Ammonium Bromide at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14686-14698. [PMID: 33216560 DOI: 10.1021/acs.langmuir.0c02572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Adsorption of surfactants at gas-liquid interfaces that causes reduction in the surface tension is a classical problem in colloid and interface science with multiple practical applications in oil and gas recovery, separations, cosmetics, personal care, and biomedicine. Here, we develop an original coarse-grained model of the liquid-gas interface within the conventional dissipative particle dynamics (DPD) framework with the goal of quantitatively predicting the surface tension in the presence of surfactants. As a practical case-study example, we explore the adsorption of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) on the air-water interface. The gas phase is modeled as a DPD fluid composed of fictitious hard-core "gas" beads with exponentially decaying repulsive potentials to prevent penetration of the liquid phase components. A rigorous parametrization scheme is proposed based on matching the bulk and interfacial properties of water and octane taken as the reference compounds. Quantitative agreement between the simulated and experimental surface tension of CTAB solutions is found for a wide range of bulk surfactant concentrations (∼10-3 to ∼1 mmol/L) with the reduction of the surface tension from ∼72 mN/m (pure water) to the limiting value of ∼37.5 mN/m at the critical micelle concentration. The gas phase DPD model with the proposed parametrization scheme can be extended and applied to modeling various gas-liquid interfaces with surfactant and lipid monolayers, such as bubble suspensions, foams, froths, etc.
Collapse
Affiliation(s)
- Xinyang Wang
- Chemical and Biochemical Engineering Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
- School of Resources and Civil Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Kolattukudy P Santo
- Chemical and Biochemical Engineering Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Alexander V Neimark
- Chemical and Biochemical Engineering Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
7
|
Dreher T, Lemarchand C, Pineau N, Bourasseau E, Ghoufi A, Malfreyt P. Calculation of the interfacial tension of the graphene-water interaction by molecular simulations. J Chem Phys 2019; 150:014703. [PMID: 30621407 DOI: 10.1063/1.5048576] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We report the calculation of the solid-liquid interface tension of the graphene-water interaction by using molecular simulations. Local profiles of the interfacial tension are given through the mechanical and thermodynamic definitions. The dependence of the interfacial tension on the graphene area is investigated by applying both reaction field and Ewald summation techniques. The structure of the interfacial region close to the graphene sheet is analyzed through the profiles of the density and hydrogen bond number and the orientation of the water molecules. We complete this study by plotting the profiles of the components of the pressure tensor calculated by the Ewald summation and reaction field methods. We also investigate the case of a reaction field version consisting in applying a damped shifted force in the case of the calculation of the pressure components.
Collapse
Affiliation(s)
| | | | | | | | - Aziz Ghoufi
- Université de Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Patrice Malfreyt
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
An Y, Bejagam KK, Deshmukh SA. Development of Transferable Nonbonded Interactions between Coarse-Grained Hydrocarbon and Water Models. J Phys Chem B 2019; 123:909-921. [DOI: 10.1021/acs.jpcb.8b07990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Huang P, Shen L, Gan Y, Nguyen GD, El-Zein A, Maggi F. Coarse-grained modeling of multiphase interactions at microscale. J Chem Phys 2018; 149:124505. [PMID: 30278659 DOI: 10.1063/1.5038903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The objective of this study is to develop and test a coarse-grained molecular dynamics framework to model microscale multiphase systems with different inter-particle interactions and recover emerging thermodynamic and mechanical properties at the microscale. A water-vapor model and a fused silica model are developed to demonstrate the capability of our framework. The former can reproduce the water density and surface tension over a wide range of temperatures; the latter can reproduce experimental density, tensile strength, and Young's modulus of fused silica. Therefore, the deformable solid model is implemented in the proposed framework. Validations of spatial scaling methods for solid, liquid, and multiphase systems suggest that the proposed framework can be calibrated at an arbitrary microscale and used at a different length scale without recalibration. Different values of wettability for a solid-liquid-vapor system that is characterized by the contact angle can be achieved by changing the solid-liquid inter-particle potential. Thanks to these features, the proposed coarse-grained molecular dynamics framework can potentially find applications in modeling systems in which multiple phases coexist and have substantial interactions.
Collapse
Affiliation(s)
- Pengyu Huang
- School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Luming Shen
- School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yixiang Gan
- School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Giang D Nguyen
- School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Abbas El-Zein
- School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Federico Maggi
- School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|