1
|
Wei Y, Debnath S, Weber JL, Mahajan A, Reichman DR, Friesner RA. Scalable Ab Initio Electronic Structure Methods with Near Chemical Accuracy for Main Group Chemistry. J Phys Chem A 2024; 128:5796-5807. [PMID: 38970826 DOI: 10.1021/acs.jpca.4c02853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This study evaluates the precision of widely recognized quantum chemical methodologies, CCSD(T), DLPNO-CCSD(T), and localized ph-AFQMC, for determining the thermochemistry of main group elements. DLPNO-CCSD(T) and localized ph-AFQMC, which offer greater scalability compared to canonical CCSD(T), have emerged over the past decade as pivotal in producing precise benchmark chemical data. Our investigation includes closed-shell, neutral molecules, focusing on their heat of formation and atomization energy sourced from four specific small molecule data sets. First, we selected molecules from the G2 and G3 data sets, noted for their reliable experimental heat of formation data. Additionally, we incorporate molecules from the W4-11 and W4-17 sets, which provide high-level theoretical reference values for atomization energy at 0 K. Our findings reveal that both DLPNO-CCSD(T) and ph-AFQMC methods are capable of achieving a root-mean-square deviation of less than 1 kcal/mol across the combined data set, aligning with the threshold for chemical accuracy. Moreover, we make efforts to confine the maximum deviations within 2 kcal/mol, a degree of precision that significantly broadens the applicability of these methods in fields such as biology and materials science.
Collapse
Affiliation(s)
- Yujing Wei
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sibali Debnath
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - John L Weber
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ankit Mahajan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
2
|
Vysotskiy VP, Filippi C, Ryde U. Scalar Relativistic All-Electron and Pseudopotential Ab Initio Study of a Minimal Nitrogenase [Fe(SH) 4H] - Model Employing Coupled-Cluster and Auxiliary-Field Quantum Monte Carlo Many-Body Methods. J Phys Chem A 2024; 128:1358-1374. [PMID: 38324717 PMCID: PMC10895656 DOI: 10.1021/acs.jpca.3c05808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Nitrogenase is the only enzyme that can cleave the triple bond in N2, making nitrogen available to organisms. The detailed mechanism of this enzyme is currently not known, and computational studies are complicated by the fact that different density functional theory (DFT) methods give very different energetic results for calculations involving nitrogenase models. Recently, we designed a [Fe(SH)4H]- model with the fifth proton binding either to Fe or S to mimic different possible protonation states of the nitrogenase active site. We showed that the energy difference between these two isomers (ΔE) is hard to estimate with quantum-mechanical methods. Based on nonrelativistic single-reference coupled-cluster (CC) calculations, we estimated that the ΔE is 101 kJ/mol. In this study, we demonstrate that scalar relativistic effects play an important role and significantly affect ΔE. Our best revised single-reference CC estimates for ΔE are 85-91 kJ/mol, including energy corrections to account for contributions beyond triples, core-valence correlation, and basis-set incompleteness error. Among coupled-cluster approaches with approximate triples, the canonical CCSD(T) exhibits the largest error for this problem. Complementary to CC, we also used phaseless auxiliary-field quantum Monte Carlo calculations (ph-AFQMC). We show that with a Hartree-Fock (HF) trial wave function, ph-AFQMC reproduces the CC results within 5 ± 1 kJ/mol. With multi-Slater-determinant (MSD) trials, the results are 82-84 ± 2 kJ/mol, indicating that multireference effects may be rather modest. Among the DFT methods tested, τ-HCTH, r2SCAN with 10-13% HF exchange with and without dispersion, and O3LYP/O3LYP-D4, and B3LYP*/B3LYP*-D4 generally perform the best. The r2SCAN12 (with 12% HF exchange) functional mimics both the best reference MSD ph-AFQMC and CC ΔE results within 2 kJ/mol.
Collapse
Affiliation(s)
- Victor P. Vysotskiy
- Department
of Computational Chemistry, Lund University,
Chemical Centre, SE-221 00 Lund, Sweden
| | - Claudia Filippi
- MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Ulf Ryde
- Department
of Computational Chemistry, Lund University,
Chemical Centre, SE-221 00 Lund, Sweden
| |
Collapse
|
3
|
Neugebauer H, Vuong HT, Weber JL, Friesner RA, Shee J, Hansen A. Toward Benchmark-Quality Ab Initio Predictions for 3d Transition Metal Electrocatalysts: A Comparison of CCSD(T) and ph-AFQMC. J Chem Theory Comput 2023; 19:6208-6225. [PMID: 37655473 DOI: 10.1021/acs.jctc.3c00617] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Generating accurate ab initio ionization energies for transition metal complexes is an important step toward the accurate computational description of their electrocatalytic reactions. Benchmark-quality data is required for testing existing theoretical methods and developing new ones but is complicated to obtain for many transition metal compounds due to the potential presence of both strong dynamical and static electron correlation. In this regime, it is questionable whether the so-called gold standard, coupled cluster with singles, doubles, and perturbative triples (CCSD(T)), provides the desired level of accuracy─roughly 1-3 kcal/mol. In this work, we compiled a test set of 28 3d metal-containing molecules relevant to homogeneous electrocatalysis (termed 3dTMV) and computed their vertical ionization energies (ionization potentials) with CCSD(T) and phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) in the def2-SVP basis set. A substantial effort has been made to converge away the phaseless bias in the ph-AFQMC reference values. We assess a wide variety of multireference diagnostics and find that spin-symmetry breaking of the CCSD wave function and the PBE0 density functional correlate well with our analysis of multiconfigurational wave functions. We propose quantitative criteria based on symmetry breaking to delineate correlation regimes inside of which appropriately performed CCSD(T) can produce mean absolute deviations from the ph-AFQMC reference values of roughly 2 kcal/mol or less and outside of which CCSD(T) is expected to fail. We also present a preliminary assessment of density functional theory (DFT) functionals on the 3dTMV set.
Collapse
Affiliation(s)
- Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Hung T Vuong
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - John L Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - James Shee
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| |
Collapse
|
4
|
Shee J, Weber JL, Reichman DR, Friesner RA, Zhang S. On the potentially transformative role of auxiliary-field quantum Monte Carlo in quantum chemistry: A highly accurate method for transition metals and beyond. J Chem Phys 2023; 158:140901. [PMID: 37061483 PMCID: PMC10089686 DOI: 10.1063/5.0134009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/01/2023] [Indexed: 04/17/2023] Open
Abstract
Approximate solutions to the ab initio electronic structure problem have been a focus of theoretical and computational chemistry research for much of the past century, with the goal of predicting relevant energy differences to within "chemical accuracy" (1 kcal/mol). For small organic molecules, or in general, for weakly correlated main group chemistry, a hierarchy of single-reference wave function methods has been rigorously established, spanning perturbation theory and the coupled cluster (CC) formalism. For these systems, CC with singles, doubles, and perturbative triples is known to achieve chemical accuracy, albeit at O(N7) computational cost. In addition, a hierarchy of density functional approximations of increasing formal sophistication, known as Jacob's ladder, has been shown to systematically reduce average errors over large datasets representing weakly correlated chemistry. However, the accuracy of such computational models is less clear in the increasingly important frontiers of chemical space including transition metals and f-block compounds, in which strong correlation can play an important role in reactivity. A stochastic method, phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC), has been shown to be capable of producing chemically accurate predictions even for challenging molecular systems beyond the main group, with relatively low O(N3 - N4) cost and near-perfect parallel efficiency. Herein, we present our perspectives on the past, present, and future of the ph-AFQMC method. We focus on its potential in transition metal quantum chemistry to be a highly accurate, systematically improvable method that can reliably probe strongly correlated systems in biology and chemical catalysis and provide reference thermochemical values (for future development of density functionals or interatomic potentials) when experiments are either noisy or absent. Finally, we discuss the present limitations of the method and where we expect near-term development to be most fruitful.
Collapse
Affiliation(s)
- James Shee
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - John L. Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - David R. Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Richard A. Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA
| |
Collapse
|
5
|
Malone FD, Mahajan A, Spencer JS, Lee J. ipie: A Python-Based Auxiliary-Field Quantum Monte Carlo Program with Flexibility and Efficiency on CPUs and GPUs. J Chem Theory Comput 2023; 19:109-121. [PMID: 36503227 DOI: 10.1021/acs.jctc.2c00934] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the development of a python-based auxiliary-field quantum Monte Carlo (AFQMC) program, ipie, with preliminary timing benchmarks and new AFQMC results on the isomerization of [Cu2O2]2+. We demonstrate how implementations for both central and graphical processing units (CPUs and GPUs) are achieved in ipie. We show an interface of ipie with PySCF as well as a straightforward template for adding new estimators to ipie. Our timing benchmarks against other C++ codes, QMCPACK and Dice, suggest that ipie is faster or similarly performing for all chemical systems considered on both CPUs and GPUs. Our results on [Cu2O2]2+ using selected configuration interaction trials show that it is possible to converge the ph-AFQMC isomerization energy between bis(μ-oxo) and μ-η2:η2 peroxo configurations to the exact known results for small basis sets with 105-106 determinants. We also report the isomerization energy with a quadruple-zeta basis set with an estimated error less than a kcal/mol, which involved 52 electrons and 290 orbitals with 106 determinants in the trial wave function. These results highlight the utility of ph-AFQMC and ipie for systems with modest strong correlation and large-scale dynamic correlation.
Collapse
Affiliation(s)
- Fionn D Malone
- Google Research, Venice, California 90291, United States
| | - Ankit Mahajan
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| | | | - Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
6
|
Duan C, Nandy A, Meyer R, Arunachalam N, Kulik HJ. A transferable recommender approach for selecting the best density functional approximations in chemical discovery. NATURE COMPUTATIONAL SCIENCE 2023; 3:38-47. [PMID: 38177951 DOI: 10.1038/s43588-022-00384-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2024]
Abstract
Approximate density functional theory has become indispensable owing to its balanced cost-accuracy trade-off, including in large-scale screening. To date, however, no density functional approximation (DFA) with universal accuracy has been identified, leading to uncertainty in the quality of data generated from density functional theory. With electron density fitting and Δ-learning, we build a DFA recommender that selects the DFA with the lowest expected error with respect to the gold standard (but cost-prohibitive) coupled cluster theory in a system-specific manner. We demonstrate this recommender approach on the evaluation of vertical spin splitting energies of transition metal complexes. Our recommender predicts top-performing DFAs and yields excellent accuracy (about 2 kcal mol-1) for chemical discovery, outperforming both individual Δ-learning models and the best conventional single-functional approach from a set of 48 DFAs. By demonstrating transferability to diverse synthesized compounds, our recommender potentially addresses the accuracy versus scope dilemma broadly encountered in computational chemistry.
Collapse
Affiliation(s)
- Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ralf Meyer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Naveen Arunachalam
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Lee J, Pham HQ, Reichman DR. Twenty Years of Auxiliary-Field Quantum Monte Carlo in Quantum Chemistry: An Overview and Assessment on Main Group Chemistry and Bond-Breaking. J Chem Theory Comput 2022; 18:7024-7042. [PMID: 36255074 DOI: 10.1021/acs.jctc.2c00802] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we present an overview of the phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) approach from a computational quantum chemistry perspective and present a numerical assessment of its performance on main group chemistry and bond-breaking problems with a total of 1004 relative energies. While our benchmark study is somewhat limited, we make recommendations for the use of ph-AFQMC for general main-group chemistry applications. For systems where single determinant wave functions are qualitatively accurate, we expect the accuracy of ph-AFQMC in conjunction with a single-determinant trial wave function to be between that of coupled-cluster with singles and doubles (CCSD) and CCSD with perturbative triples (CCSD(T)). For these applications, ph-AFQMC should be a method of choice when canonical CCSD(T) is too expensive to run. For systems where multireference (MR) wave functions are needed for qualitative accuracy, ph-AFQMC is far more accurate than MR perturbation theory methods and competitive with MR configuration interaction (MRCI) methods. Due to the computational efficiency of ph-AFQMC compared to MRCI, we recommended ph-AFQMC as a method of choice for handling dynamic correlation in MR problems. We conclude with a discussion of important directions for future development of the ph-AFQMC approach.
Collapse
Affiliation(s)
- Joonho Lee
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Hung Q Pham
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
8
|
Liebermann N, Ghanem K, Alavi A. Importance-sampling FCIQMC: solving weak sign-problem systems. J Chem Phys 2022; 157:124111. [DOI: 10.1063/5.0107317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the exact FCIQMC algorithm (without the initiator approximation) applied to weak sign-problem fermionic systems, namely systems in which the energy gap to the corresponding sign-free or ``stoquastized" state is small. We show that the minimum number of walkers required to exactly overcome the sign problem can be significantly reduced via an importance-sampling similarity transformation, even though the similarity-transformed Hamiltonian has the same stoquastic gap as the untransformed one. Furthermore, we show that in the off-half-filling Hubbard model at $U/t=8$, the real-space (site) representation has a much weaker sign problem compared to the momentum space representation. By applying importance sampling using a Gutzwiller-like guiding wavefunction, we are able to reduce the minimum number of walkers substantially in the case of $2 \times \ell$ Hubbard ladders, enabling us to get exact energies for sizeable ladders. With these results, we calculate the fundamental charge gap $\Delta E^{\mathrm{fund}}=E(N+1)+E(N-1)-2 E(N)$ for the ladder systems compared to strictly one-dimensional Hubbard chains, and show that the ladder systems have a reduced fundamental gap compared to the 1D chains.
Collapse
Affiliation(s)
- Niklas Liebermann
- Electronic Structure Theory, Max-Planck-Institute for Solid State Research, Germany
| | | | - Ali Alavi
- Max-Planck-Institute for Solid State Research, Germany
| |
Collapse
|
9
|
Rudshteyn B, Weber JL, Coskun D, Devlaminck PA, Zhang S, Reichman DR, Shee J, Friesner RA. Calculation of Metallocene Ionization Potentials via Auxiliary Field Quantum Monte Carlo: Toward Benchmark Quantum Chemistry for Transition Metals. J Chem Theory Comput 2022; 18:2845-2862. [PMID: 35377642 PMCID: PMC9123894 DOI: 10.1021/acs.jctc.1c01071] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The accurate ab initio prediction of ionization energies is essential to understanding the electrochemistry of transition metal complexes in both materials science and biological applications. However, such predictions have been complicated by the scarcity of gas phase experimental data, the relatively large size of the relevant molecules, and the presence of strong electron correlation effects. In this work, we apply all-electron phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) utilizing multideterminant trial wave functions to six metallocene complexes to compare the computed adiabatic and vertical ionization energies with experimental results. We find that ph-AFQMC yields mean absolute errors (MAEs) of 1.69 ± 1.02 kcal/mol for the adiabatic energies and 2.85 ± 1.13 kcal/mol for the vertical energies. We also carry out density functional theory (DFT) calculations using a variety of functionals, which yields MAEs of 3.62-6.98 kcal/mol and 3.31-9.88 kcal/mol, as well as one variant of localized coupled cluster calculations (DLPNO-CCSD(T0) with moderate PNO cutoffs), which has MAEs of 4.96 and 6.08 kcal/mol, respectively. We also test the reliability of DLPNO-CCSD(T0) and DFT on acetylacetonate (acac) complexes for adiabatic energies measured in the same manner experimentally, and we find higher MAEs, ranging from 4.56 to 10.99 kcal/mol (with a different ordering) for DFT and 6.97 kcal/mol for DLPNO-CCSD(T0). Finally, by utilizing experimental solvation energies, we show that accurate reduction potentials in solution for the metallocene series can be obtained from the AFQMC gas phase results.
Collapse
Affiliation(s)
- Benjamin Rudshteyn
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - John L Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Dilek Coskun
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Pierre A Devlaminck
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - James Shee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
10
|
Weber JL, Vuong H, Devlaminck PA, Shee J, Lee J, Reichman DR, Friesner RA. A Localized-Orbital Energy Evaluation for Auxiliary-Field Quantum Monte Carlo. J Chem Theory Comput 2022; 18:3447-3459. [PMID: 35507769 DOI: 10.1021/acs.jctc.2c00111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) has recently emerged as a promising method for the production of benchmark-level simulations of medium- to large-sized molecules because of its accuracy and favorable polynomial scaling with system size. Unfortunately, the memory footprints of standard energy evaluation algorithms are nontrivial, which can significantly impact timings on graphical processing units (GPUs) where memory is limited. Previous attempts to reduce scaling by taking advantage of the low-rank structure of the Coulombic integrals have been successful but exhibit high prefactors, making their utility limited to very large systems. Here we present a complementary cubic-scaling route to reduce memory and computational scaling based on the low rank of the Coulombic interactions between localized orbitals, focusing on the application to ph-AFQMC. We show that the error due to this approximation, which we term localized-orbital AFQMC (LO-AFQMC), is systematic and controllable via a single variable and that the method is computationally favorable even for small systems. We present results demonstrating robust retention of accuracy versus both experiment and full ph-AFQMC for a variety of test cases chosen for their potential difficulty for localized-orbital-based methods, including the singlet-triplet gaps of the polyacenes benzene through pentacene, the heats of formation for a set of Platonic hydrocarbon cages, and the total energy of ferrocene, Fe(Cp)2. Finally, we reproduce our previous result for the gas-phase ionization energy of Ni(Cp)2, agreeing with full ph-AFQMC to within statistical error while using less than 1/15th of the computer time.
Collapse
Affiliation(s)
- John L Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Hung Vuong
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Pierre A Devlaminck
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - James Shee
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Joonho Lee
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
11
|
Duan C, Chu DBK, Nandy A, Kulik HJ. Detection of multi-reference character imbalances enables a transfer learning approach for virtual high throughput screening with coupled cluster accuracy at DFT cost. Chem Sci 2022; 13:4962-4971. [PMID: 35655882 PMCID: PMC9067623 DOI: 10.1039/d2sc00393g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/04/2022] [Indexed: 01/08/2023] Open
Abstract
Appropriately identifying and treating molecules and materials with significant multi-reference (MR) character is crucial for achieving high data fidelity in virtual high-throughput screening (VHTS). Despite development of numerous MR diagnostics, the extent to which a single value of such a diagnostic indicates the MR effect on a chemical property prediction is not well established. We evaluate MR diagnostics for over 10 000 transition-metal complexes (TMCs) and compare to those for organic molecules. We observe that only some MR diagnostics are transferable from one chemical space to another. By studying the influence of MR character on chemical properties (i.e., MR effect) that involve multiple potential energy surfaces (i.e., adiabatic spin splitting, ΔE H-L, and ionization potential, IP), we show that differences in MR character are more important than the cumulative degree of MR character in predicting the magnitude of an MR effect. Motivated by this observation, we build transfer learning models to predict CCSD(T)-level adiabatic ΔE H-L and IP from lower levels of theory. By combining these models with uncertainty quantification and multi-level modeling, we introduce a multi-pronged strategy that accelerates data acquisition by at least a factor of three while achieving coupled cluster accuracy (i.e., to within 1 kcal mol-1 MAE) for robust VHTS.
Collapse
Affiliation(s)
- Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Daniel B K Chu
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
12
|
Mahajan A, Lee J, Sharma S. Selected configuration interaction wave functions in phaseless auxiliary field quantum Monte Carlo. J Chem Phys 2022; 156:174111. [DOI: 10.1063/5.0087047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present efficient algorithms for using selected configuration interaction (sCI) trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC). These advances, geared towards optimizing computational performance for longer CI expansions, allow us to use up to a million configurations in the trial state for ph-AFQMC. In one example, we found the cost of ph-AFQMC per sample to increase only by a factor of about 3 for a calculation with 104 configurations compared to that with a single one, demonstrating the tiny computational overhead due to a longer expansion. This favorable scaling allows us to study the systematic convergence of the phaseless bias in AFQMC calculations with an increasing number of configurations and provides a means to gauge the accuracy of ph-AFQMC with other trial states. We also show how the scalability issues of sCI trial states for large system sizes could be mitigated by restricting them to a moderately sized orbital active space and leveraging the near-cancellation of out of active space phaseless errors.
Collapse
Affiliation(s)
- Ankit Mahajan
- University of Colorado at Boulder, United States of America
| | - Joonho Lee
- Chemistry, Columbia University, United States of America
| | - Sandeep Sharma
- University of Colorado at Boulder, United States of America
| |
Collapse
|
13
|
Mahajan A, Sharma S. Taming the Sign Problem in Auxiliary-Field Quantum Monte Carlo Using Accurate Wave Functions. J Chem Theory Comput 2021; 17:4786-4798. [PMID: 34232637 DOI: 10.1021/acs.jctc.1c00371] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore different ways of incorporating accurate trial wave functions into free projection auxiliary-field quantum Monte Carlo (fp-AFQMC). States employed include coupled-cluster singles and doubles, multi-Slater, and symmetry-projected mean-field wave functions. We adapt a recently proposed fast multi-Slater local energy evaluation algorithm for fp-AFQMC, making the use of long expansions from selected configuration interaction methods feasible. We demonstrate how these wave functions serve to mitigate the sign problem and accelerate convergence in quantum chemical problems, allowing the application of fp-AFQMC to systems of substantial sizes. Our calculations on the widely studied model Cu2O22+ system show that many previously reported isomerization energies differ substantially from the near-exact fp-AFQMC value.
Collapse
Affiliation(s)
- Ankit Mahajan
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| |
Collapse
|
14
|
Abstract
We present a Perspective on what the future holds for full configuration interaction (FCI) theory, with an emphasis on conceptual rather than technical details. Upon revisiting the early history of FCI, a number of its key contemporary approximations are compared on as equal a footing as possible, using a recent blind challenge on the benzene molecule as a testbed [Eriksen et al., J. Phys. Chem. Lett., 2020 11, 8922]. In the process, we review the scope of applications for which FCI continues to prove indispensable, and the required traits in terms of robustness, efficacy, and reliability its modern approximations must satisfy are discussed. We close by conveying a number of general observations on the merits offered by the state-of-the-art alongside some of the challenges still faced to this day. While the field has altogether seen immense progress over the years-the past decade, in particular-it remains clear that our community as a whole has a substantial way to go in enhancing the overall applicability of near-exact electronic structure theory for systems of general composition and increasing size.
Collapse
Affiliation(s)
- Janus J Eriksen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
15
|
Shi H, Zhang S. Some recent developments in auxiliary-field quantum Monte Carlo for real materials. J Chem Phys 2021; 154:024107. [DOI: 10.1063/5.0031024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hao Shi
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
| |
Collapse
|
16
|
Upadhyay S, Dumi A, Shee J, Jordan KD. The role of high-order electron correlation effects in a model system for non-valence correlation-bound anions. J Chem Phys 2020; 153:224118. [DOI: 10.1063/5.0030942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Shiv Upadhyay
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Amanda Dumi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - James Shee
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Kenneth D. Jordan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
17
|
Weber JL, Churchill EM, Jockusch S, Arthur EJ, Pun AB, Zhang S, Friesner RA, Campos LM, Reichman DR, Shee J. In silico prediction of annihilators for triplet-triplet annihilation upconversion via auxiliary-field quantum Monte Carlo. Chem Sci 2020; 12:1068-1079. [PMID: 34163873 PMCID: PMC8179011 DOI: 10.1039/d0sc03381b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet-triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn-Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T0), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission.
Collapse
Affiliation(s)
- John L Weber
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - Emily M Churchill
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - Steffen Jockusch
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - Evan J Arthur
- Schrodinger Inc 120 West 45th Street New York NY 1003 USA
| | - Andrew B Pun
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute 162 5th Avenue New York NY 10010 USA
- Department of Physics, College of William and Mary Williamsburg VA 23187 USA
| | - Richard A Friesner
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - Luis M Campos
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - David R Reichman
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - James Shee
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| |
Collapse
|
18
|
Wang G, Annaberdiyev A, Mitas L. Binding and excitations in SixHy molecular systems using quantum Monte Carlo. J Chem Phys 2020; 153:144303. [DOI: 10.1063/5.0022814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Guangming Wang
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Abdulgani Annaberdiyev
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Lubos Mitas
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| |
Collapse
|
19
|
Lee J, Malone FD, Reichman DR. The performance of phaseless auxiliary-field quantum Monte Carlo on the ground state electronic energy of benzene. J Chem Phys 2020; 153:126101. [DOI: 10.1063/5.0024835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Fionn D. Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| | - David R. Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
20
|
Lee J, Reichman DR. Stochastic resolution-of-the-identity auxiliary-field quantum Monte Carlo: Scaling reduction without overhead. J Chem Phys 2020; 153:044131. [DOI: 10.1063/5.0015077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joonho Lee
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - David R. Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
21
|
Kumar M, Shee J, Rudshteyn B, Reichman DR, Friesner RA, Miller CE, Francisco JS. Multiple Stable Isoprene-Ozone Complexes Reveal Complex Entrance Channel Dynamics in the Isoprene + Ozone Reaction. J Am Chem Soc 2020; 142:10806-10813. [PMID: 32431151 DOI: 10.1021/jacs.0c02360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accurately characterizing isoprene ozonolysis continues to challenge atmospheric chemists. The reaction is believed to be a spontaneous, concerted cycloaddition. However, little information is available about the entrance channel and isoprene-ozone complexes thought to define the long-range portion of the reaction coordinate. Our coupled cluster and auxiliary field quantum Monte Carlo calculations predict multiple stable isoprene-ozone van der Waals complexes for trans-isoprene in the gas phase with moderate association energies. These results indicate that long-range dynamics in the isoprene-ozone entrance channel can impact the overall reaction in the troposphere and provide the spectroscopic information necessary to extend the microwave characterization of isoprene ozonolysis to prereactive complexes. At the air-water interface, Born-Oppenheimer molecular dynamics simulations indicate that the cycloaddition reaction between ozone and trans-isoprene follows a stepwise mechanism, which is quite distinct from our proposed gas-phase mechanism and occurs on a femtosecond time scale. The stepwise nature of isoprene ozonolysis on the aqueous surface is more consistent with the DeMore mechanism than with the Criegee mechanism suggested by the gas-phase calculations, suggesting that the reaction media may play an important role in the reaction. Overall, these predictions aim to provide a missing fundamental piece of molecular insight into isoprene ozonolysis, which has broad tropospheric implications due to its critical role as a nighttime source of hydroxyl radicals.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - James Shee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Benjamin Rudshteyn
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Charles E Miller
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Joseph S Francisco
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
22
|
Malone FD, Zhang S, Morales MA. Accelerating Auxiliary-Field Quantum Monte Carlo Simulations of Solids with Graphical Processing Units. J Chem Theory Comput 2020; 16:4286-4297. [DOI: 10.1021/acs.jctc.0c00262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fionn D. Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Shuai Zhang
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Miguel A. Morales
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
23
|
Gordon MS, Barca G, Leang SS, Poole D, Rendell AP, Galvez Vallejo JL, Westheimer B. Novel Computer Architectures and Quantum Chemistry. J Phys Chem A 2020; 124:4557-4582. [DOI: 10.1021/acs.jpca.0c02249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mark S. Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Giuseppe Barca
- Research School of Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Sarom S. Leang
- EP Analytics, 12121 Scripps Summit Drive, Suite 130, San Diego, California 92131, United States
| | - David Poole
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Alistair P. Rendell
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Jorge L. Galvez Vallejo
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Bryce Westheimer
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
24
|
Rudshteyn B, Coskun D, Weber JL, Arthur EJ, Zhang S, Reichman DR, Friesner RA, Shee J. Predicting Ligand-Dissociation Energies of 3d Coordination Complexes with Auxiliary-Field Quantum Monte Carlo. J Chem Theory Comput 2020; 16:3041-3054. [DOI: 10.1021/acs.jctc.0c00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Benjamin Rudshteyn
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Dilek Coskun
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - John L. Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Evan J. Arthur
- Schrodinger Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, United States
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, United States
| | - David R. Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Richard A. Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - James Shee
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
25
|
Li G, Rudshteyn B, Shee J, Weber JL, Coskun D, Bochevarov AD, Friesner RA. Accurate Quantum Chemical Calculation of Ionization Potentials: Validation of the DFT-LOC Approach via a Large Data Set Obtained from Experiments and Benchmark Quantum Chemical Calculations. J Chem Theory Comput 2020; 16:2109-2123. [PMID: 32150400 DOI: 10.1021/acs.jctc.9b00875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional theory (DFT) is known to often fail when calculating thermodynamic values, such as ionization potentials (IPs), due to nondynamical error (i.e., the self-interaction term). Localized orbital corrections (LOCs), derived from assigning corresponding corrections for the atomic orbitals, bonds, and paired and unpaired electrons, are utilized to correct the IPs calculated from DFT. Some of the assigned parameters, which are physically due to the contraction of and change of the environment around a bond, depend on identifying the location in the molecule from which the electron is removed using differences in the charge density between neutral and oxidized species. In our training set, various small organic and inorganic molecules from the literature with the reported experimental IP were collected using the NIST database. For certain molecules with uncertain or no experimental measurements, we obtain the IP using coupled cluster theory and auxiliary field quantum Monte Carlo. After applying these corrections, as generated by least-squares regression, LOC reduces the mean absolute deviation (MAD) of the training set from 0.143 to 0.046 eV (R2 = 0.895), and LOC reduces the MAD of the test set from 0.192 to 0.097 eV (R2 = 0.833).
Collapse
Affiliation(s)
- Guangqi Li
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Benjamin Rudshteyn
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - James Shee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - John L Weber
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dilek Coskun
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | - Richard A Friesner
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
26
|
Li W, Ren J, Shuai Z. Numerical assessment for accuracy and GPU acceleration of TD-DMRG time evolution schemes. J Chem Phys 2020; 152:024127. [PMID: 31941314 DOI: 10.1063/1.5135363] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The time dependent density matrix renormalization group (TD-DMRG) has become one of the cutting edge methods of quantum dynamics for complex systems. In this paper, we comparatively study the accuracy of three time evolution schemes in the TD-DMRG, the global propagation and compression method with the Runge-Kutta algorithm (P&C-RK), the time dependent variational principle based methods with the matrix unfolding algorithm (TDVP-MU), and with the projector-splitting algorithm (TDVP-PS), by performing benchmarks on the exciton dynamics of the Fenna-Matthews-Olson complex. We show that TDVP-MU and TDVP-PS yield the same result when the time step size is converged and they are more accurate than P&C-RK4, while TDVP-PS tolerates a larger time step size than TDVP-MU. We further adopt the graphical processing units to accelerate the heavy tensor contractions in the TD-DMRG, and it is able to speed up the TDVP-MU and TDVP-PS schemes by up to 73 times.
Collapse
Affiliation(s)
- Weitang Li
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
27
|
Mullinax JW, Maradzike E, Koulias LN, Mostafanejad M, Epifanovsky E, Gidofalvi G, DePrince AE. Heterogeneous CPU + GPU Algorithm for Variational Two-Electron Reduced-Density Matrix-Driven Complete Active-Space Self-Consistent Field Theory. J Chem Theory Comput 2019; 15:6164-6178. [DOI: 10.1021/acs.jctc.9b00768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. Wayne Mullinax
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Elvis Maradzike
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Lauren N. Koulias
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Mohammad Mostafanejad
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Evgeny Epifanovsky
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, United States
| | - Gergely Gidofalvi
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258, United States
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
28
|
Lee J, Malone FD, Morales MA. An auxiliary-Field quantum Monte Carlo perspective on the ground state of the dense uniform electron gas: An investigation with Hartree-Fock trial wavefunctions. J Chem Phys 2019. [DOI: 10.1063/1.5109572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joonho Lee
- College of Chemistry, University of California, Berkeley, California 94720, USA
| | - Fionn D. Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| | - Miguel A. Morales
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| |
Collapse
|
29
|
Shee J, Arthur EJ, Zhang S, Reichman DR, Friesner RA. Singlet–Triplet Energy Gaps of Organic Biradicals and Polyacenes with Auxiliary-Field Quantum Monte Carlo. J Chem Theory Comput 2019; 15:4924-4932. [DOI: 10.1021/acs.jctc.9b00534] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- James Shee
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Evan J. Arthur
- Schrodinger Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, United States
| | - David R. Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Richard A. Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
30
|
Motta M, Shee J, Zhang S, Chan GKL. Efficient Ab Initio Auxiliary-Field Quantum Monte Carlo Calculations in Gaussian Bases via Low-Rank Tensor Decomposition. J Chem Theory Comput 2019; 15:3510-3521. [DOI: 10.1021/acs.jctc.8b00996] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mario Motta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - James Shee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
31
|
On Achieving High Accuracy in Quantum Chemical Calculations of 3d Transition Metal-Containing Systems: A Comparison of Auxiliary-Field Quantum Monte Carlo with Coupled Cluster, Density Functional Theory, and Experiment for Diatomic Molecules. J Chem Theory Comput 2019; 15:2346-2358. [DOI: 10.1021/acs.jctc.9b00083] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Malone FD, Zhang S, Morales MA. Overcoming the Memory Bottleneck in Auxiliary Field Quantum Monte Carlo Simulations with Interpolative Separable Density Fitting. J Chem Theory Comput 2018; 15:256-264. [DOI: 10.1021/acs.jctc.8b00944] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fionn D. Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, United States
| | - Shuai Zhang
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, United States
| | - Miguel A. Morales
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, United States
| |
Collapse
|