1
|
Müller C, Steiner M, Unsleber JP, Weymuth T, Bensberg M, Csizi KS, Mörchen M, Türtscher PL, Reiher M. Heron: Visualizing and Controlling Chemical Reaction Explorations and Networks. J Phys Chem A 2024; 128:9028-9044. [PMID: 39360814 PMCID: PMC11492315 DOI: 10.1021/acs.jpca.4c03936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 10/18/2024]
Abstract
Automated and high-throughput quantum chemical investigations into chemical processes have become feasible in great detail and broad scope. This results in an increase in complexity of the tasks and in the amount of generated data. An efficient and intuitive way for an operator to interact with these data and to steer virtual experiments is required. Here, we introduce Heron, a graphical user interface that allows for advanced human-machine interactions with quantum chemical exploration campaigns into molecular structure and reactivity. Heron offers access to interactive and automated explorations of chemical reactions with standard electronic structure modules, haptic force feedback, microkinetic modeling, and refinement of data by automated correlated calculations including black-box complete active space calculations. It is tailored to the exploration and analysis of vast chemical reaction networks. We show how interoperable modules enable advanced workflows and pave the way for routine low-entrance-barrier access to advanced modeling techniques.
Collapse
Affiliation(s)
| | | | | | - Thomas Weymuth
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Moritz Bensberg
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Katja-Sophia Csizi
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Maximilian Mörchen
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Paul L. Türtscher
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
2
|
Weymuth T, Unsleber JP, Türtscher PL, Steiner M, Sobez JG, Müller CH, Mörchen M, Klasovita V, Grimmel SA, Eckhoff M, Csizi KS, Bosia F, Bensberg M, Reiher M. SCINE-Software for chemical interaction networks. J Chem Phys 2024; 160:222501. [PMID: 38857173 DOI: 10.1063/5.0206974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
The software for chemical interaction networks (SCINE) project aims at pushing the frontier of quantum chemical calculations on molecular structures to a new level. While calculations on individual structures as well as on simple relations between them have become routine in chemistry, new developments have pushed the frontier in the field to high-throughput calculations. Chemical relations may be created by a search for specific molecular properties in a molecular design attempt, or they can be defined by a set of elementary reaction steps that form a chemical reaction network. The software modules of SCINE have been designed to facilitate such studies. The features of the modules are (i) general applicability of the applied methodologies ranging from electronic structure (no restriction to specific elements of the periodic table) to microkinetic modeling (with little restrictions on molecularity), full modularity so that SCINE modules can also be applied as stand-alone programs or be exchanged for external software packages that fulfill a similar purpose (to increase options for computational campaigns and to provide alternatives in case of tasks that are hard or impossible to accomplish with certain programs), (ii) high stability and autonomous operations so that control and steering by an operator are as easy as possible, and (iii) easy embedding into complex heterogeneous environments for molecular structures taken individually or in the context of a reaction network. A graphical user interface unites all modules and ensures interoperability. All components of the software have been made available as open source and free of charge.
Collapse
Affiliation(s)
- Thomas Weymuth
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jan P Unsleber
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Paul L Türtscher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Miguel Steiner
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jan-Grimo Sobez
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Charlotte H Müller
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Maximilian Mörchen
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Veronika Klasovita
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stephanie A Grimmel
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Marco Eckhoff
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Katja-Sophia Csizi
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Francesco Bosia
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Moritz Bensberg
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Bensberg M, Reiher M. Uncertainty-Aware First-Principles Exploration of Chemical Reaction Networks. J Phys Chem A 2024; 128:4532-4547. [PMID: 38787736 PMCID: PMC11163430 DOI: 10.1021/acs.jpca.3c08386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Exploring large chemical reaction networks with automated exploration approaches and accurate quantum chemical methods can require prohibitively large computational resources. Here, we present an automated exploration approach that focuses on the kinetically relevant part of the reaction network by interweaving (i) large-scale exploration of chemical reactions, (ii) identification of kinetically relevant parts of the reaction network through microkinetic modeling, (iii) quantification and propagation of uncertainties, and (iv) reaction network refinement. Such an uncertainty-aware exploration of kinetically relevant parts of a reaction network with automated accuracy improvement has not been demonstrated before in a fully quantum mechanical approach. Uncertainties are identified by local or global sensitivity analysis. The network is refined in a rolling fashion during the exploration. Moreover, the uncertainties are considered during kinetically steering of a rolling reaction network exploration. We demonstrate our approach for Eschenmoser-Claisen rearrangement reactions. The sensitivity analysis identifies that only a small number of reactions and compounds are essential for describing the kinetics reliably, resulting in efficient explorations without sacrificing accuracy and without requiring prior knowledge about the chemistry unfolding.
Collapse
Affiliation(s)
- Moritz Bensberg
- Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Steiner M, Reiher M. A human-machine interface for automatic exploration of chemical reaction networks. Nat Commun 2024; 15:3680. [PMID: 38693117 PMCID: PMC11063077 DOI: 10.1038/s41467-024-47997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Autonomous reaction network exploration algorithms offer a systematic approach to explore mechanisms of complex chemical processes. However, the resulting reaction networks are so vast that an exploration of all potentially accessible intermediates is computationally too demanding. This renders brute-force explorations unfeasible, while explorations with completely pre-defined intermediates or hard-wired chemical constraints, such as element-specific coordination numbers, are not flexible enough for complex chemical systems. Here, we introduce a STEERING WHEEL to guide an otherwise unbiased automated exploration. The STEERING WHEEL algorithm is intuitive, generally applicable, and enables one to focus on specific regions of an emerging network. It also allows for guiding automated data generation in the context of mechanism exploration, catalyst design, and other chemical optimization challenges. The algorithm is demonstrated for reaction mechanism elucidation of transition metal catalysts. We highlight how to explore catalytic cycles in a systematic and reproducible way. The exploration objectives are fully adjustable, allowing one to harness the STEERING WHEEL for both structure-specific (accurate) calculations as well as for broad high-throughput screening of possible reaction intermediates.
Collapse
Affiliation(s)
- Miguel Steiner
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Markus Reiher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
5
|
Csizi KS, Reiher M. Automated preparation of nanoscopic structures: Graph-based sequence analysis, mismatch detection, and pH-consistent protonation with uncertainty estimates. J Comput Chem 2024; 45:761-776. [PMID: 38124290 DOI: 10.1002/jcc.27276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Structure and function in nanoscale atomistic assemblies are tightly coupled, and every atom with its specific position and even every electron will have a decisive effect on the electronic structure, and hence, on the molecular properties. Molecular simulations of nanoscopic atomistic structures therefore require accurately resolved three-dimensional input structures. If extracted from experiment, these structures often suffer from severe uncertainties, of which the lack of information on hydrogen atoms is a prominent example. Hence, experimental structures require careful review and curation, which is a time-consuming and error-prone process. Here, we present a fast and robust protocol for the automated structure analysis and pH-consistent protonation, in short, ASAP. For biomolecules as a target, the ASAP protocol integrates sequence analysis and error assessment of a given input structure. ASAP allows for pK a prediction from reference data through Gaussian process regression including uncertainty estimation and connects to system-focused atomistic modeling described in Brunken and Reiher (J. Chem. Theory Comput. 16, 2020, 1646). Although focused on biomolecules, ASAP can be extended to other nanoscopic objects, because most of its design elements rely on a general graph-based foundation guaranteeing transferability. The modular character of the underlying pipeline supports different degrees of automation, which allows for (i) efficient feedback loops for human-machine interaction with a low entrance barrier and for (ii) integration into autonomous procedures such as automated force field parametrizations. This facilitates fast switching of the pH-state through on-the-fly system-focused reparametrization during a molecular simulation at virtually no extra computational cost.
Collapse
Affiliation(s)
- Katja-Sophia Csizi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Markus Reiher
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Focke K, De Santis M, Wolter M, Martinez B JA, Vallet V, Pereira Gomes AS, Olejniczak M, Jacob CR. Interoperable workflows by exchanging grid-based data between quantum-chemical program packages. J Chem Phys 2024; 160:162503. [PMID: 38686818 DOI: 10.1063/5.0201701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Quantum-chemical subsystem and embedding methods require complex workflows that may involve multiple quantum-chemical program packages. Moreover, such workflows require the exchange of voluminous data that go beyond simple quantities, such as molecular structures and energies. Here, we describe our approach for addressing this interoperability challenge by exchanging electron densities and embedding potentials as grid-based data. We describe the approach that we have implemented to this end in a dedicated code, PyEmbed, currently part of a Python scripting framework. We discuss how it has facilitated the development of quantum-chemical subsystem and embedding methods and highlight several applications that have been enabled by PyEmbed, including wave-function theory (WFT) in density-functional theory (DFT) embedding schemes mixing non-relativistic and relativistic electronic structure methods, real-time time-dependent DFT-in-DFT approaches, the density-based many-body expansion, and workflows including real-space data analysis and visualization. Our approach demonstrates, in particular, the merits of exchanging (complex) grid-based data and, in general, the potential of modular software development in quantum chemistry, which hinges upon libraries that facilitate interoperability.
Collapse
Affiliation(s)
- Kevin Focke
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Matteo De Santis
- CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, Univ. Lille, F-59000 Lille, France
| | - Mario Wolter
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Jessica A Martinez B
- CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, Univ. Lille, F-59000 Lille, France
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
| | - Valérie Vallet
- CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, Univ. Lille, F-59000 Lille, France
| | | | - Małgorzata Olejniczak
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Petrus E, Garay-Ruiz D, Reiher M, Bo C. Multi-Time-Scale Simulation of Complex Reactive Mixtures: How Do Polyoxometalates Form? J Am Chem Soc 2023; 145:18920-18930. [PMID: 37496164 DOI: 10.1021/jacs.3c05514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Understanding the dynamics of reactive mixtures still challenges both experiments and theory. A relevant example can be found in the chemistry of molecular metal-oxide nanoclusters, also known as polyoxometalates. The high number of species potentially involved, the interconnectivity of the reaction network, and the precise control of the pH and concentrations needed in the synthesis of such species make the theoretical/computational treatment of such processes cumbersome. This work addresses this issue relying on a unique combination of recently developed computational methods that tackle the construction, kinetic simulation, and analysis of complex chemical reaction networks. By using the Bell-Evans-Polanyi approximation for estimating activation energies, and an accurate and robust linear scaling for correcting the computed pKa values, we report herein multi-time-scale kinetic simulations for the self-assembly processes of polyoxotungstates that comprise 22 orders of magnitude, from tens of femtoseconds to months of reaction time. This very large time span was required to reproduce very fast processes such as the acid/base equilibria (at 10-12 s), relatively slow reactions such as the formation of key clusters such as the metatungstate (at 103 s), and the very slow assembly of the decatungstate (at 106 s). Analysis of the kinetic data and of the reaction network topology shed light onto the details of the main reaction mechanisms, which explains the origin of kinetic and thermodynamic control followed by the reaction. Simulations at alkaline pH fully reproduce experimental evidence since clusters do not form under those conditions.
Collapse
Affiliation(s)
- Enric Petrus
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans, 16, Tarragona 43007, Spain
| | - Diego Garay-Ruiz
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans, 16, Tarragona 43007, Spain
| | - Markus Reiher
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans, 16, Tarragona 43007, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel•li Domingo s/n, Tarragona 43007, Spain
| |
Collapse
|
8
|
Unsleber JP. Accelerating Reaction Network Explorations with Automated Reaction Template Extraction and Application. J Chem Inf Model 2023; 63:3392-3403. [PMID: 37216641 PMCID: PMC10268957 DOI: 10.1021/acs.jcim.3c00102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Indexed: 05/24/2023]
Abstract
Autonomously exploring chemical reaction networks with first-principles methods can generate vast data. Especially autonomous explorations without tight constraints risk getting trapped in regions of reaction networks that are not of interest. In many cases, these regions of the networks are only exited once fully searched. Consequently, the required human time for analysis and computer time for data generation can make these investigations unfeasible. Here, we show how simple reaction templates can facilitate the transfer of chemical knowledge from expert input or existing data into new explorations. This process significantly accelerates reaction network explorations and improves cost-effectiveness. We discuss the definition of the reaction templates and their generation based on molecular graphs. The resulting simple filtering mechanism for autonomous reaction network investigations is exemplified with a polymerization reaction.
Collapse
Affiliation(s)
- Jan P. Unsleber
- Laboratory
of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Concentration‐Flux‐Steered Mechanism Exploration with an Organocatalysis Application. Isr J Chem 2023. [DOI: 10.1002/ijch.202200123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
10
|
Csizi K, Reiher M. Universal
QM
/
MM
approaches for general nanoscale applications. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Markus Reiher
- Laboratorium für Physikalische Chemie ETH Zürich Zürich Switzerland
| |
Collapse
|
11
|
Abstract
Reactivity scales are useful research tools for chemists, both experimental and computational. However, to determine the reactivity of a single molecule, multiple measurements need to be carried out, which is a time-consuming and resource-intensive task. In this Tutorial Review, we present alternative approaches for the efficient generation of quantitative structure-reactivity relationships that are based on quantum chemistry, supervised learning, and uncertainty quantification. First published in 2002, we observe a tendency for these relationships to become not only more predictive but also more interpretable over time.
Collapse
Affiliation(s)
- Maike Vahl
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany.
| | - Jonny Proppe
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany.
| |
Collapse
|
12
|
Türtscher PL, Reiher M. Pathfinder─Navigating and Analyzing Chemical Reaction Networks with an Efficient Graph-Based Approach. J Chem Inf Model 2023; 63:147-160. [PMID: 36515968 PMCID: PMC9832502 DOI: 10.1021/acs.jcim.2c01136] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 12/15/2022]
Abstract
While the field of first-principles explorations into chemical reaction space has been continuously growing, the development of strategies for analyzing resulting chemical reaction networks (CRNs) is lagging behind. A CRN consists of compounds linked by reactions. Analyzing how these compounds are transformed into one another based on kinetic modeling is a nontrivial task. Here, we present the graph-optimization-driven algorithm and program Pathfinder to allow for such an analysis of a CRN. The CRN for this work has been obtained with our open-source Chemoton reaction network exploration software. Chemoton probes reactive combinations of compounds for elementary steps and sorts them into reactions. By encoding these reactions of the CRN as a graph consisting of compound and reaction vertices and adding information about activation barriers as well as required reagents to the edges of the graph yields a complete graph-theoretical representation of the CRN. Since the probabilities of the formation of compounds depend on the starting conditions, the consumption of any compound during a reaction must be accounted for to reflect the availability of reagents. To account for this, we introduce compound costs to reflect compound availability. Simultaneously, the determined compound costs rank the compounds in the CRN in terms of their probability to be formed. This ranking then allows us to probe easily accessible compounds in the CRN first for further explorations into yet unexplored terrain. We first illustrate the working principle on an abstract small CRN. Afterward, Pathfinder is demonstrated in the example of the disproportionation of iodine with water and the comproportionation of iodic acid and hydrogen iodide. Both processes are analyzed within the same CRN, which we construct with our autonomous first-principles CRN exploration software Chemoton [Unsleber, J. P.; J. Chem. Theory Comput. 2022, 18, 5393-5409] guided by Pathfinder.
Collapse
Affiliation(s)
- Paul L. Türtscher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Lavigne C, Gomes G, Pollice R, Aspuru-Guzik A. Guided discovery of chemical reaction pathways with imposed activation. Chem Sci 2022; 13:13857-13871. [PMID: 36544742 PMCID: PMC9710306 DOI: 10.1039/d2sc05135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Computational power and quantum chemical methods have improved immensely since computers were first applied to the study of reactivity, but the de novo prediction of chemical reactions has remained challenging. We show that complex reaction pathways can be efficiently predicted in a guided manner using chemical activation imposed by geometrical constraints of specific reactive modes, which we term imposed activation (IACTA). Our approach is demonstrated on realistic and challenging chemistry, such as a triple cyclization cascade involved in the total synthesis of a natural product, a water-mediated Michael addition, and several oxidative addition reactions of complex drug-like molecules. Notably and in contrast with traditional hand-guided computational chemistry calculations, our method requires minimal human involvement and no prior knowledge of the products or the associated mechanisms. We believe that IACTA will be a transformational tool to screen for chemical reactivity and to study both by-product formation and decomposition pathways in a guided way.
Collapse
Affiliation(s)
- Cyrille Lavigne
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada
| | - Gabe Gomes
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada,Chemical Physics Theory Group, Department of Chemistry, University of Toronto80 St George StTorontoOntarioM5S 3H6Canada
| | - Robert Pollice
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada,Chemical Physics Theory Group, Department of Chemistry, University of Toronto80 St George StTorontoOntarioM5S 3H6Canada
| | - Alán Aspuru-Guzik
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada,Chemical Physics Theory Group, Department of Chemistry, University of Toronto80 St George StTorontoOntarioM5S 3H6Canada,Department of Chemical Engineering & Applied Chemistry, University of Toronto200 College St.OntarioM5S 3E5Canada,Department of Materials Science & Engineering, University of Toronto184 College St.OntarioM5S 3E4Canada,Vector Institute for Artificial Intelligence661 University Ave Suite 710TorontoOntarioM5G 1M1Canada,Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR)661 University AveTorontoOntarioM5GCanada
| |
Collapse
|
14
|
Ismail I, Chantreau Majerus R, Habershon S. Graph-Driven Reaction Discovery: Progress, Challenges, and Future Opportunities. J Phys Chem A 2022; 126:7051-7069. [PMID: 36190262 PMCID: PMC9574932 DOI: 10.1021/acs.jpca.2c06408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/22/2022] [Indexed: 11/29/2022]
Abstract
Graph-based descriptors, such as bond-order matrices and adjacency matrices, offer a simple and compact way of categorizing molecular structures; furthermore, such descriptors can be readily used to catalog chemical reactions (i.e., bond-making and -breaking). As such, a number of graph-based methodologies have been developed with the goal of automating the process of generating chemical reaction network models describing the possible mechanistic chemistry in a given set of reactant species. Here, we outline the evolution of these graph-based reaction discovery schemes, with particular emphasis on more recent methods incorporating graph-based methods with semiempirical and ab initio electronic structure calculations, minimum-energy path refinements, and transition state searches. Using representative examples from homogeneous catalysis and interstellar chemistry, we highlight how these schemes increasingly act as "virtual reaction vessels" for interrogating mechanistic questions. Finally, we highlight where challenges remain, including issues of chemical accuracy and calculation speeds, as well as the inherent challenge of dealing with the vast size of accessible chemical reaction space.
Collapse
Affiliation(s)
- Idil Ismail
- Department of Chemistry, University
of Warwick, CoventryCV4 7AL, United Kingdom
| | | | - Scott Habershon
- Department of Chemistry, University
of Warwick, CoventryCV4 7AL, United Kingdom
| |
Collapse
|
15
|
Unsleber JP, Grimmel SA, Reiher M. Chemoton 2.0: Autonomous Exploration of Chemical Reaction Networks. J Chem Theory Comput 2022; 18:5393-5409. [PMID: 35926118 PMCID: PMC11516015 DOI: 10.1021/acs.jctc.2c00193] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/28/2022]
Abstract
Fueled by advances in hardware and algorithm design, large-scale automated explorations of chemical reaction space have become possible. Here, we present our approach to an open-source, extensible framework for explorations of chemical reaction mechanisms based on the first-principles of quantum mechanics. It is intended to facilitate reaction network explorations for diverse chemical problems with a wide range of goals such as mechanism elucidation, reaction path optimization, retrosynthetic path validation, reagent design, and microkinetic modeling. The stringent first-principles basis of all algorithms in our framework is key for the general applicability that avoids any restrictions to specific chemical systems. Such an agile framework requires multiple specialized software components of which we present three modules in this work. The key module, Chemoton, drives the exploration of reaction networks. For the exploration itself, we introduce two new algorithms for elementary-step searches that are based on Newton trajectories. The performance of these algorithms is assessed for a variety of reactions characterized by a broad chemical diversity in terms of bonding patterns and chemical elements. Chemoton successfully recovers the vast majority of these. We provide the resulting data, including large numbers of reactions that were not included in our reference set, to be used as a starting point for further explorations and for future reference.
Collapse
Affiliation(s)
- Jan P. Unsleber
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Stephanie A. Grimmel
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
16
|
Ismail I, Robertson C, Habershon S. Successes and challenges in using machine-learned activation energies in kinetic simulations. J Chem Phys 2022; 157:014109. [DOI: 10.1063/5.0096027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The prediction of the thermodynamic and kinetic properties of chemical reactions is increasingly being addressed by machine-learning (ML) methods such as artificial neural networks (ANNs). While a number of recent studies have reported success in predicting chemical reaction activation energies, less attention has focused on how the accuracy of ML predictions filter through to predictions of macroscopic observables. Here, we consider the impact of the uncertainty associated with ML prediction of activation energies on observable properties of chemical reaction networks, as given by microkinetics simulations based on ML-predicted reaction rates. After training an ANN to predict activation energies given standard molecular descriptors for reactants and products alone, we performed microkinetics simulations of three different prototypical reaction networks: formamide decomposition, aldol reactions and decomposition of 3-hydroperoxypropanal. We find that the kinetic modelling predictions can be in excellent agreement with corresponding simulations performed with ab initio calculations, but this is dependent on the inherent energetic landscape of the networks. We use these simulations to suggest some guidelines for when ML-based activation energies can be reliable, and when one should take more care in applications to kinetics modelling.
Collapse
Affiliation(s)
| | | | - Scott Habershon
- Department of Chemistry, University of Warwick, United Kingdom
| |
Collapse
|
17
|
Ji L, Li Y, Wang J, Ning A, Zhang N, Liang S, He J, Zhang T, Qu Z, Gao J. Community Reaction Network Reduction for Constructing a Coarse-Grained Representation of Combustion Reaction Mechanisms. J Chem Inf Model 2022; 62:2352-2364. [PMID: 35442657 DOI: 10.1021/acs.jcim.2c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A community-reaction network reduction (CNR) approach is presented for mechanism reduction on the basis of a network-based community detection technique, a concept related to pre-equilibrium in chemical kinetics. In this method, the detailed combustion mechanism is first transformed into a weighted network, in which communities of species that have dense inner connections under the critical ignition conditions are identified. By analyzing the community partitions in different regions, we determine the effective functional groups and driving processes. Then, a skeletal model for the overall mechanism is deduced according to the network centrality data, including transition pathway identification and reaction-path flux. The CNR method is illustrated on the hydrogen autoignition system which has been extensively investigated, and a new reduced mechanism involving seven processes is proposed. Dynamics simulations employing the present CNR model show that the computed ignition time and distribution of major species on a wide range of temperature and pressure conditions are in accord with the experiments and results from other methods.
Collapse
Affiliation(s)
- Lin Ji
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yue Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jie Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - An Ning
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Naixin Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Shengyao Liang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jiyun He
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Tianyu Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zexing Qu
- Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130015, China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China.,Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Proppe J, Kircher J. Uncertainty Quantification of Reactivity Scales. Chemphyschem 2022; 23:e202200061. [PMID: 35189024 PMCID: PMC9314972 DOI: 10.1002/cphc.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Indexed: 11/09/2022]
Abstract
According to Mayr, polar organic synthesis can be rationalized by a simple empirical relationship linking bimolecular rate constants to as few as three reactivity parameters. Here, we propose an extension to Mayr's reactivity method that is rooted in uncertainty quantification and transforms the reactivity parameters into probability distributions. Through uncertainty propagation, these distributions can be transformed into uncertainty estimates for bimolecular rate constants. Chemists can exploit these virtual error bars to enhance synthesis planning and to decrease the ambiguity of conclusions drawn from experimental data. We demonstrate the above at the example of the reference data set released by Mayr and co-workers [J. Am. Chem. Soc. 2001, 123, 9500; J. Am. Chem. Soc. 2012, 134, 13902]. As by-product of the new approach, we obtain revised reactivity parameters for 36 π-nucleophiles and 32 benzhydrylium ions.
Collapse
Affiliation(s)
- Jonny Proppe
- Georg-August UniversityInstitute of Physical ChemistryTammannstrasse 637077GöttingenGermany
- Present address: Technische Universität BraunschweigInstitute of Physical and Theoretical ChemistryGaussstrasse 1738106BraunschweigGermany
| | - Johannes Kircher
- Georg-August UniversityInstitute of Physical ChemistryTammannstrasse 637077GöttingenGermany
| |
Collapse
|
19
|
Chen X, Liu M, Gao J. CARNOT: a Fragment-Based Direct Molecular Dynamics and Virtual-Reality Simulation Package for Reactive Systems. J Chem Theory Comput 2022; 18:1297-1313. [PMID: 35129348 DOI: 10.1021/acs.jctc.1c01032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traditionally, the study of reaction mechanisms of complex reaction systems such as combustion has been performed on an individual basis by optimizations of transition structure and minimum energy path or by reaction dynamics trajectory calculations for one elementary reaction at a time. It is effective, but time-consuming, whereas important and unexpected processes could have been missed. In this article, we present a direct molecular dynamics (DMD) approach and a virtual-reality simulation program, CARNOT, in which plausible chemical reactions are simulated simultaneously at finite temperature and pressure conditions. A key concept of the present ab initio molecular dynamics method is to partition a large, chemically reactive system into molecular fragments that can be adjusted on the fly of a DMD simulation. The theory represents an extension of the explicit polarization method to reactive events, called ReX-Pol. We propose a highest-and-lowest adapted-spin approximation to define the local spins of individual fragments, rather than treating the entire system by a delocalized wave function. Consequently, the present ab initio DMD can be applied to reactive systems consisting of an arbitrarily varying number of closed and open-shell fragments such as free radicals, zwitterions, and separate ions found in combustion and other reactions. A graph-data structure algorithm was incorporated in CARNOT for the analysis of reaction networks, suitable for reaction mechanism reduction. Employing the PW91 density functional theory and the 6-31+G(d) basis set, the capabilities of the CARNOT program were illustrated by a combustion reaction, consisting of 28 650 atoms, and by reaction network analysis that revealed a range of mechanistic and dynamical events. The method may be useful for applications to other types of complex reactions.
Collapse
Affiliation(s)
- Xin Chen
- Peking University Shenzhen Graduate School, Shenzhen, Guangdong 581055, China.,Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 581055, China
| | - Meiyi Liu
- Peking University Shenzhen Graduate School, Shenzhen, Guangdong 581055, China.,Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 581055, China
| | - Jiali Gao
- Peking University Shenzhen Graduate School, Shenzhen, Guangdong 581055, China.,Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 581055, China.,Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Steiner M, Reiher M. Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Top Catal 2022; 65:6-39. [PMID: 35185305 PMCID: PMC8816766 DOI: 10.1007/s11244-021-01543-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Autonomous computations that rely on automated reaction network elucidation algorithms may pave the way to make computational catalysis on a par with experimental research in the field. Several advantages of this approach are key to catalysis: (i) automation allows one to consider orders of magnitude more structures in a systematic and open-ended fashion than what would be accessible by manual inspection. Eventually, full resolution in terms of structural varieties and conformations as well as with respect to the type and number of potentially important elementary reaction steps (including decomposition reactions that determine turnover numbers) may be achieved. (ii) Fast electronic structure methods with uncertainty quantification warrant high efficiency and reliability in order to not only deliver results quickly, but also to allow for predictive work. (iii) A high degree of autonomy reduces the amount of manual human work, processing errors, and human bias. Although being inherently unbiased, it is still steerable with respect to specific regions of an emerging network and with respect to the addition of new reactant species. This allows for a high fidelity of the formalization of some catalytic process and for surprising in silico discoveries. In this work, we first review the state of the art in computational catalysis to embed autonomous explorations into the general field from which it draws its ingredients. We then elaborate on the specific conceptual issues that arise in the context of autonomous computational procedures, some of which we discuss at an example catalytic system. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11244-021-01543-9.
Collapse
Affiliation(s)
- Miguel Steiner
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
21
|
Affiliation(s)
- Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
22
|
Brunken C, Reiher M. Automated Construction of Quantum–Classical Hybrid Models. J Chem Theory Comput 2021; 17:3797-3813. [DOI: 10.1021/acs.jctc.1c00178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Christoph Brunken
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
23
|
Garay-Ruiz D, Bo C. Revisiting Catalytic Cycles: A Broader View through the Energy Span Model. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Diego Garay-Ruiz
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
24
|
Abstract
Modern computational chemistry has reached a stage at which massive exploration into chemical reaction space with unprecedented resolution with respect to the number of potentially relevant molecular structures has become possible. Various algorithmic advances have shown that such structural screenings must and can be automated and routinely carried out. This will replace the standard approach of manually studying a selected and restricted number of molecular structures for a chemical mechanism. The complexity of the task has led to many different approaches. However, all of them address the same general target, namely to produce a complete atomistic picture of the kinetics of a chemical process. It is the purpose of this overview to categorize the problems that should be targeted and to identify the principal components and challenges of automated exploration machines so that the various existing approaches and future developments can be compared based on well-defined conceptual principles.
Collapse
Affiliation(s)
- Jan P. Unsleber
- Laboratory for Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory for Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
25
|
Pracht P, Bohle F, Grimme S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys Chem Chem Phys 2020; 22:7169-7192. [PMID: 32073075 DOI: 10.1039/c9cp06869d] [Citation(s) in RCA: 993] [Impact Index Per Article: 198.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We propose and discuss an efficient scheme for the in silico sampling for parts of the molecular chemical space by semiempirical tight-binding methods combined with a meta-dynamics driven search algorithm. The focus of this work is set on the generation of proper thermodynamic ensembles at a quantum chemical level for conformers, but similar procedures for protonation states, tautomerism and non-covalent complex geometries are also discussed. The conformational ensembles consisting of all significantly populated minimum energy structures normally form the basis of further, mostly DFT computational work, such as the calculation of spectra or macroscopic properties. By using basic quantum chemical methods, electronic effects or possible bond breaking/formation are accounted for and a very reasonable initial energetic ranking of the candidate structures is obtained. Due to the huge computational speedup gained by the fast low-cost quantum chemical methods, overall short computation times even for systems with hundreds of atoms (typically drug-sized molecules) are achieved. Furthermore, specialized applications, such as sampling with implicit solvation models or constrained conformational sampling for transition-states, metal-, surface-, or noncovalently bound complexes are discussed, opening many possible applications in modern computational chemistry and drug discovery. The procedures have been implemented in a freely available computer code called CREST, that makes use of the fast and reliable GFNn-xTB methods.
Collapse
Affiliation(s)
- Philipp Pracht
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | | | | |
Collapse
|
26
|
Simm GN, Türtscher PL, Reiher M. Systematic microsolvation approach with a cluster-continuum scheme and conformational sampling. J Comput Chem 2020; 41:1144-1155. [PMID: 32027384 DOI: 10.1002/jcc.26161] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Solvation is a notoriously difficult and nagging problem for the rigorous theoretical description of chemistry in the liquid phase. Successes and failures of various approaches ranging from implicit solvation modeling through dielectric continuum embedding and microsolvated quantum chemical modeling to explicit molecular dynamics highlight this situation. Here, we focus on quantum chemical microsolvation and discuss an explicit conformational sampling ansatz to make this approach systematic. For this purpose, we introduce an algorithm for rolling and automated microsolvation of solutes. Our protocol takes conformational sampling and rearrangements in the solvent shell into account. Its reliability is assessed by monitoring the evolution of the spread and average of the observables of interest.
Collapse
Affiliation(s)
- Gregor N Simm
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Paul L Türtscher
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
27
|
Robertson C, Ismail I, Habershon S. Traversing Dense Networks of Elementary Chemical Reactions to Predict Minimum‐Energy Reaction Mechanisms. CHEMSYSTEMSCHEM 2019. [DOI: 10.1002/syst.201900047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christopher Robertson
- Department of Chemistry and Centre for Scientific Computing University of Warwick Coventry CV4 7AL United Kingdom
| | - Idil Ismail
- Department of Chemistry and Centre for Scientific Computing University of Warwick Coventry CV4 7AL United Kingdom
| | - Scott Habershon
- Department of Chemistry and Centre for Scientific Computing University of Warwick Coventry CV4 7AL United Kingdom
| |
Collapse
|
28
|
Nagy T, Tóth J, Ladics T. Automatic kinetic model generation and selection based on concentration versus time curves. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Tibor Nagy
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesBudapest Hungary
- Laboratory for Chemical KineticsEötvös Loránd UniversityBudapest Hungary
| | - János Tóth
- Laboratory for Chemical KineticsEötvös Loránd UniversityBudapest Hungary
- Department of Mathematical AnalysisBudapest University of Technology and EconomicsBudapest Hungary
| | - Tamás Ladics
- Department of Science and EngineeringJohn von Neumann UniversityKecskemét Hungary
| |
Collapse
|
29
|
Stein CJ, Reiher M. autoCAS: A Program for Fully Automated Multiconfigurational Calculations. J Comput Chem 2019; 40:2216-2226. [DOI: 10.1002/jcc.25869] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher J. Stein
- ETH Zürich, Laboratorium für Physikalische Chemie Vladimir‐Prelog‐Weg 2, 8093 Zürich Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie Vladimir‐Prelog‐Weg 2, 8093 Zürich Switzerland
| |
Collapse
|