1
|
Halat M, Zając G, Andrushchenko V, Bouř P, Baranski R, Pajor K, Baranska M. Induced Chirality in Canthaxanthin Aggregates Reveals Multiple Levels of Supramolecular Organization. Angew Chem Int Ed Engl 2024; 63:e202402449. [PMID: 38517385 DOI: 10.1002/anie.202402449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Carotenoids tend to form supramolecular aggregates via non-covalent interactions where the chirality of individual molecules is amplified to the macroscopic level. We show that this can also be achieved for non-chiral carotenoid monomers interacting with polysaccharides. The chirality induction in canthaxanthin (CAX), caused by heparin (HP) and hyaluronic acid (HA), was monitored by chiroptical spectroscopy. Electronic circular dichroism (ECD) and Raman optical activity (ROA) spectra indicated the presence of multiple carotenoid formations, such as H- and J-type aggregates. This is consistent with molecular dynamics (MD) and density functional theory (DFT) simulations of the supramolecular structures and their spectroscopic response.
Collapse
Affiliation(s)
- Monika Halat
- Department of Plant Biology and Biotechnology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Grzegorz Zając
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Rafal Baranski
- Department of Plant Biology and Biotechnology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Katarzyna Pajor
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, S. Łojasiewicza 11, 30-348, Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| |
Collapse
|
2
|
Yang Q, Bloino J, Šestáková H, Šebestík J, Kessler J, Hudecová J, Kapitán J, Bouř P. Combination of Resonance and Non-Resonance Chiral Raman Scattering in a Cobalt(III) Complex. Angew Chem Int Ed Engl 2023; 62:e202312521. [PMID: 37728178 DOI: 10.1002/anie.202312521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/21/2023]
Abstract
Resonance Raman optical activity (RROA) spectra with high sensitivity reveal details on molecular structure, chirality, and excited electronic properties. Despite the difficulty of the measurements, the recorded data for the Co(III) complex with S,S-N,N-ethylenediaminedisuccinic acid are of exceptional quality and, coupled with the theory, spectacularly document the molecular behavior in resonance. This includes a huge enhancement of the chiral scattering, contribution of the antisymmetric polarizabilities to the signal, and the Herzberg-Teller effect significantly shaping the spectra. The chiral component is by about one order of magnitude bigger than for an analogous aluminum complex. The band assignment and intensity profile were confirmed by simulations based on density functional and vibronic theories. The resonance was attributed to the S0 →S3 transition, with the strongest signal enhancement of Raman and ROA spectral bands below about 800 cm-1 . For higher wavenumbers, other excited electronic states contribute to the scattering in a less resonant way. RROA spectroscopy thus appears as a unique tool to study the structure and electronic states of absorbing molecules in analytical chemistry, biology, and material science.
Collapse
Affiliation(s)
- Qin Yang
- Institute of Organic Chemistry and Biochemistry Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Julien Bloino
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Hana Šestáková
- Institute of Organic Chemistry and Biochemistry Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
- University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Jana Hudecová
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
- University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| |
Collapse
|
3
|
Schrenková V, Para Kkadan MS, Kessler J, Kapitán J, Bouř P. Molecular dynamics and Raman optical activity spectra reveal nucleotide conformation ratios in solution. Phys Chem Chem Phys 2023; 25:8198-8208. [PMID: 36880812 DOI: 10.1039/d2cp05756e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Nucleotide conformational flexibility affects their biological functions. Although the spectroscopy of Raman optical activity (ROA) is well suited to structural analyses in aqueous solutions, the link between the spectral shape and the nucleotide geometry is not fully understood. We recorded the Raman and ROA spectra of model nucleotides (rAMP, rGMP, rCMP, and dTMP) and interpreted them on the basis of molecular dynamics (MD) combined with density functional theory (DFT). The relation between the sugar puckering, base conformation and spectral intensities is discussed. Hydrogen bonds between the sugar's C3' hydroxyl and the phosphate groups were found to be important for the sugar puckering. The simulated spectra correlated well with the experimental data and provided an understanding of the dependence of the spectral shapes on conformational dynamics. Most of the strongest spectral bands could be assigned to vibrational molecular motions. Decomposition of the experimental spectra into calculated subspectra based on arbitrary maps of free energies provided experimental conformer populations, which could be used to verify and improve the MD predictions. The analyses indicate some flaws of common MD force fields, such as being unable to describe the fine conformer distribution. Also the accuracy of conformer populations obtained from the spectroscopic data depends on the simulations, improvement of which is desirable for gaining a more detailed insight in the future. Improvement of the spectroscopic and computational methodology for nucleotides also provides opportunities for its application to larger nucleic acids.
Collapse
Affiliation(s)
- Věra Schrenková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic. .,Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Mohammed Siddhique Para Kkadan
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic. .,Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague, Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Josef Kapitán
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic. .,Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| |
Collapse
|
4
|
Dall’Osto G, Corni S. Time Resolved Raman Scattering of Molecules: A Quantum Mechanics Approach with Stochastic Schroedinger Equation. J Phys Chem A 2022; 126:8088-8100. [PMID: 36278928 PMCID: PMC9639147 DOI: 10.1021/acs.jpca.2c05245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Raman scattering is a very powerful tool employed to
characterize
molecular systems. Here we propose a novel theoretical strategy to
calculate the Raman cross-section in time domain, by computing the
cumulative Raman signal emitted during the molecular evolution in
time. Our model is based on a numerical propagation of the vibronic
wave function under the effect of a light pulse of arbitrary shape.
This approach can therefore tackle a variety of experimental setups.
Both resonance and nonresonance Raman scattering can be retrieved,
and also the time-dependent fluorescence emission is computed. The
model has been applied to porphyrin considering both resonance and
nonresonance conditions and varying the incident field duration. Moreover
the effect of the vibrational relaxation, which should be taken into
account when its time scale is similar to that of the Raman emission,
has been included through the stochastic Schroedinger equation approach.
Collapse
Affiliation(s)
- Giulia Dall’Osto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, 35131, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, 35131, Italy
- CNR Institute of Nanoscience, via Campi 213/A, Modena, 41125, Italy
| |
Collapse
|
5
|
Morgante P, Ludowieg HD, Autschbach J. Comparative Study of Vibrational Raman Optical Activity with Different Time-Dependent Density Functional Approximations: The VROA36 Database. J Phys Chem A 2022; 126:2909-2927. [PMID: 35512708 DOI: 10.1021/acs.jpca.2c00951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new database, VROA36, is introduced to investigate the performance of computational approaches for vibrational Raman optical activity (VROA) calculations. The database is composed of 36 molecules with known experimental VROA spectra. It includes 93 conformers. Normal modes calculated with B3LYP-D3(BJ)/def2-TZVP are used to compute the VROA spectra with four functionals, B3LYP-D3(BJ), ωB97X-D, M11, and optimally tuned LC-PBE, as well as several basis sets. SimROA indices and frequency scaling factors are used to compare calculated spectra with each other and with experimental data. The four functionals perform equally well independently of the basis set and usually achieve good agreement with the experimental data. For molecules in near- or at-resonance conditions, the inclusion of a complex (damped) linear response approach is important to obtain physically meaningful VROA intensities. The use of any of the tested functional approximations with the def2-SVPD Gaussian-type basis set, or a basis of similar flexibility, can be recommended for efficient and reliable theoretical VROA studies.
Collapse
Affiliation(s)
- Pierpaolo Morgante
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Herbert D Ludowieg
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
6
|
Electronic Circular Dichroism‐Circularly Polarized Raman (eCP‐Raman): A New Form of Chiral Raman Spectroscopy. Chemistry 2022; 28:e202104302. [DOI: 10.1002/chem.202104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 11/07/2022]
|
7
|
Erfort S, Tschoepe M, Rauhut G. Efficient and Automated Quantum Chemical Calculation of Rovibrational Nonresonant Raman Spectra. J Chem Phys 2022; 156:124102. [DOI: 10.1063/5.0087359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
An outline of a newly developed program for the simulation of rovibrational nonresonant Raman spectra is presented. This program is an extension of our recently developed code for rovibrational infrared spectra [J. Chem Phys. 152 (2020) 244104] and relies on vibrational wavefunctions from variational configuration interaction theory to allow for an almost fully automated calculation of such spectra in pure ab initio fashion. Due to efficient contraction schemes this program requires modest computational resources and it can be controlled by only a few lines of input. As the required polarizability surfaces are also computed in an automated fashion, this implementation enables the routine application to small molecules. For demonstrating its capabilities, benchmark calculations for water H216O are compared to reference data and spectra for the beryllium dihydride dimer, Be2H4 (D2h), are predicted. The inversion symmetry of the D2h systems lead to complementary infrared and Raman spectra, which are needed both for a comprehensive investigation of this system.
Collapse
Affiliation(s)
- Sebastian Erfort
- Institute for Theoretical Chemistry, University of Stuttgart Faculty of Chemistry, Germany
| | | | - Guntram Rauhut
- Institut fuer Theoretische Chemie, University of Stuttgart Faculty of Chemistry, Germany
| |
Collapse
|
8
|
Loos PF, Jacquemin D. A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Bicyclic Systems. J Phys Chem A 2021; 125:10174-10188. [PMID: 34792354 DOI: 10.1021/acs.jpca.1c08524] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pursuing our efforts to define highly accurate estimates of the relative energies of excited states in organic molecules, we investigate, with coupled-cluster methods including iterative triples (CC3 and CCSDT), the vertical excitation energies of 10 bicyclic molecules (azulene, benzoxadiazole, benzothiadiazole, diketopyrrolopyrrole, furofuran, phthalazine, pyrrolopyrrole, quinoxaline, tetrathiafulvalene, and thienothiophene). In total, we provide aug-cc-pVTZ reference vertical excitation energies for 91 excited states of these relatively large systems. We use these reference values to benchmark various wave function methods, i.e., CIS(D), EOM-MP2, CC2, CCSD, STEOM-CCSD, CCSD(T)(a)*, CCSDR(3), CCSDT-3, ADC(2), ADC(2.5), and ADC(3), as well as some spin-scaled variants of both CC2 and ADC(2). These results are compared to those obtained previously on smaller molecules. It turns out that while the accuracy of some methods is almost unaffected by system size, e.g., CIS(D) and CC3, the performance of others can significantly deteriorate as the systems grow, e.g., EOM-MP2 and CCSD, whereas others, e.g., ADC(2) and CC2, become more accurate for larger derivatives.
Collapse
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, F-31062, Toulouse, France
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
9
|
Zając G, Bouř P. Measurement and Theory of Resonance Raman Optical Activity for Gases, Liquids, and Aggregates. What It Tells about Molecules. J Phys Chem B 2021; 126:355-367. [PMID: 34792364 DOI: 10.1021/acs.jpcb.1c08370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resonance Raman Optical Activity (RROA) appeared as a natural extension of the nonresonance branch. It combines the structural sensitivity of chiroptical spectroscopy with the signal enhancement coming from the resonance of molecular electronic transitions with the excitation laser light. However, the idea has been hampered by many technical and theoretical problems that are being clarified only in recent years. We provide the theoretical basis and several examples documenting the problems, achievements, and potential of RROA, in particular in biomolecular studies.
Collapse
Affiliation(s)
- Grzegorz Zając
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague, 16610, Czech Republic
| |
Collapse
|
10
|
Mattiat J, Luber S. Recent Progress in the Simulation of Chiral Systems with Real Time Propagation Methods. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Johann Mattiat
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Sandra Luber
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
11
|
Li G, Alshalalfeh M, Yang Y, Cheeseman JR, Bouř P, Xu Y. Can One Measure Resonance Raman Optical Activity? Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guojie Li
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Mutasem Alshalalfeh
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Yanqing Yang
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - James R. Cheeseman
- Gaussian Inc. 340 Quinnipiac St., Bldg. 40 Wallingford CT 06492-4050 USA
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Yunjie Xu
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
12
|
Machalska E, Zajac G, Wierzba AJ, Kapitán J, Andruniów T, Spiegel M, Gryko D, Bouř P, Baranska M. Recognition of the True and False Resonance Raman Optical Activity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ewa Machalska
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Bobrzynskiego 14 30-348 Krakow Poland
| | - Grzegorz Zajac
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Bobrzynskiego 14 30-348 Krakow Poland
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Aleksandra J. Wierzba
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Josef Kapitán
- Department of Optics Palacký University Olomouc 17. listopadu 12 77146 Olomouc Czech Republic
| | - Tadeusz Andruniów
- Department of Chemistry Wroclaw University of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicine Wroclaw Medical University Borowska 211A 50-556 Wroclaw Poland
| | - Dorota Gryko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Malgorzata Baranska
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Bobrzynskiego 14 30-348 Krakow Poland
| |
Collapse
|
13
|
Machalska E, Zajac G, Wierzba AJ, Kapitán J, Andruniów T, Spiegel M, Gryko D, Bouř P, Baranska M. Recognition of the True and False Resonance Raman Optical Activity. Angew Chem Int Ed Engl 2021; 60:21205-21210. [PMID: 34216087 PMCID: PMC8519086 DOI: 10.1002/anie.202107600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Resonance Raman optical activity (RROA) possesses all aspects of a sensitive tool for molecular detection, but its measurement remains challenging. We demonstrate that reliable recording of RROA of chiral colorful compounds is possible, but only after considering the effect of the electronic circular dichroism (ECD) on the ROA spectra induced by the dissolved chiral compound. We show RROA for a number of model vitamin B12 derivatives that are chemically similar but exhibit distinctively different spectroscopic behavior. The ECD/ROA effect is proportional to the concentration and dependent on the optical pathlength of the light propagating through the sample. It can severely alter relative band intensities and signs in the natural RROA spectra. The spectra analyses are supported by computational modeling based on density functional theory. Neglecting the ECD effect during ROA measurement can lead to misinterpretation of the recorded spectra and erroneous conclusions about the molecular structure.
Collapse
Affiliation(s)
- Ewa Machalska
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakowPoland
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityBobrzynskiego 1430-348KrakowPoland
| | - Grzegorz Zajac
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityBobrzynskiego 1430-348KrakowPoland
- Institute of Organic Chemistry and BiochemistryAcademy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Aleksandra J. Wierzba
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Josef Kapitán
- Department of OpticsPalacký University Olomouc17. listopadu 1277146OlomoucCzech Republic
| | - Tadeusz Andruniów
- Department of ChemistryWroclaw University of Science and TechnologyWyb. Wyspianskiego 2750-370WroclawPoland
| | - Maciej Spiegel
- Department of Pharmacognosy and Herbal MedicineWroclaw Medical UniversityBorowska 211A50-556WroclawPoland
| | - Dorota Gryko
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Petr Bouř
- Institute of Organic Chemistry and BiochemistryAcademy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Malgorzata Baranska
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakowPoland
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityBobrzynskiego 1430-348KrakowPoland
| |
Collapse
|
14
|
Li G, Alshalalfeh M, Yang Y, Cheeseman JR, Bouř P, Xu Y. Can One Measure Resonance Raman Optical Activity? Angew Chem Int Ed Engl 2021; 60:22004-22009. [PMID: 34347923 DOI: 10.1002/anie.202109345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/10/2022]
Abstract
Resonance Raman optical activity (RROA) is commonly measured as the difference in intensity of Raman scattered right and left circularly polarized light, IR -IL , when a randomly polarized light is in resonance with a chiral molecule. Strong and sometimes mono-signate experimental RROA spectra of several chiral solutes were reported previously, although their signs and relative intensities could not be reproduced theoretically. By examining multiple light-matter interaction events which can occur simultaneously under resonance, we show that a new form of chiral Raman spectroscopy, eCP-Raman, a combination of electronic circular dichroism and circularly polarized Raman, prevails. By incorporating the finite-lifetime approach for resonance, the experimental patterns of the model chiral solutes are captured theoretically by eCP-Raman, without any RROA contribution. The results open opportunity for applications of eCP-Raman spectroscopy and for extracting true RROA experimentally.
Collapse
Affiliation(s)
- Guojie Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Mutasem Alshalalfeh
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Yanqing Yang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - James R Cheeseman
- Gaussian Inc., 340 Quinnipiac St., Bldg. 40, Wallingford, CT, 06492-4050, USA
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
15
|
Krupová M, Kessler J, Bouř P. Recent Trends in Chiroptical Spectroscopy: Theory and Applications of Vibrational Circular Dichroism and Raman Optical Activity. Chempluschem 2020; 85:561-575. [DOI: 10.1002/cplu.202000014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Monika Krupová
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Faculty of Mathematics and PhysicsCharles University Ke Karlovu 3 12116 Prague 2 Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| |
Collapse
|
16
|
A never-ending story in the sky: The secrets of chemical evolution. Phys Life Rev 2020; 32:59-94. [DOI: 10.1016/j.plrev.2019.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 01/13/2023]
|
17
|
Nafie LA. Vibrational optical activity: From discovery and development to future challenges. Chirality 2020; 32:667-692. [DOI: 10.1002/chir.23191] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
|
18
|
Polavarapu PL, Santoro E. Vibrational optical activity for structural characterization of natural products. Nat Prod Rep 2020; 37:1661-1699. [DOI: 10.1039/d0np00025f] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents the recent progress towards elucidating the structures of chiral natural products and applications using vibrational optical activity (VOA) spectroscopy.
Collapse
|
19
|
Mattiat J, Luber S. Vibrational (resonance) Raman optical activity with real time time dependent density functional theory. J Chem Phys 2019; 151:234110. [DOI: 10.1063/1.5132294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Johann Mattiat
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Li G, Kessler J, Cheramy J, Wu T, Poopari MR, Bouř P, Xu Y. Transfer and Amplification of Chirality Within the “Ring of Fire” Observed in Resonance Raman Optical Activity Experiments. Angew Chem Int Ed Engl 2019; 58:16495-16498. [DOI: 10.1002/anie.201909603] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Guojie Li
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Joseph Cheramy
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Tao Wu
- Institute of Organic Chemistry and Biochemistry Flemingovo náměstí 2 16610 Prague Czech Republic
| | | | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Yunjie Xu
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
21
|
Weymuth T. Resonance Effects in the Raman Optical Activity Spectrum of [Rh(en) 3] 3. J Phys Chem A 2019; 123:9357-9370. [PMID: 31574220 DOI: 10.1021/acs.jpca.9b06968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Raman optical activity spectra of Λ-tris(ethylenediamine)-rhodium(III) {[Rh(en)3]3+} have been calculated at 16 on-, near-, and off-resonant wavelengths between 290 and 800 nm. The resulting spectra are analyzed in detail with a focus on the observed resonance effects. Because several electronically excited states are involved, the spectra are never monosignate, as is often observed in resonance Raman optical activity spectra. Most normal modes are enhanced through these resonance effects, but in several cases, de-enhancement effects are found. The molecular origins of the Raman optical activity intensity for selected normal modes are established by means of group coupling matrices. In general, this methodology allows one to produce an intuitive explanation for the intensity behavior of a given normal mode. However, due to the complex electronic structure of [Rh(en)3]3+, there are some intriguing resonance effects the origins of which could not be fully clarified in terms of group coupling effects. Therefore, simple and general rules that predict how the intensity of a specific normal mode is affected by resonance effects are difficult to devise.
Collapse
Affiliation(s)
- Thomas Weymuth
- Laboratory of Physical Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
22
|
Li G, Kessler J, Cheramy J, Wu T, Poopari MR, Bouř P, Xu Y. Transfer and Amplification of Chirality Within the “Ring of Fire” Observed in Resonance Raman Optical Activity Experiments. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guojie Li
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Joseph Cheramy
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Tao Wu
- Institute of Organic Chemistry and Biochemistry Flemingovo náměstí 2 16610 Prague Czech Republic
| | | | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Yunjie Xu
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
23
|
Barclay MS, Caricato M, Elles CG. Femtosecond Stimulated Raman Scattering from Triplet Electronic States: Experimental and Theoretical Study of Resonance Enhancements. J Phys Chem A 2019; 123:7720-7732. [DOI: 10.1021/acs.jpca.9b05955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew S. Barclay
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Marco Caricato
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christopher G. Elles
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
24
|
de Souza B, Farias G, Neese F, Izsák R. Efficient simulation of overtones and combination bands in resonant Raman spectra. J Chem Phys 2019; 150:214102. [DOI: 10.1063/1.5099247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bernardo de Souza
- Departmento de Química, Universidade Federal de Santa Catarina, Santa Catarina, Brazil
| | - Giliandro Farias
- Departmento de Química, Universidade Federal de Santa Catarina, Santa Catarina, Brazil
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Róbert Izsák
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| |
Collapse
|