1
|
Herrera Rodríguez LE, Kananenka AA. A short trajectory is all you need: A transformer-based model for long-time dissipative quantum dynamics. J Chem Phys 2024; 161:171101. [PMID: 39484891 DOI: 10.1063/5.0232871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024] Open
Abstract
In this Communication, we demonstrate that a deep artificial neural network based on a transformer architecture with self-attention layers can predict the long-time population dynamics of a quantum system coupled to a dissipative environment provided that the short-time population dynamics of the system is known. The transformer neural network model developed in this work predicts the long-time dynamics of spin-boson model efficiently and very accurately across different regimes, from weak system-bath coupling to strong coupling non-Markovian regimes. Our model is more accurate than classical forecasting models, such as recurrent neural networks, and is comparable to the state-of-the-art models for simulating the dynamics of quantum dissipative systems based on kernel ridge regression.
Collapse
Affiliation(s)
| | - Alexei A Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
2
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
Dorfner MX, Brey D, Burghardt I, Ortmann F. Comparison of Matrix Product State and Multiconfiguration Time-Dependent Hartree Methods for Nonadiabatic Dynamics of Exciton Dissociation. J Chem Theory Comput 2024; 20:8767-8781. [PMID: 39364795 PMCID: PMC11500411 DOI: 10.1021/acs.jctc.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
The excited-state dynamics of organic molecules, molecular aggregates, and donor-acceptor clusters is typically governed by the interplay of electronic excitations and, due to their flexibility and soft bonding, by the interaction with their vibrations. This interaction in these systems can be characterized by a few relevant electronic states that are coupled to numerous vibrational normal modes, encompassing a vast configurational space of the molecules. The full quantum simulation of these type of systems has been long dominated by the multiconfiguration time-dependent Hartree (MCTDH) approach and its multilayer variants, which are considered the gold standard in the presence of electron-vibration coupling with a large number of modes. Recently, also the matrix product state ansatz (MPS) with appropriate time-evolution schemes has been applied to these types of Hamiltonians. In this article, we provide a numerical comparison of excited-state dynamics between the MCTDH and MPS approaches for two electron-vibration coupled systems. Notably, we consider two models for exciton dissociation at a P3HT:PCBM heterojunction, comprising two electronic states and 100 vibrational modes, and 26 electronic states and 113 vibrational modes, respectively. While both methods agree very well for the first model, more pronounced deviations are found for the second model. We trace back the divergence between the methods to the different way entanglement is treated.
Collapse
Affiliation(s)
- Maximilian
F. X. Dorfner
- TUM
School of Natural Sciences, Technische Universität
München, 85748 Garching bei München, Germany
| | - Dominik Brey
- Institut
für Physikalische und Theoretische Chemie, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Irene Burghardt
- Institut
für Physikalische und Theoretische Chemie, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Frank Ortmann
- TUM
School of Natural Sciences, Technische Universität
München, 85748 Garching bei München, Germany
| |
Collapse
|
4
|
Zhou L, Gao X, Shuai Z. A stochastic Schrödinger equation and matrix product state approach to carrier transport in organic semiconductors with nonlocal electron-phonon interaction. J Chem Phys 2024; 161:084118. [PMID: 39212211 DOI: 10.1063/5.0221143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Evaluation of the charge transport property of organic semiconductors requires exact quantum dynamics simulation of large systems. We present a numerically nearly exact approach to investigate carrier transport dynamics in organic semiconductors by extending the non-Markovian stochastic Schrödinger equation with complex frequency modes to a forward-backward scheme and by solving it using the matrix product state (MPS) approach. By utilizing the forward-backward formalism for noise generation, the bath correlation function can be effectively treated as a temperature-independent imaginary part, enabling a more accurate decomposition with fewer complex frequency modes. Using this approach, we study the carrier transport and mobility in the one-dimensional Peierls model, where the nonlocal electron-phonon interaction is taken into account. The reliability of this approach was validated by comparing carrier diffusion motion with those obtained from the hierarchical equations of motion method across various parameter regimes of the phonon bath. The efficiency was demonstrated by the modest virtual bond dimensions of MPS and the low scaling of the computational time with the system size.
Collapse
Affiliation(s)
- Liqi Zhou
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xing Gao
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
5
|
Li W, Ren J, Yang H, Wang H, Shuai Z. Optimal tree tensor network operators for tensor network simulations: Applications to open quantum systems. J Chem Phys 2024; 161:054116. [PMID: 39105557 DOI: 10.1063/5.0218773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator. The construction is based on the minimum vertex cover of a bipartite graph. With the optimal TTNO, we simulate open quantum systems, such as spin relaxation dynamics in the spin-boson model and charge transport in molecular junctions. In these simulations, the environment is treated as discrete modes and its wavefunction is evolved on equal footing with the system. We employ the Cole-Davidson spectral density to model the glassy phonon environment and incorporate temperature effects via thermo-field dynamics. Our results show that the computational cost scales linearly with the number of discretized modes, demonstrating the efficiency of our approach.
Collapse
Affiliation(s)
- Weitang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, People's Republic of China
- Tencent Quantum Lab, Tencent, Shenzhen 518057, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Hengrui Yang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, People's Republic of China
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, USA
| | - Zhigang Shuai
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, People's Republic of China
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, People's Republic of China
| |
Collapse
|
6
|
Guo Y, Gao X. Electronic dynamics through conical intersections via non-Markovian stochastic Schrödinger equation with complex modes. J Chem Phys 2024; 161:054110. [PMID: 39092942 DOI: 10.1063/5.0221087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Conical intersections (CIs) play a crucial role in photochemical reactions, offering an efficient channel for ultrafast non-adiabatic relaxation of excited states. This significantly influences the reaction pathways and the resulting products. In this work, we utilize the non-Markovian stochastic Schrödinger equation with complex modes method to explore the dynamics of electronic transitions through conical intersections (CIs) in pyrazine. The linear vibronic coupling model serves as the foundational framework, incorporating both intra-state and inter-state electron-vibrational interactions. The dynamics of the excited electronic transitions are analyzed across varying strengths of system-bath coupling and different bath relaxation times. The accuracy of this method is demonstrated by comparing its predictions with those from the hierarchical equations of motion method.
Collapse
Affiliation(s)
- Yukai Guo
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xing Gao
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
7
|
Xu Y, Liu C, Ma H. Kylin-V: An open-source package calculating the dynamic and spectroscopic properties of large systems. J Chem Phys 2024; 161:052501. [PMID: 39087896 DOI: 10.1063/5.0220712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
Quantum dynamics simulation and computational spectroscopy serve as indispensable tools for the theoretical understanding of various fundamental physical and chemical processes, ranging from charge transfer to photochemical reactions. When simulating realistic systems, the primary challenge stems from the overwhelming number of degrees of freedom and the pronounced many-body correlations. Here, we present Kylin-V, an innovative quantum dynamics package designed for accurate and efficient simulations of dynamics and spectroscopic properties of vibronic Hamiltonians for molecular systems and their aggregates. Kylin-V supports various quantum dynamics and computational spectroscopy methods, such as time-dependent density matrix renormalization group and our recently proposed single-site and hierarchical mapping approaches, as well as vibrational heat-bath configuration interaction. In this paper, we introduce the methodologies implemented in Kylin-V and illustrate their performances through a diverse collection of numerical examples.
Collapse
Affiliation(s)
- Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chungen Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
8
|
Sheng Z, Jiang T, Li W, Shuai Z. TD-DMRG Study of Exciton Dynamics with both Thermal and Static Disorders for Fenna-Matthews-Olson Complex. J Chem Theory Comput 2024. [PMID: 39087905 DOI: 10.1021/acs.jctc.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Photosynthesis is a fundamental process that converts solar energy into chemical energy. Understanding the microscopic mechanisms of energy transfer in photosynthetic systems is crucial for the development of novel optoelectronic materials. Simulating these processes poses significant challenges due to the intricate interactions between electrons and phonons, compounded by static disorder. In this work, we present a numerically nearly exact study using the time-dependent density matrix renormalization group (TD-DMRG) method to simulate the quantum dynamics of the Fenna-Matthews-Olson (FMO) complex considering an eight-site model with both thermal and static disorders. We employ the thermo-field dynamics formalism for temperature effects. We merge all electronic interactions into one large matrix product state (MPS) site, boosting accuracy efficiently without increasing complexity. Previous combined experimental and computational studies indicated that the static disorders range from 30 to 90 cm-1 for different FMO sites. We employ a Gaussian distribution and the auxiliary bosonic operator approach to consider the static disorder in our TD-DMRG algorithm. We investigate the impact of different initial excitation sites, temperatures, and degrees of static disorder on the exciton dynamics and temporal coherence. It is found that under the influence of the experimentally determined static disorder strength, the exciton population evolution shows a non-negligible difference at zero temperature, while it is hardly affected at room temperature.
Collapse
Affiliation(s)
- Zirui Sheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, P. R. China
| | - Weitang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Zhigang Shuai
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, P. R. China
| |
Collapse
|
9
|
Liu Z, Lyu N, Hu Z, Zeng H, Batista VS, Sun X. Benchmarking various nonadiabatic semiclassical mapping dynamics methods with tensor-train thermo-field dynamics. J Chem Phys 2024; 161:024102. [PMID: 38980091 DOI: 10.1063/5.0208708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Accurate quantum dynamics simulations of nonadiabatic processes are important for studies of electron transfer, energy transfer, and photochemical reactions in complex systems. In this comparative study, we benchmark various approximate nonadiabatic dynamics methods with mapping variables against numerically exact calculations based on the tensor-train (TT) representation of high-dimensional arrays, including TT-KSL for zero-temperature dynamics and TT-thermofield dynamics for finite-temperature dynamics. The approximate nonadiabatic dynamics methods investigated include mixed quantum-classical Ehrenfest mean-field and fewest-switches surface hopping, linearized semiclassical mapping dynamics, symmetrized quasiclassical dynamics, the spin-mapping method, and extended classical mapping models. Different model systems were evaluated, including the spin-boson model for nonadiabatic dynamics in the condensed phase, the linear vibronic coupling model for electronic transition through conical intersections, the photoisomerization model of retinal, and Tully's one-dimensional scattering models. Our calculations show that the optimal choice of approximate dynamical method is system-specific, and the accuracy is sensitively dependent on the zero-point-energy parameter and the initial sampling strategy for the mapping variables.
Collapse
Affiliation(s)
- Zengkui Liu
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Ningyi Lyu
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | - Zhubin Hu
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Hao Zeng
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Victor S Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, USA
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| |
Collapse
|
10
|
Kim CW, Franco I. General framework for quantifying dissipation pathways in open quantum systems. I. Theoretical formulation. J Chem Phys 2024; 160:214111. [PMID: 38833366 DOI: 10.1063/5.0202860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
We present a general and practical theoretical framework to investigate how energy is dissipated in open quantum system dynamics. This is performed by quantifying the contributions of individual bath components to the overall dissipation of the system. The framework is based on the Nakajima-Zwanzig projection operator technique, which allows us to express the rate of energy dissipation into a specific bath degree of freedom by using traces of operator products. The approach captures system-bath interactions to all orders, but is based on second-order perturbation theory on the off-diagonal subsystem's couplings and a Markovian description of the bath. The usefulness of our theory is demonstrated by applying it to various models of open quantum systems involving harmonic oscillators or spin baths and connecting the outcomes to existing results such as our previously reported formula derived for locally coupled harmonic baths [Kim and Franco, J. Chem. Phys. 154, 084109 (2021)]. We also prove that the dissipation calculated by our theory rigorously satisfies thermodynamic principles such as energy conservation and detailed balance. Overall, the strategy can be used to develop the theory and simulation of dissipation pathways to interpret and engineer the dynamics of open quantum systems.
Collapse
Affiliation(s)
- Chang Woo Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Department of Physics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
11
|
Hino K, Kurashige Y. Encoding a Many-Body Potential Energy Surface into a Grid-Based Matrix Product Operator. J Chem Theory Comput 2024; 20:3839-3849. [PMID: 38647101 DOI: 10.1021/acs.jctc.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
An efficient algorithm for compressing a given many-body potential energy surface (PES) of molecular systems into a grid-based matrix product operator (MPO) is proposed. The PES is once represented by a full-dimensional or truncated many-body expansion form, which is obtained by ab initio calculations at each grid mesh point, and then all terms in the expansion are compressed and merged into a single MPO while maintaining the bond dimension of the MPO as small as possible. It was shown that the ab initio PES of the H2CO was compressed by more than 2 orders of magnitude in the size of the site operators without loss of accuracy. By the use of grid basis, the tensor rank of the site operators of the MPO is reduced from four to three due to the diagonal nature of the position-dependent operators on grid basis, which significantly reduces the computational cost of the tensor contractions required in the real and imaginary time evolution of the matrix product state (MPS) wave functions with the grid-based MPO (Grid-MPO) Hamiltonian. Similar to other grid-based methods, Grid-MPO is easily applicable to any kinds of potentials of molecular systems, such as analytical empirical model potentials expressed by position operators and ab initio potentials, if the values at the grid points are available. Using the Grid-MPO combined with the MPS, we calculated the time correlation function of the Eigen cation H 3 O + ( H 2 O ) 3 to predict the infrared spectrum and compared with the experimental and the previous theoretical studies. The actual scaling with the size of systems was examined for the multidimensional Henon-Heiles Hamiltonian. It was shown that the method is considerably accelerated by the graphic processing unit (GPU) because the sizes of site operators were kept small and all tensors were able to be stored on the VRAM of a GPU.
Collapse
Affiliation(s)
- Kentaro Hino
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Kurashige
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- FOREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
12
|
Zhai H, Larsson HR, Lee S, Cui ZH, Zhu T, Sun C, Peng L, Peng R, Liao K, Tölle J, Yang J, Li S, Chan GKL. Block2: A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond. J Chem Phys 2023; 159:234801. [PMID: 38108484 DOI: 10.1063/5.0180424] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio electronic structure Hamiltonians and implements many quantum chemistry extensions to the density matrix renormalization group, such as dynamical correlation theories. The code is designed with an emphasis on flexibility, extensibility, and efficiency and to support integration with external numerical packages. Here, we explain the design principles and currently supported features and present numerical examples in a range of applications.
Collapse
Affiliation(s)
- Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Henrik R Larsson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhi-Hao Cui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Tianyu Zhu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Chong Sun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Linqing Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ruojing Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ke Liao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Johannes Tölle
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Junjie Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Shuoxue Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
13
|
Bose A. Quantum correlation functions through tensor network path integral. J Chem Phys 2023; 159:214110. [PMID: 38051096 DOI: 10.1063/5.0174338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Tensor networks have historically proven to be of great utility in providing compressed representations of wave functions that can be used for the calculation of eigenstates. Recently, it has been shown that a variety of these networks can be leveraged to make real time non-equilibrium simulations of dynamics involving the Feynman-Vernon influence functional more efficient. In this work, a tensor network is developed for non-perturbatively calculating the equilibrium correlation function for open quantum systems using the path integral methodology. These correlation functions are of fundamental importance in calculations of rates of reactions, simulations of response functions and susceptibilities, spectra of systems, etc. The influence of the solvent on the quantum system is incorporated through an influence functional, whose unconventional structure motivates the design of a new optimal matrix product-like operator that can be applied to the so-called path amplitude matrix product state. This complex-time tensor network path integral approach provides an exceptionally efficient representation of the path integral, enabling simulations for larger systems strongly interacting with baths and at lower temperatures out to longer time. The derivation, design, and implementation of this method are discussed along with a wide range of illustrations ranging from rate theory and symmetrized spin correlation functions to simulation of response of the Fenna-Matthews-Olson complex to light.
Collapse
Affiliation(s)
- Amartya Bose
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
14
|
Wang G, Cai Z. Real-Time Simulation of Open Quantum Spin Chains with the Inchworm Method. J Chem Theory Comput 2023. [PMID: 38039552 DOI: 10.1021/acs.jctc.3c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
We study the real-time simulation of open quantum systems, where the system is modeled by a spin chain with each spin associated with its own harmonic bath. Our method couples the inchworm method for the spin-boson model and the modular path integral methodology for spin systems. In particular, the introduction of the inchworm method can significantly suppress the numerical sign problem. Both methods are tweaked to make them work seamlessly with each other. We represent our approach in the language of diagrammatic methods and analyze the asymptotic behavior of the computational cost. Extensive numerical experiments are performed to validate our method.
Collapse
Affiliation(s)
- Geshuo Wang
- Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, Singapore 119076, Singapore
| | - Zhenning Cai
- Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, Singapore 119076, Singapore
| |
Collapse
|
15
|
Van Haeften A, Ash C, Worth G. Propagating multi-dimensional density operators using the multi-layer-ρ multi-configurational time-dependent Hartree method. J Chem Phys 2023; 159:194114. [PMID: 37982483 DOI: 10.1063/5.0172956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/19/2023] [Indexed: 11/21/2023] Open
Abstract
Solving the Liouville-von-Neumann equation using a density operator provides a more complete picture of dynamical quantum phenomena than by using a wavepacket and solving the Schrödinger equation. As density operators are not restricted to the description of pure states, they can treat both thermalized and open systems. In practice, however, they are rarely used to study molecular systems as the computational resources required are even more prohibitive than those needed for wavepacket dynamics. In this paper, we demonstrate the potential utility of a scheme based on the powerful multi-layer multi-configurational time-dependent Hartree algorithm for propagating multi-dimensional density operators. Studies of two systems using this method are presented at a range of temperatures and including up to 13 degrees of freedom. The first case is single proton transfer in salicylaldimine, while the second is double proton transfer in porphycene. A comparison is also made with the approach of using stochastic wavepackets.
Collapse
Affiliation(s)
- Alice Van Haeften
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Ceridwen Ash
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Graham Worth
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| |
Collapse
|
16
|
Liu Z, Hu H, Sun X. Multistate Reaction Coordinate Model for Charge and Energy Transfer Dynamics in the Condensed Phase. J Chem Theory Comput 2023; 19:7151-7170. [PMID: 37815937 PMCID: PMC10601487 DOI: 10.1021/acs.jctc.3c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 10/12/2023]
Abstract
Constructing multistate model Hamiltonians from all-atom electronic structure calculations and molecular dynamics simulations is crucial for understanding charge and energy transfer dynamics in complex condensed phases. The most popular two-level system model is the spin-boson Hamiltonian, where the nuclear degrees of freedom are represented as shifted normal modes. Recently, we proposed the general multistate nontrivial extension of the spin-boson model, i.e., the multistate harmonic (MSH) model, which is constructed by extending the spatial dimensions of each nuclear mode so as to satisfy the all-atom reorganization energy restrictions for all pairs of electronic states. In this work, we propose the multistate reaction coordinate (MRC) model with a primary reaction coordinate and secondary bath modes as in the Caldeira-Leggett form but in extended spatial dimensions. The MRC model is proven to be equivalent to the MSH model and offers an intuitive physical picture of the nuclear-electronic feedback in nonadiabatic processes such as the inherent trajectory of the reaction coordinate. The reaction coordinate is represented in extended dimensions, carrying the entire reorganization energies and bilinearly coupled to the secondary bath modes. We demonstrate the MRC model construction for photoinduced charge transfer in an organic photovoltaic caroteniod-porphyrin-C60 molecular triad dissolved in tetrahydrofuran as well as excitation energy transfer in a photosynthetic light-harvesting Fenna-Matthews-Olson complex. The MRC model provides an effective and robust platform for investigating quantum dissipative dynamics in complex condensed-phase systems since it allows a consistent description of realistic spectral density, state-dependent system-bath couplings, and heterogeneous environments due to static disorder in reorganization energies.
Collapse
Affiliation(s)
- Zengkui Liu
- Division
of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai, 200124, China
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
- Department
of Chemistry, New York University, New York, New York, 10003, United States
| | - Haorui Hu
- Division
of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai, 200124, China
| | - Xiang Sun
- Division
of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai, 200124, China
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
- Department
of Chemistry, New York University, New York, New York, 10003, United States
- Shanghai
Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, 567 West Yangsi Road, Shanghai, 200124, China
| |
Collapse
|
17
|
Yang H, Li W, Ren J, Shuai Z. Time-Dependent Density Matrix Renormalization Group Method for Quantum Transport with Phonon Coupling in Molecular Junction. J Chem Theory Comput 2023; 19:6070-6081. [PMID: 37669099 DOI: 10.1021/acs.jctc.3c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Quantum transport in molecular junctions has attracted great attention. The charge motion in a molecular junction can cause geometric deformation, leading to strong electron phonon coupling, which was often overlooked. We have formulated a nearly exact method to assess the time-dependent current and occupation number in the molecular junction modeled by the electron-phonon coupled bridge state using the time-dependent density matrix renormalization group (TD-DMRG) method. The oscillation period and amplitude of the current are found to be dependent on the electron phonon coupling strength and energy level alignment with the electrodes. In an attempt to better understand these phenomena, we have devised a new approximation that explains the bistability phenomenon and the behavior of steady currents in the strong electron-phonon coupling regime. Comparisons have been made with the multilayer-multiconfiguration time-dependent Hartree (ML-MCTDH) method and the analytical result in the purely electronic limit. Furthermore, we explore the entropy of different orderings, extending to the electron phonon model problems. Regarding finite temperature, the thermal Bogoliubov transformation of both fermions and bosons is used and compared with imaginary time evolution results.
Collapse
Affiliation(s)
- Hengrui Yang
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| |
Collapse
|
18
|
Wang Y, Ren J, Shuai Z. Minimizing non-radiative decay in molecular aggregates through control of excitonic coupling. Nat Commun 2023; 14:5056. [PMID: 37598183 PMCID: PMC10439946 DOI: 10.1038/s41467-023-40716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/03/2023] [Indexed: 08/21/2023] Open
Abstract
The widely known "Energy Gap Law" (EGL) predicts a monotonically exponential increase in the non-radiative decay rate (knr) as the energy gap narrows, which hinders the development of near-infrared (NIR) emissive molecular materials. Recently, several experiments proposed that the exciton delocalization in molecular aggregates could counteract EGL to facilitate NIR emission. In this work, the nearly exact time-dependent density matrix renormalization group (TD-DMRG) method is developed to evaluate the non-radiative decay rate for exciton-phonon coupled molecular aggregates. Systematical numerical simulations show, by increasing the excitonic coupling, knr will first decrease, then reach a minimum, and finally start to increase to follow EGL, which is an overall result of two opposite effects of a smaller energy gap and a smaller effective electron-phonon coupling. This anomalous non-monotonic behavior is found robust in a number of models, including dimer, one-dimensional chain, and two-dimensional square lattice. The optimal excitonic coupling strength that gives the minimum knr is about half of the monomer reorganization energy and is also influenced by system size, dimensionality, and temperature.
Collapse
Affiliation(s)
- Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Jiajun Ren
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875, Beijing, People's Republic of China.
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, People's Republic of China.
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China.
| |
Collapse
|
19
|
Li H, Lv L, Yuan K, Pan S, Li Z. Understanding H-aggregates crystallization induced emissive behavior: insights from theory. Sci Rep 2023; 13:12357. [PMID: 37524840 PMCID: PMC10390577 DOI: 10.1038/s41598-023-39605-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
We conducted a theoretical investigation into how the molecular stacking effect impacts the photophysical properties in solid phases. Our findings indicated that in the aggregated state, the out-of-plane distorted vibration and imidazole ring stretching vibration of triimidazo-[1,3,5] triazinethe are significantly suppressed, which decreased the Huang-Rhys factor and the corresponding reorganization energy of the photophysical process, as a result, this restricted intramolecular motions and dissipation pathways of excess energy in the excited state, therefore, aggregation induced enhancement emission (AIEE) was found for the title compound from dichloromethane solution to solid state. Analysis of the emission spectrum through discrete spectral lines revealed that the main peak was affected by the vibrational modes with lower frequencies, while the middle-frequency modes influenced the shoulder peak. Furthermore, the predicted intersystem crossing rate (kiosk) and reverse intersystem crossing rate (krisc) using Marcus theory confirmed that an electron can successfully shift from its S1 state to the T1 state, however, the reverse T1 → S1 process can not come into being due to very small krisc (10-6-10-9 s-1), therefore the phosphorescence can be observed. At last, we explored the influence of charge transfer process of the title compound, our theoretical data declared this process can be ignored due to its low transfer rate.
Collapse
Affiliation(s)
- Huixue Li
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741001, Gansu, China.
| | - Lingling Lv
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741001, Gansu, China
| | - Kun Yuan
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741001, Gansu, China
| | - Sujuan Pan
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741001, Gansu, China
| | - Zhifeng Li
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741001, Gansu, China.
| |
Collapse
|
20
|
Gera T, Chen L, Eisfeld A, Reimers JR, Taffet EJ, Raccah DIGB. Simulating optical linear absorption for mesoscale molecular aggregates: An adaptive hierarchy of pure states approach. J Chem Phys 2023; 158:2887556. [PMID: 37125709 DOI: 10.1063/5.0141882] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/07/2023] [Indexed: 05/02/2023] Open
Abstract
In this paper, we present dyadic adaptive HOPS (DadHOPS), a new method for calculating linear absorption spectra for large molecular aggregates. This method combines the adaptive HOPS (adHOPS) framework, which uses locality to improve computational scaling, with the dyadic HOPS method previously developed to calculate linear and nonlinear spectroscopic signals. To construct a local representation of dyadic HOPS, we introduce an initial state decomposition that reconstructs the linear absorption spectra from a sum over locally excited initial conditions. We demonstrate the sum over initial conditions can be efficiently Monte Carlo sampled and that the corresponding calculations achieve size-invariant [i.e., O(1)] scaling for sufficiently large aggregates while trivially incorporating static disorder in the Hamiltonian. We present calculations on the photosystem I core complex to explore the behavior of the initial state decomposition in complex molecular aggregates as well as proof-of-concept DadHOPS calculations on an artificial molecular aggregate inspired by perylene bis-imide to demonstrate the size-invariance of the method.
Collapse
Affiliation(s)
- Tarun Gera
- Department of Chemistry, Southern Methodist University, P.O. Box, Dallas, Texas 750314, USA
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden, Germany
| | - Alexander Eisfeld
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden, Germany
| | - Jeffrey R Reimers
- International Centre for Quantum and Molecular Structures and the School of Physics, Shanghai University, 200444 Shanghai, China
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney NSW 2007, Australia
| | - Elliot J Taffet
- Department of Chemistry, Southern Methodist University, P.O. Box, Dallas, Texas 750314, USA
| | - Doran I G B Raccah
- Department of Chemistry, Southern Methodist University, P.O. Box, Dallas, Texas 750314, USA
| |
Collapse
|
21
|
Xu Y, Liu C, Ma H. Hierarchical Mapping for Efficient Simulation of Strong System-Environment Interactions. J Chem Theory Comput 2023; 19:426-435. [PMID: 36626721 DOI: 10.1021/acs.jctc.2c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Quantum dynamics (QD) simulation is a powerful tool for interpreting ultrafast spectroscopy experiments and unraveling their microscopic mechanism in out-of-equilibrium excited state behaviors in various chemical, biological, and material systems. Although state-of-the-art numerical QD approaches such as the time-dependent density matrix renormalization group (TD-DMRG) already greatly extended the solvable system size of general linearly coupled exciton-phonon models with up to a few hundred phonon modes, the accurate simulation of larger system sizes or strong system-environment interactions is still computationally highly challenging. Based on quantum information theory (QIT), in this work, we realize that only a small number of effective phonon modes couple to the excitonic system directly regardless of a large or even infinite number of modes in the condensed phase environment. On top of the identified small number of direct effective modes, we propose a hierarchical mapping (HM) approach through performing block Lanczos transformations on the remaining indirect modes, which transforms the Hamiltonian matrix to a nearly block-tridiagonal form and eliminates the long-range interactions. Numerical tests on model spin-boson systems and realistic singlet fission models in a rubrene crystal environment with up to 7000 modes and strong system-environment interactions indicate HM can reduce the system size by 1-2 orders of magnitude and accelerate the calculation by ∼80% without losing accuracy.
Collapse
Affiliation(s)
- Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chungen Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
22
|
Lin K, Peng J, Xu C, Gu FL, Lan Z. Automatic Evolution of Machine-Learning-Based Quantum Dynamics with Uncertainty Analysis. J Chem Theory Comput 2022; 18:5837-5855. [DOI: 10.1021/acs.jctc.2c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kunni Lin
- School of Chemistry, South China Normal University, Guangzhou510006, P. R. China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou510006, P. R. China
| | - Jiawei Peng
- School of Chemistry, South China Normal University, Guangzhou510006, P. R. China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou510006, P. R. China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou510006, P. R. China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou510006, P. R. China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou510006, P. R. China
| |
Collapse
|
23
|
Ge Y, Li W, Ren J, Shuai Z. Computational Method for Evaluating the Thermoelectric Power Factor for Organic Materials Modeled by the Holstein Model: A Time-Dependent Density Matrix Renormalization Group Formalism. J Chem Theory Comput 2022; 18:6437-6446. [PMID: 36174220 DOI: 10.1021/acs.jctc.2c00651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic/polymeric materials are of emerging importance for thermoelectric conversion. The soft nature of these materials implies strong electron-phonon coupling, often leading to carrier localization. This poses great challenges for the conventional Boltzmann transport description based on relaxation time approximation and band structure calculations. In this work, combining the Kubo formula with the finite-temperature time-dependent density matrix renormalization group (FT-TD-DMRG) in the grand canonical ensemble, we developed a nearly exact algorithm to calculate the thermoelectric power factor PF = α2 σ, where α is the Seebeck coefficient and σ is the electrical conductivity, and apply the algorithm to Holstein Hamiltonian with electron-phonon coupling to model organic materials. Our algorithm can provide a unified description covering the weak coupling limit described by the bandlike Boltzmann transport to the strong coupling hopping limit.
Collapse
Affiliation(s)
- Yufei Ge
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084Beijing, P. R. China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084Beijing, P. R. China
| | - Jiajun Ren
- MOE Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, 100875Beijing, P. R. China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084Beijing, P. R. China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen518172, Guangdong, P. R. China
| |
Collapse
|
24
|
Bose A, Walters PL. Effect of temperature gradient on quantum transport. Phys Chem Chem Phys 2022; 24:22431-22436. [PMID: 36102915 DOI: 10.1039/d2cp03030f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recently introduced multisite tensor network path integral (MS-TNPI) method [Bose and Walters, J. Chem. Phys., 2022, 156, 24101] for simulating quantum dynamics of extended systems has been shown to be effective in studying one-dimensional systems coupled with local baths. Quantum transport in these systems is typically studied at a constant temperature. However, temperature seems to be a very obvious parameter that can be spatially changed to control this transport. Here, MS-TNPI is used to study the "non-equilibrium" effects of an externally imposed temperature profile on the excitonic transport in one-dimensional Frenkel chains coupled with local vibrations. We show that in addition to being important for incorporating heating effects of excitation by lasers, temperature can also be an interesting parameter for quantum control.
Collapse
Affiliation(s)
- Amartya Bose
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| | - Peter L Walters
- Department of Chemistry, University of California, Berkeley, California 94720, USA.,Miller Institute for Basic Research in Science, University of California Berkeley, Berkeley, California 94720, USA.
| |
Collapse
|
25
|
Wang Y, Ren J, Li W, Shuai Z. Hybrid Quantum-Classical Boson Sampling Algorithm for Molecular Vibrationally Resolved Electronic Spectroscopy with Duschinsky Rotation and Anharmonicity. J Phys Chem Lett 2022; 13:6391-6399. [PMID: 35802770 DOI: 10.1021/acs.jpclett.2c01475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Using a photonic quantum computer for boson sampling has demonstrated a tremendous advantage over classical supercomputers. It is highly desirable to develop boson sampling algorithms for realistic scientific problems. In this work, we propose a hybrid quantum-classical sampling (HQCS) algorithm to calculate the optical spectrum for complex molecules considering Duschinsky rotation effects and anharmonicity. The classical sum-over-states method for this problem has a computational complexity that exponentially increases with system size. The HQCS algorithm creates an intermediate harmonic potential energy surface (PES) to bridge the initial and final PESs. The magnitude and sign of the overlap between the initial and the intermediate state are estimated by boson sampling and classical algorithms, respectively. The overlap between the intermediate and the final state is efficiently evaluated by classical algorithms. The feasibility of HQCS is demonstrated in calculations of the emission spectrum of a Morse model as well as the pyridine molecule.
Collapse
Affiliation(s)
- Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
26
|
Xing T, Li T, Yan Y, Bai S, Shi Q. Application of the imaginary time hierarchical equations of motion method to calculate real time correlation functions. J Chem Phys 2022; 156:244102. [DOI: 10.1063/5.0095790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We investigate the application of the imaginary time hierarchical equations of motion method to calculate real time quantum correlation functions. By starting from the path integral expression for the correlated system–bath equilibrium state, we first derive a new set of equations that decouple the imaginary time propagation and the calculation of auxiliary density operators. The new equations, thus, greatly simplify the calculation of the equilibrium correlated initial state that is subsequently used in the real time propagation to obtain the quantum correlation functions. It is also shown that a periodic decomposition of the bath imaginary time correlation function is no longer necessary in the new equations such that different decomposition schemes can be explored. The applicability of the new method is demonstrated in several numerical examples, including the spin-Boson model, the Holstein model, and the double-well model for proton transfer reaction.
Collapse
Affiliation(s)
- Tao Xing
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianchu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Bose A, Walters PL. Tensor Network Path Integral Study of Dynamics in B850 LH2 Ring with Atomistically Derived Vibrations. J Chem Theory Comput 2022; 18:4095-4108. [PMID: 35732015 DOI: 10.1021/acs.jctc.2c00163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recently introduced multisite tensor network path integral (MS-TNPI) allows simulation of extended quantum systems coupled to dissipative media. We use MS-TNPI to simulate the exciton transport and the absorption spectrum of a B850 bacteriochlorophyll (BChl) ring. The MS-TNPI network is extended to account for the ring topology of the B850 system. Accurate molecular-dynamics-based description of the molecular vibrations and the protein scaffold is incorporated through the framework of Feynman-Vernon influence functional. To relate the present work with the excitonic picture, an exploration of the absorption spectrum is done by simulating it using approximate and topologically consistent transition dipole moment vectors. Comparison of these numerically exact MS-TNPI absorption spectra are shown with second-order cumulant approximations. The effect of temperature on both the exact and the approximate spectra is also explored.
Collapse
Affiliation(s)
- Amartya Bose
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Peter L Walters
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Miller Institute for Basic Research in Science, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
28
|
Hino K, Kurashige Y. Matrix Product State Formulation of the MCTDH Theory in Local Mode Representations for Anharmonic Potentials. J Chem Theory Comput 2022; 18:3347-3356. [PMID: 35606892 DOI: 10.1021/acs.jctc.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The matrix product state formulation of the multiconfiguration time-dependent Hartree theory, MPS-MCTDH, reported previously [Kurashige, J. Chem. Phys. 2018, 19, 194114] is extended to realistic anharmonic potentials with n-mode representations beyond the linear vibronic coupling model. For realistic vibrational potentials, the local mode representation should give a more compact representation of the potentials, i.e., lowering the dimensionality of the entanglements, than the normal coordinates, and the MPS-MCTDH formulation should work more efficiently and maintain the accuracy with a small bond dimension of the MPS ansatz. In fact, it was confirmed that the use of the local coordinates made the interaction matrices diagonal dominant and the number of terms in the n-body expansion of the potentials was significantly reduced. The method was applied to the IR spectrum of the CH2O molecule, the zero-point energies, and the vibrational energy redistribution dynamics of polyenes C2nH2n+2. The results showed that the efficiency of the MPS-MCTDH method is significantly accelerated by the use of local coordinates even if the long-range interactions are included in the potential.
Collapse
Affiliation(s)
- Kentaro Hino
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Kurashige
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
29
|
Abstract
The quantum-classical path integral (QCPI) is a rigorous formulation of nonadiabatic dynamics, where the dynamical interaction between a quantum system and its environment is captured consistently through classical trajectories driven by forces along quantum paths of the system. In this Letter, we develop a small matrix decomposition (SMatQCPI) that eliminates the tensor storage requirements of the iterative QCPI algorithm. In the case of a system coupled to a harmonic bath, SMatQCPI provides fully quantum mechanical propagation, which also reduces the computational cost to that of a single QCPI step. Further, the SMatQCPI matrices only need to account for quantum contributions to decoherence, allowing high efficiency in challenging regimes of incoherent dynamics. Overall, this new composite algorithm combines the best features of two powerful path integral formulations and offers a versatile tool for simulating condensed phase quantum dynamics.
Collapse
Affiliation(s)
- Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Ren J, Li W, Jiang T, Wang Y, Shuai Z. Time‐dependent density matrix renormalization group method for quantum dynamics in complex systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| |
Collapse
|
31
|
Xu Y, Xie Z, Xie X, Schollwöck U, Ma H. Stochastic Adaptive Single-Site Time-Dependent Variational Principle. JACS AU 2022; 2:335-340. [PMID: 35252984 PMCID: PMC8889605 DOI: 10.1021/jacsau.1c00474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 06/14/2023]
Abstract
In recent years, the time-dependent variational principle (TDVP) method based on the matrix product state (MPS) wave function formulation has shown its great power in performing large-scale quantum dynamics simulations for realistic chemical systems with strong electron-vibration interactions. In this work, we propose a stochastic adaptive single-site TDVP (SA-1TDVP) scheme to evolve the bond-dimension adaptively, which can integrate the traditional advantages of both the high efficiency of the single-site TDVP (1TDVP) variant and the high accuracy of the two-site TDVP (2TDVP) variant. Based on the assumption that the level statistics of entanglement Hamiltonians, which originate from the reduced density matrices of the MPS method, follows a Poisson or Wigner distribution, as generically predicted by random-matrix theory, additional random singular values are generated to expand the bond-dimension automatically. Tests on simulating the vibrationally resolved quantum dynamics and absorption spectra in the pyrazine molecule and perylene bisimide (PBI) J-aggregate trimer as well as a spin-1/2 Heisenberg chain show that it can be automatic and as accurate as 2TDVP but reduce the computational time remarkably.
Collapse
Affiliation(s)
- Yihe Xu
- School
of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle
Emissions Control, Nanjing University, Nanjing 210023, China
| | - Zhaoxuan Xie
- School
of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle
Emissions Control, Nanjing University, Nanjing 210023, China
| | - Xiaoyu Xie
- Department
of Chemistry, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Ulrich Schollwöck
- Arnold
Sommerfeld Center of Theoretical Physics, Department of Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
- Munich
Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
| | - Haibo Ma
- School
of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle
Emissions Control, Nanjing University, Nanjing 210023, China
| |
Collapse
|
32
|
Kundu S, Makri N. Intramolecular Vibrations in Excitation Energy Transfer: Insights from Real-Time Path Integral Calculations. Annu Rev Phys Chem 2022; 73:349-375. [PMID: 35081322 DOI: 10.1146/annurev-physchem-090419-120202] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excitation energy transfer (EET) is fundamental to many processes in chemical and biological systems and carries significant implications for the design of materials suitable for efficient solar energy harvest and transport. This review discusses the role of intramolecular vibrations on the dynamics of EET in nonbonded molecular aggregates of bacteriochlorophyll, a perylene bisimide, and a model system, based on insights obtained from fully quantum mechanical real-time path integral results for a Frenkel exciton Hamiltonian that includes all vibrational modes of each molecular unit at finite temperature. Generic trends, as well as features specific to the vibrational characteristics of the molecules, are identified. Weak exciton-vibration (EV) interaction leads to compact, near-Gaussian densities on each electronic state, whose peak follows primarily a classical trajectory on a torus, while noncompact densities and nonlinear peak evolution are observed with strong EV coupling. Interaction with many intramolecular modes and increasing aggregate size smear, shift, and damp these dynamical features. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sohang Kundu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Nancy Makri
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; .,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
33
|
Bose A, Walters PL. A multisite decomposition of the tensor network path integrals. J Chem Phys 2022; 156:024101. [PMID: 35032978 DOI: 10.1063/5.0073234] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tensor network decompositions of path integrals for simulating open quantum systems have recently been proven to be useful. However, these methods scale exponentially with the system size. This makes it challenging to simulate the non-equilibrium dynamics of extended quantum systems coupled with local dissipative environments. In this work, we extend the tensor network path integral (TNPI) framework to efficiently simulate such extended systems. The Feynman-Vernon influence functional is a popular approach used to account for the effect of environments on the dynamics of the system. In order to facilitate the incorporation of the influence functional into a multisite framework (MS-TNPI), we combine a matrix product state (MPS) decomposition of the reduced density tensor of the system along the sites with a corresponding tensor network representation of the time axis to construct an efficient 2D tensor network. The 2D MS-TNPI network, when contracted, yields the time-dependent reduced density tensor of the extended system as an MPS. The algorithm presented is independent of the system Hamiltonian. We outline an iteration scheme to take the simulation beyond the non-Markovian memory introduced by solvents. Applications to spin chains coupled to local harmonic baths are presented; we consider the Ising, XXZ, and Heisenberg models, demonstrating that the presence of local environments can often dissipate the entanglement between the sites. We discuss three factors causing the system to transition from a coherent oscillatory dynamics to a fully incoherent dynamics. The MS-TNPI method is useful for studying a variety of extended quantum systems coupled with solvents.
Collapse
Affiliation(s)
- Amartya Bose
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Peter L Walters
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
34
|
Interpretation of Adiabatic and Diabatic Populations from Trajectories of Branching Corrected Surface Hopping. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2201023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
35
|
Wu D, Hu Z, Li J, Sun X. Forecasting nonadiabatic dynamics using hybrid convolutional neural network/long short-term memory network. J Chem Phys 2021; 155:224104. [PMID: 34911307 DOI: 10.1063/5.0073689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Modeling nonadiabatic dynamics in complex molecular or condensed-phase systems has been challenging, especially for the long-time dynamics. In this work, we propose a time series machine learning scheme based on the hybrid convolutional neural network/long short-term memory (CNN-LSTM) framework for predicting the long-time quantum behavior, given only the short-time dynamics. This scheme takes advantage of both the powerful local feature extraction ability of CNN and the long-term global sequential pattern recognition ability of LSTM. With feature fusion of individually trained CNN-LSTM models for the quantum population and coherence dynamics, the proposed scheme is shown to have high accuracy and robustness in predicting the linearized semiclassical and symmetrical quasiclassical mapping dynamics as well as the mixed quantum-classical Liouville dynamics of various spin-boson models with learning time up to 0.3 ps. Furthermore, if the hybrid network has learned the dynamics of a system, this knowledge is transferable that could significantly enhance the accuracy in predicting the dynamics of a similar system. The hybrid CNN-LSTM network is thus believed to have high predictive power in forecasting the nonadiabatic dynamics in realistic charge and energy transfer processes in photoinduced energy conversion.
Collapse
Affiliation(s)
- Daxin Wu
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| | - Zhubin Hu
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| | - Jiebo Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Institute of Medical Photonics, Beihang University, Beijing 100191, China
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| |
Collapse
|
36
|
Liu YH, Wang K, Ma HB. Evaluating first-order molecular properties of delocalized ionic or excited states in molecular aggregates by renormalized excitonic method. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2108133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yun-hao Liu
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Ke Wang
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Hai-bo Ma
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| |
Collapse
|
37
|
Li W, Ma H, Li S, Ma J. Computational and data driven molecular material design assisted by low scaling quantum mechanics calculations and machine learning. Chem Sci 2021; 12:14987-15006. [PMID: 34909141 PMCID: PMC8612375 DOI: 10.1039/d1sc02574k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Electronic structure methods based on quantum mechanics (QM) are widely employed in the computational predictions of the molecular properties and optoelectronic properties of molecular materials. The computational costs of these QM methods, ranging from density functional theory (DFT) or time-dependent DFT (TDDFT) to wave-function theory (WFT), usually increase sharply with the system size, causing the curse of dimensionality and hindering the QM calculations for large sized systems such as long polymer oligomers and complex molecular aggregates. In such cases, in recent years low scaling QM methods and machine learning (ML) techniques have been adopted to reduce the computational costs and thus assist computational and data driven molecular material design. In this review, we illustrated low scaling ground-state and excited-state QM approaches and their applications to long oligomers, self-assembled supramolecular complexes, stimuli-responsive materials, mechanically interlocked molecules, and excited state processes in molecular aggregates. Variable electrostatic parameters were also introduced in the modified force fields with the polarization model. On the basis of QM computational or experimental datasets, several ML algorithms, including explainable models, deep learning, and on-line learning methods, have been employed to predict the molecular energies, forces, electronic structure properties, and optical or electrical properties of materials. It can be conceived that low scaling algorithms with periodic boundary conditions are expected to be further applicable to functional materials, perhaps in combination with machine learning to fast predict the lattice energy, crystal structures, and spectroscopic properties of periodic functional materials.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Haibo Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Jiangsu Key Laboratory of Advanced Organic Materials, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing 210023 China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Jiangsu Key Laboratory of Advanced Organic Materials, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing 210023 China
| |
Collapse
|
38
|
Braver Y, Valkunas L, Gelzinis A. Quantum-Classical Approach for Calculations of Absorption and Fluorescence: Principles and Applications. J Chem Theory Comput 2021; 17:7157-7168. [PMID: 34618457 PMCID: PMC8719324 DOI: 10.1021/acs.jctc.1c00777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 01/20/2023]
Abstract
Absorption and fluorescence spectroscopy techniques provide a wealth of information on molecular systems. The simulations of such experiments remain challenging, however, despite the efforts put into developing the underlying theory. An attractive method of simulating the behavior of molecular systems is provided by the quantum-classical theory─it enables one to keep track of the state of the bath explicitly, which is needed for accurate calculations of fluorescence spectra. Unfortunately, until now there have been relatively few works that apply quantum-classical methods for modeling spectroscopic data. In this work, we seek to provide a framework for the calculations of absorption and fluorescence lineshapes of molecular systems using the methods based on the quantum-classical Liouville equation, namely, the forward-backward trajectory solution (FBTS) and the non-Hamiltonian variant of the Poisson bracket mapping equation (PBME-nH). We perform calculations on a molecular dimer and the photosynthetic Fenna-Matthews-Olson complex. We find that in the case of absorption, the FBTS outperforms PBME-nH, consistently yielding highly accurate results. We next demonstrate that for fluorescence calculations, the method of choice is a hybrid approach, which we call PBME-nH-Jeff, that utilizes the effective coupling theory [Gelzinis, A.; J. Chem. Phys. 2020, 152, 051103] to estimate the excited state equilibrium density operator. Thus, we find that FBTS and PBME-nH-Jeff are excellent candidates for simulating, respectively, absorption and fluorescence spectra of real molecular systems.
Collapse
Affiliation(s)
- Yakov Braver
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9-III, LT-10222 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Leonas Valkunas
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9-III, LT-10222 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Andrius Gelzinis
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9-III, LT-10222 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
39
|
Lin K, Peng J, Gu FL, Lan Z. Simulation of Open Quantum Dynamics with Bootstrap-Based Long Short-Term Memory Recurrent Neural Network. J Phys Chem Lett 2021; 12:10225-10234. [PMID: 34647736 DOI: 10.1021/acs.jpclett.1c02672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The recurrent neural network with the long short-term memory cell (LSTM-NN) is employed to simulate the long-time dynamics of open quantum systems. The bootstrap method is applied in the LSTM-NN construction and prediction, which provides a Monte Carlo estimation of a forecasting confidence interval. Within this approach, a large number of LSTM-NNs are constructed by resampling time-series sequences that were obtained from the early stage quantum evolution given by numerically exact multilayer multiconfigurational time-dependent Hartree method. The built LSTM-NN ensemble is used for the reliable propagation of the long-time quantum dynamics, and the simulated result is highly consistent with the exact evolution. The forecasting uncertainty that partially reflects the reliability of the LSTM-NN prediction is also given. This demonstrates the bootstrap-based LSTM-NN approach is a practical and powerful tool to propagate the long-time quantum dynamics of open systems with high accuracy and low computational cost.
Collapse
Affiliation(s)
- Kunni Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiawei Peng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
40
|
Gelin MF, Velardo A, Borrelli R. Efficient quantum dynamics simulations of complex molecular systems: A unified treatment of dynamic and static disorder. J Chem Phys 2021; 155:134102. [PMID: 34624969 DOI: 10.1063/5.0065896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We present a unified and highly numerically efficient formalism for the simulation of quantum dynamics of complex molecular systems, which takes into account both temperature effects and static disorder. The methodology is based on the thermo-field dynamics formalism, and Gaussian static disorder is included into simulations via auxiliary bosonic operators. This approach, combined with the tensor-train/matrix-product state representation of the thermalized stochastic wave function, is applied to study the effect of dynamic and static disorders in charge-transfer processes in model organic semiconductor chains employing the Su-Schrieffer-Heeger (Holstein-Peierls) model Hamiltonian.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | | |
Collapse
|
41
|
Jiang T, Ren J, Shuai Z. Chebyshev Matrix Product States with Canonical Orthogonalization for Spectral Functions of Many-Body Systems. J Phys Chem Lett 2021; 12:9344-9352. [PMID: 34549961 DOI: 10.1021/acs.jpclett.1c02688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We propose a method to calculate the spectral functions of many-body systems by Chebyshev expansion in the framework of matrix product states coupled with canonical orthogonalization (coCheMPS). The canonical orthogonalization can improve the accuracy and efficiency significantly because the orthogonalized Chebyshev vectors can provide an ideal basis for constructing the effective Hamiltonian in which the exact recurrence relation can be retained. In addition, not only the spectral function but also the excited states and eigenenergies can be directly calculated, which is usually impossible for other MPS-based methods such as time-dependent formalism or correction vector. The remarkable accuracy and efficiency of coCheMPS over other methods are demonstrated by calculating the spectral functions of spin chain and ab initio hydrogen chain. For the first time we demonstrate that Chebyshev MPS can be used to deal with ab initio electronic Hamiltonian effectively. We emphasize the strength of coCheMPS to calculate the low excited states of systems with sparse discrete spectrum. We also caution the application for electron-phonon systems with dense density of states.
Collapse
Affiliation(s)
- Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
42
|
Peng R, White AF, Zhai H, Kin-Lic Chan G. Conservation laws in coupled cluster dynamics at finite temperature. J Chem Phys 2021; 155:044103. [PMID: 34340387 DOI: 10.1063/5.0059257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137-6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest's theorem) for all one-particle properties while remaining energy conserving for time-independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of non-equilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.
Collapse
Affiliation(s)
- Ruojing Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Alec F White
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
43
|
Gelin MF, Borrelli R. Simulation of Nonlinear Femtosecond Signals at Finite Temperature via a Thermo Field Dynamics-Tensor Train Method: General Theory and Application to Time- and Frequency-Resolved Fluorescence of the Fenna-Matthews-Olson Complex. J Chem Theory Comput 2021; 17:4316-4331. [PMID: 34076412 DOI: 10.1021/acs.jctc.1c00158] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addressing needs of contemporary nonlinear femtosecond optical spectroscopy, we have developed a fully quantum, numerically accurate wave function-based approach for the calculation of third-order spectroscopic signals of polyatomic molecules and molecular aggregates at finite temperature. The systems are described by multimode nonadiabatic vibronic-coupling Hamiltonians, in which diagonal terms are treated in harmonic approximation, while off-diagonal interstate couplings are assumed to be coordinate independent. The approach is based on the Thermo Field Dynamics (TFD) representation of quantum mechanics and tensor-train (TT) machinery for efficient numerical simulation of quantum evolution of systems with many degrees of freedom. The developed TFD-TT approach is applied to the calculation of time- and frequency-resolved fluorescence spectra of the Fenna-Matthews-Olson (FMO) antenna complex at room temperature taking into account finite time-frequency resolution in fluorescence detection, orientational averaging, and static disorder.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | |
Collapse
|
44
|
Abstract
Abstract
Theoretical and computational chemistry aims to develop chemical theory and to apply numerical computation and simulation to reveal the mechanism behind complex chemical phenomena via quantum theory and statistical mechanics. Computation is the third pillar of scientific research together with theory and experiment. Computation enables scientists to test, discover, and build models/theories of the corresponding chemical phenomena. Theoretical and computational chemistry has been advanced to a new era due to the development of high-performance computational facilities and artificial intelligence approaches. The tendency to merge electronic structural theory with quantum chemical dynamics and statistical mechanics is of increasing interest because of the rapid development of on-the-fly dynamic simulations for complex systems plus low-scaling electronic structural theory. Another challenging issue lies in the transition from order to disorder, from thermodynamics to dynamics, and from equilibrium to non-equilibrium. Despite an increasingly rapid emergence of advances in computational power, detailed criteria for databases, effective data sharing strategies, and deep learning workflows have yet to be developed. Here, we outline some challenges and limitations of the current artificial intelligence approaches with an outlook on the potential future directions for chemistry in the big data era.
Collapse
|
45
|
Wang Y, Ren J, Shuai Z. Evaluating the anharmonicity contributions to the molecular excited state internal conversion rates with finite temperature TD-DMRG. J Chem Phys 2021; 154:214109. [PMID: 34240969 DOI: 10.1063/5.0052804] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we propose a new method to calculate molecular nonradiative electronic relaxation rates based on the numerically exact time-dependent density matrix renormalization group theory. This method could go beyond the existing frameworks under the harmonic approximation (HA) of the potential energy surface (PES) so that the anharmonic effect could be considered, which is of vital importance when the electronic energy gap is much larger than the vibrational frequency. We calculate the internal conversion (IC) rates in a two-mode model with Morse potential to investigate the validity of HA. We find that HA is unsatisfactory unless only the lowest several vibrational states of the lower electronic state are involved in the transition process when the adiabatic excitation energy is relatively low. As the excitation energy increases, HA first underestimates and then overestimates the IC rates when the excited state PES shifts toward the dissociative side of the ground state PES. On the contrary, HA slightly overestimates the IC rates when the excited state PES shifts toward the repulsive side. In both cases, a higher temperature enlarges the error of HA. As a real example to demonstrate the effectiveness and scalability of the method, we calculate the IC rates of azulene from S1 to S0 on the ab initio anharmonic PES approximated by the one-mode representation. The calculated IC rates of azulene under HA are consistent with the analytically exact results. The rates on the anharmonic PES are 30%-40% higher than the rates under HA.
Collapse
Affiliation(s)
- Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
46
|
Hu D, Xie Y, Peng J, Lan Z. On-the-Fly Symmetrical Quasi-Classical Dynamics with Meyer-Miller Mapping Hamiltonian for the Treatment of Nonadiabatic Dynamics at Conical Intersections. J Chem Theory Comput 2021; 17:3267-3279. [PMID: 34028268 DOI: 10.1021/acs.jctc.0c01249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The on-the-fly version of the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (SQC/MM) is implemented to study the nonadiabatic dynamics at conical intersections of polyatomic systems. The current on-the-fly implementation of the SQC/MM method is based on the adiabatic representation and the dressed momentum. To include the zero-point energy (ZPE) correction of the electronic mapping variables, we employ both the γ-adjusted and γ-fixed approaches. Nonadiabatic dynamics of the methaniminium cation (CH2NH2+) and azomethane are simulated using the on-the-fly SQC/MM method. For CH2NH2+, both ZPE correction approaches give reasonable and consistent results. However, for azomethane, the γ-adjusted version of the SQC/MM dynamics behaves much better than the γ-fixed version. Further analysis indicates that it is always recommended to use the γ-adjusted SQC/MM dynamics in the on-the-fly simulation of photoinduced dynamics of polyatomic systems, particularly when the excited state is well separated from the ground state in the Franck-Condon region. This work indicates that the on-the-fly SQC/MM method is a powerful simulation protocol to deal with the nonadiabatic dynamics of realistic polyatomic systems.
Collapse
Affiliation(s)
- Deping Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
47
|
Yan Y, Xu M, Li T, Shi Q. Efficient propagation of the hierarchical equations of motion using the Tucker and hierarchical Tucker tensors. J Chem Phys 2021; 154:194104. [PMID: 34240893 DOI: 10.1063/5.0050720] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We develop new methods to efficiently propagate the hierarchical equations of motion (HEOM) by using the Tucker and hierarchical Tucker (HT) tensors to represent the reduced density operator and auxiliary density operators. We first show that by employing the split operator method, the specific structure of the HEOM allows a simple propagation scheme using the Tucker tensor. When the number of effective modes in the HEOM increases and the Tucker representation becomes intractable, the split operator method is extended to the binary tree structure of the HT representation. It is found that to update the binary tree nodes related to a specific effective mode, we only need to propagate a short matrix product state constructed from these nodes. Numerical results show that by further employing the mode combination technique commonly used in the multi-configuration time-dependent Hartree approaches, the binary tree representation can be applied to study excitation energy transfer dynamics in a fairly large system including over 104 effective modes. The new methods may thus provide a promising tool in simulating quantum dynamics in condensed phases.
Collapse
Affiliation(s)
- Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Meng Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Tianchu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| |
Collapse
|
48
|
Borrelli R, Gelin MF. Finite temperature quantum dynamics of complex systems: Integrating
thermo‐field
theories and
tensor‐train
methods. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1539] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Maxim F. Gelin
- School of Sciences Hangzhou Dianzi University Hangzhou China
| |
Collapse
|
49
|
Chowdhury SN, Huo P. Non-adiabatic Matsubara dynamics and non-adiabatic ring-polymer molecular dynamics. J Chem Phys 2021; 154:124124. [PMID: 33810665 DOI: 10.1063/5.0042136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We present the non-adiabatic Matsubara dynamics, a general framework for computing the time-correlation function (TCF) of electronically non-adiabatic systems. This new formalism is derived based on the generalized Kubo-transformed TCF using the Wigner representation for both the nuclear degrees of freedom and the electronic mapping variables. By dropping the non-Matsubara nuclear normal modes in the quantum Liouvillian and explicitly integrating these modes out from the expression of the TCF, we derived the non-adiabatic Matsubara dynamics approach. Further making the approximation to drop the imaginary part of the Matsubara Liouvillian and enforce the nuclear momentum integral to be real, we arrived at the non-adiabatic ring-polymer molecular dynamics (NRPMD) approach. We have further justified the capability of NRPMD for simulating the non-equilibrium TCF. This work provides the rigorous theoretical foundation for several recently proposed state-dependent RPMD approaches and offers a general framework for developing new non-adiabatic quantum dynamics methods in the future.
Collapse
Affiliation(s)
- Sutirtha N Chowdhury
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| |
Collapse
|
50
|
Kundu S, Makri N. Origin of vibrational features in the excitation energy transfer dynamics of perylene bisimide J-aggregates. J Chem Phys 2021; 154:114301. [DOI: 10.1063/5.0041514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|