1
|
Manna AK. Thiocarbonyl-Bridged N-Heterotriangulenes for Energy Efficient Triplet Photosensitization: A Theoretical Perspective. Chemphyschem 2024; 25:e202400371. [PMID: 38700483 DOI: 10.1002/cphc.202400371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Structurally-rigid metal-free organic molecules are of high demand for various triplet harvesting applications. However, inefficient intersystem crossing (ISC) due to large singlet-triplet gap (Δ E S - T ${\Delta {E}_{S-T}}$ ) and small spin-orbit coupling (SOC) between lowest excited singlet and triplet often limits their efficiency. Excited electronic states, fluorescence and ISC rates in several thiocarbonyl-bridged N-heterotriangulene ( m ${m}$ S-HTG) with systematically increased thione content (m = ${m=}$ 0-3) are investigated implementing polarization consistent time-dependent optimally-tuned range-separated hybrid. All m ${m}$ S-HTGs are dynamically stable and also thermodynamically feasible to synthesize. Relative energies of several low-lying singlets (S n ${{S}_{n}}$ ) and triplets (T n ${{T}_{n}}$ ), and their excitation nature (i. e.,n π * ${n{\pi }^{^{\ast}}}$ orπ π * ${\pi {\pi }^{^{\ast}}}$ ) and SOC are determined for these m ${m}$ S-HTGs in dichloromethane. Low-energy optical peak displays gradual red-shift with increasing thione content due to relatively smaller electronic gap resulted from greater degree of orbital delocalization. Significantly large SOC due to different orbital-symmetry and heavy-atom effect produces remarkably high ISC rates (k I S C ${{k}_{ISC}}$ ~1012 s-1) for enthalpically favouredS 1 n π * → T 2 ${{S}_{1}\left(n{\pi }^{^{\ast}}\right)\to {T}_{2}}$ (π π * ${\pi {\pi }^{^{\ast}}}$ ) channel in these m ${m}$ S-HTGs, which outcompete radiative fluorescence rates (~108 s-1) even directly from higher lying optically brightπ π * ${\pi {\pi }^{^{\ast}}}$ singlets. Importantly, high energy triplet excitons of ~1.7 eV resulting from such significantly large ISC rates from non-fluorescentS 1 n π * ${{S}_{1}\left(n{\pi }^{^{\ast}}\right)}$ make these thiocarbonylated HTGs ideal candidates for energy efficient triplet harvest including triplet-photosensitization.
Collapse
Affiliation(s)
- Arun K Manna
- Department of Chemistry, Indian Institute of Technology Tirupati, 517619, Tirupati, Andhra Pradesh, India
| |
Collapse
|
2
|
Ju CW, Shen Y, French EJ, Yi J, Bi H, Tian A, Lin Z. Accurate Electronic and Optical Properties of Organic Doublet Radicals Using Machine Learned Range-Separated Functionals. J Phys Chem A 2024. [PMID: 38382058 DOI: 10.1021/acs.jpca.3c07437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Luminescent organic semiconducting doublet-spin radicals are unique and emergent optical materials because their fluorescent quantum yields (Φfl) are not compromised by the spin-flipping intersystem crossing (ISC) into a dark high-spin state. The multiconfigurational nature of these radicals challenges their electronic structure calculations in the framework of single-reference density functional theory (DFT) and introduces room for method improvement. In the present study, we extended our earlier development of ML-ωPBE [J. Phys. Chem. Lett., 2021, 12, 9516-9524], a range-separated hybrid (RSH) exchange-correlation (XC) functional constructed using the stacked ensemble machine learning (SEML) algorithm, from closed-shell organic semiconducting molecules to doublet-spin organic semiconducting radicals. We assessed its performance for a new test set of 64 doublet-spin radicals from five categories while placing all previously compiled 3926 closed-shell molecules in the new training set. Interestingly, ML-ωPBE agrees with the nonempirical OT-ωPBE functional regarding the prediction of the molecule-dependent range-separation parameter (ω), with a small mean absolute error (MAE) of 0.0197 a0-1, but saves the computational cost by 2.46 orders of magnitude. This result demonstrates an outstanding domain adaptation capacity of ML-ωPBE for diverse organic semiconducting species. To further assess the predictive power of ML-ωPBE in experimental observables, we also applied it to evaluate absorption and fluorescence energies (Eabs and Efl) using linear-response time-dependent DFT (TDDFT), and we compared its behavior with nine popular XC functionals. For most radicals, ML-ωPBE reproduces experimental measurements of Eabs and Efl with small MAEs of 0.299 and 0.254 eV, only marginally different from those of OT-ωPBE. Our work illustrates a successful extension of the SEML framework from closed-shell molecules to doublet-spin radicals and will open the venue for calculating optical properties for organic semiconductors using single-reference TDDFT.
Collapse
Affiliation(s)
- Cheng-Wei Ju
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yili Shen
- Manning College of Information and Computer Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ethan J French
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jun Yi
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Hongshan Bi
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Aaron Tian
- Manning College of Information and Computer Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zhou Lin
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
3
|
Herbert JM. Visualizing and characterizing excited states from time-dependent density functional theory. Phys Chem Chem Phys 2024; 26:3755-3794. [PMID: 38226636 DOI: 10.1039/d3cp04226j] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Time-dependent density functional theory (TD-DFT) is the most widely-used electronic structure method for excited states, due to a favorable combination of low cost and semi-quantitative accuracy in many contexts, even if there are well recognized limitations. This Perspective describes various ways in which excited states from TD-DFT calculations can be visualized and analyzed, both qualitatively and quantitatively. This includes not just orbitals and densities but also well-defined statistical measures of electron-hole separation and of Frenkel-type exciton delocalization. Emphasis is placed on mathematical connections between methods that have often been discussed separately. Particular attention is paid to charge-transfer diagnostics, which provide indicators of when TD-DFT may not be trustworthy due to its categorical failure to describe long-range electron transfer. Measures of exciton size and charge separation that are directly connected to the underlying transition density are recommended over more ad hoc metrics for quantifying charge-transfer character.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
4
|
Marques S, Castro MA, Pontes RB, Leão SA, Fonseca TL. Second hyperpolarizabilities of alkali- and alkaline-earth-doped boron nitride nanotubes. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Zobel JP, Kruse A, Baig O, Lochbrunner S, Bokarev SI, Kühn O, González L, Bokareva OS. Can range-separated functionals be optimally tuned to predict spectra and excited state dynamics in photoactive iron complexes? Chem Sci 2023; 14:1491-1502. [PMID: 36794199 PMCID: PMC9906774 DOI: 10.1039/d2sc05839a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Density functional theory is an efficient computational tool to investigate photophysical and photochemical processes in transition metal complexes, giving invaluable assistance in interpreting spectroscopic and catalytic experiments. Optimally tuned range-separated functionals are particularly promising, as they were created to address some of the fundamental deficiencies present in approximate exchange-correlation functionals. In this paper, we scrutinize the selection of optimally tuned parameters and its influence on the excited state dynamics, using the example of the iron complex [Fe(cpmp)2]2+ with push-pull ligands. Various tuning strategies are contemplated based on pure self-consistent DFT protocols, as well as on the comparison with experimental spectra and multireference CASPT2 results. The two most promising sets of optimal parameters are then employed to carry out nonadiabatic surface-hopping dynamics simulations. Intriguingly, we find that the two sets lead to very different relaxation pathways and timescales. While the set of optimal parameters from one of the self-consistent DFT protocols predicts the formation of long-lived metal-to-ligand charge transfer triplet states, the set in better agreement with CASPT2 calculations leads to deactivation in the manifold of metal-centered states, in better agreement with the experimental reference data. These results showcase the complexity of iron-complex excited state landscapes and the difficulty of obtaining an unambiguous parametrization of long-range corrected functionals without experimental input.
Collapse
Affiliation(s)
- J. Patrick Zobel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 191090 ViennaAustria
| | - Ayla Kruse
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-24 18059 Rostock Germany .,Department of Life, Light and Matter, University of Rostock 18051 Rostock Germany
| | - Omar Baig
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19 1090 Vienna Austria
| | - Stefan Lochbrunner
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-24 18059 Rostock Germany .,Department of Life, Light and Matter, University of Rostock 18051 Rostock Germany
| | - Sergey I. Bokarev
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-2418059 RostockGermany,Chemistry Department, Technical University of Munich, Lichtenbergstr. 4Garching 85748Germany
| | - Oliver Kühn
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-24 18059 Rostock Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19 1090 Vienna Austria
| | - Olga S. Bokareva
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-2418059 RostockGermany,Institute of Physics, University of KasselHeinrich-Plett-Straße 4034132 KasselGermany
| |
Collapse
|
6
|
Isegawa M. Mechanism of Photocatalytic CO 2 Reduction by Iron Spin-Crossover Complex with Copper Photosensitizer. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Alipour M, Izadkhast T. Toward highly efficient hyperfluorescence-based emitters through excited-states alignment using novel optimally tuned range-separated models. Phys Chem Chem Phys 2022; 24:23718-23736. [PMID: 36155689 DOI: 10.1039/d2cp03395j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperfluorescence has recently been introduced as a promising strategy to achieve organic light-emitting diodes (OLEDs) with high color purity and enhanced stability. In this approach, fluorescent emitters (FEs) with strong and narrow band fluorescence are integrated in thin films containing sensitizers exhibiting thermally activated delayed fluorescence (TADF). Toward highly efficient hyperfluorescence-based emitters, the excited-states ordering of the FEs should be well-aligned. Given some recent endeavors in this context, the related theoretical explorations are relatively limited and have proven to be challenging. In this work, alignments of the corresponding excited-states, crucial for both the fast Förster resonance energy transfer and suppression of the Dexter energy transfer from TADF sensitizers to FEs, have theoretically been investigated using optimally tuned range-separated hybrid functionals (OT-RSHs). We have proposed and validated several variants of the models including OT-RSHs, their coupled versions with the polarizable continuum model, OT-RSHs-PCM, as well as the screened versions accounting for the screening effects by the electron correlation through the scalar dielectric constant, OT-SRSHs, for a reliable description of the excited-states ordering in the FEs of the hyperfluorescence-based materials. Particular attention is paid to the influence of the underlying density functional approximations as well as the short- and long-range Hartree-Fock (HF) exchange contributions and the range-separation parameter. Considering a series of experimentally known hyperfluorescence-based emitters as working models, it is unveiled that any combination of the ingredients in the proposed models does not render the correct order of the excited-states of the FEs, but a particular compromise among the involved parameters is needed to more accurately account for the relevant excited-states alignment. Perusing the results of our developed methods, the best ones are found to be the generalized gradient approximation-based OT-RSHs-PCM with the correct asymptotic behavior and incorporating no (low) HF exchange contribution at the short-range regime. The proposed models show superior performances not only with respect to their standard counterparts with the default parameters but also as compared to other range-separated approximations. Accountability of the best-proposed model is also put into broader perspective, where it has been employed for the computational design of several molecules as promising FE candidates prone to be utilized in hyperfluorescence-based materials. Summing up, the proposed models in this study can be recommended for both the theoretical modeling and confirming the experimental observations in the field of hyperfluorescence-based OLEDs.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| | - Tahereh Izadkhast
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| |
Collapse
|
8
|
Ahmed R, Manna AK. Origins of Molecular-Twist-Triggered Intersystem Crossing in Functional Perylenediimides: Singlet–Triplet Gap versus Spin–Orbit Coupling. J Phys Chem A 2022; 126:6594-6603. [DOI: 10.1021/acs.jpca.2c03455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raka Ahmed
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati, A.P 517619, India
| | - Arun K Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati, A.P 517619, India
| |
Collapse
|
9
|
Alipour M, Damiri S. Excited-state properties of organic semiconductor dyes as electrically pumped lasing candidates from new optimally tuned range-separated models. Phys Chem Chem Phys 2022; 24:8003-8014. [PMID: 35315460 DOI: 10.1039/d1cp05363a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Even though many efforts have been devoted to optical lasing in recent years, the realization of lasing by direct electrical excitation of organic semiconductors is hampered mainly due to optical losses from electrical contacts and electrical losses induced by triplets and polarons at high current densities. Hereby, accurately accounting for the electrically pumped organic semiconductor laser diodes (OSLDs) still remains one of the greatest challenges in optoelectronics. In this work, the excited-state characteristics of the organic semiconductor dyes used in the electrically pumped OSLDs have thoroughly been investigated using optimally tuned range-separated hybrids (OT-RSHs). Considering several experimentally known compounds of the electrically pumped OSLDs as working models, several variants of OT-RSHs, their combination forms with the polarizable continuum model (PCM), OT-RSH-PCM, as well as their screened versions accounting for the screening effects by the electron correlation through the scalar dielectric constant, OT-SRSHs, have been proposed for reliable prediction of their emission energies and oscillator strengths in both the gas and solvent phases. The role of involved ingredients in the models, namely, the underlying density functional approximations, short- and long-range exact-like exchange, as well as the range-separation parameter, has been examined in detail. It is shown that the newly designed OT-RSHs with the correct behavior of asymptotic exchange-correlation potential outperform the standard RSHs and other density functionals with both fixed and interelectronic distance-dependent exact-like exchange for describing the excite-state properties of compounds of the electrically pumped OSLDs. Concerning the computational cost of the models, it is unveiled that performing both the optimal tuning procedure and subsequent excited-state computations using OT-RSHs in the gas phase can be considered as a more reliable and affordable framework. Finally, the applicability of the proposed models is also put into a broader perspective for the computational design of several compounds as promising candidates to be used in the OSLD materials. Hopefully, our recommended OT-RSHs can function as efficient models for both the related theoretical modeling and confirming the experimental observations in the field of electrically pumped OSLDs.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| | - Samaneh Damiri
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| |
Collapse
|
10
|
Chołuj M, Alam MM, Beerepoot MTP, Sitkiewicz SP, Matito E, Ruud K, Zaleśny R. Choosing Bad versus Worse: Predictions of Two-Photon-Absorption Strengths Based on Popular Density Functional Approximations. J Chem Theory Comput 2022; 18:1046-1060. [PMID: 35080389 PMCID: PMC8830054 DOI: 10.1021/acs.jctc.1c01056] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We present a benchmark
study of density functional approximation
(DFA) performances in predicting the two-photon-absorption strengths
in π-conjugated molecules containing electron-donating/-accepting
moieties. A set of 48 organic molecules is chosen for this purpose,
for which the two-photon-absorption (2PA) parameters are evaluated
using different DFAs, including BLYP, PBE, B3LYP, PBE0, CAM-B3LYP,
LC-BLYP, and optimally tuned LC-BLYP. Minnesota functionals and ωB97X-D
are also used, applying the two-state approximation, for a subset
of molecules. The efficient resolution-of-identity implementation
of the coupled-cluster CC2 model (RI-CC2) is used as a reference for
the assessment of the DFAs. Two-state models within the framework
of both DFAs and RI-CC2 are used to gain a deeper insight into the
performance of different DFAs. Our results give a clear picture of
the performance of the density functionals in describing the two-photon
activity in dipolar π-conjugated systems. The results show that
global hybrids are best suited to reproduce the absolute values of
2PA strengths of donor–acceptor molecules. The range-separated
functionals CAM-B3LYP and optimally tuned LC-BLYP, however, show the
highest linear correlations with the reference RI-CC2 results. Hence,
we recommend the latter DFAs for structure–property studies
across large series of dipolar compounds.
Collapse
Affiliation(s)
- Marta Chołuj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Md Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur, Chhattisgarh 492015, India
| | - Maarten T P Beerepoot
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Sebastian P Sitkiewicz
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain.,Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 20080 Donostia, Euskadi, Spain
| | - Eduard Matito
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain.,Ikerbasque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Euskadi, Spain
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| |
Collapse
|
11
|
Ju CW, French EJ, Geva N, Kohn AW, Lin Z. Stacked Ensemble Machine Learning for Range-Separation Parameters. J Phys Chem Lett 2021; 12:9516-9524. [PMID: 34559964 DOI: 10.1021/acs.jpclett.1c02506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Density functional theory-based high-throughput materials and drug discovery has achieved tremendous success in recent decades, but its power on organic semiconducting molecules suffered catastrophically from the self-interaction error until the nonempirical but expensive optimally tuned range-separated hybrid (OT-RSH) functionals were developed. An OT-RSH transitions from a short-range (semi)local functional to a long-range Hartree-Fock exchange at a distance characterized by a molecule-specific range-separation parameter (ω). Herein, we propose a stacked ensemble machine learning model that provides an accelerated alternative of OT-RSH based on system-dependent structural and electronic configurations. We trained ML-ωPBE, the first functional in our series, using a database of 1970 molecules with sufficient structural and functional diversity, and assessed its accuracy and efficiency using another 1956 molecules. Compared with nonempirical OT-ωPBE, ML-ωPBE reaches a mean absolute error of 0.00504a0-1 for optimal ω's, reduces the computational cost by 2.66 orders of magnitude, and achieves comparable predictive power in optical properties.
Collapse
Affiliation(s)
- Cheng-Wei Ju
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ethan J French
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Nadav Geva
- Advanced Micro Devices Inc., Boxborough, Massachusetts 01719, United States
| | - Alexander W Kohn
- Blizzard Entertainment Inc., Irvine, California 92618, United States
| | - Zhou Lin
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
12
|
Grotjahn R, Kaupp M. Reliable TDDFT Protocol Based on a Local Hybrid Functional for the Prediction of Vibronic Phosphorescence Spectra Applied to Tris(2,2'-bipyridine)-Metal Complexes. J Phys Chem A 2021; 125:7099-7110. [PMID: 34370482 DOI: 10.1021/acs.jpca.1c05101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient computational protocol for the prediction of vibrationally resolved phosphorescence spectra is developed and validated for five tris(2,2'-bipyridine)-metal complexes ([M(bpy)3]n+, where M = Zn, Ru, Rh, Os, Ir). The outstanding feature of this protocol is the use of full linear-response time-dependent density functional theory (TDDFT) for the excited-state triplet calculation, i.e., the commonly seen strategies employing the Tamm-Dancoff approximation (TDA) or unrestricted density functional theory (DFT) calculations for the T1 state are not needed. This is achieved by the use of a local hybrid functional (LH12ct-SsirPW92) that features a real-space dependent admixture of exact exchange governed by a local mixing function. The excellent performance of this LH for triplet excitation energies known from previous studies transfers to a remarkable mean absolute error of 0.06 eV for the phosphorescence 0-0 energies investigated herein, while the popular B3PW91 functional gives an error of 0.27 eV in TDDFT and 0.09 eV in unrestricted DFT calculations, respectively. The advantages of the local hybrid are particularly apparent for excited states with a mixed-valence character. The influence of spin-orbit coupling was found to be significant for [Os(bpy)3]2+ red-shifting the 0-0 energy for phosphorescence by 0.17 eV, while the effect is negligible for the other complexes (<0.03 eV). The influence of the basis-set and integration-grid sizes is evaluated, and a computationally lighter protocol is validated that leads to drastic savings in computation time with negligible loss in accuracy.
Collapse
Affiliation(s)
- Robin Grotjahn
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
13
|
Alipour M, Karimi N. Spin-Opposite-Scaled Range-Separated Exchange Double-Hybrid Models (SOS-RSX-DHs): Marriage Between DH and RSX/SOS-RSX Is Not Always a Happy Match. J Chem Theory Comput 2021; 17:4077-4091. [PMID: 34085815 DOI: 10.1021/acs.jctc.1c00271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The range-separated version of double-hybrid density functional theory (DH-DFT) with a remarkable efficiency for both ground-state and excited-state characteristics has recently come into spotlight. In this work, based on theoretical arguments, several variants of spin-opposite-scaled range-separated exchange double-hybrid models (SOS-RSX-DHs) have been proposed and validated. More specifically, we first extend the RSX-DHs to design some other related models. Next, the SOS version of the resulting approximations is constructed and thoroughly evaluated using standard benchmark compilations of various properties. It is shown that although there are properties for which the RSX-DH and SOS-RSX-DH frameworks are rival, there are still some problems particularly prone to the self-interaction error issues where our proposed models seem to be beneficial. Furthermore, some of the presented models devoid of any additional corrections can also surpass the recently proposed approximations from different rungs of "Jacob's Ladder". Nonetheless, perusing the results of different methods and detailed comparisons with the predecessors discloses that all things may not necessarily be well with the RSX and SOS-RSX schemes, where the parent DHs as well as their SOS counterparts can still come into play.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| | - Niloofar Karimi
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| |
Collapse
|
14
|
Maier TM, Ikabata Y, Nakai H. Assessing locally range-separated hybrid functionals from a gradient expansion of the exchange energy density. J Chem Phys 2021; 154:214101. [PMID: 34240986 DOI: 10.1063/5.0047628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Locally range-separated hybrid (LRSH) functionals feature a real-space-dependent range separation function (RSF) instead of a system-independent range-separation parameter, which thus enables a more flexible admixture of exact exchange than conventional range-separated hybrid functionals. In particular, the development of suitable RSF models and exploring the capabilities of the LRSH approach, in general, are tasks that require further investigations and will be addressed in this work. We propose a non-empirical scheme based on a detailed scaling analysis with respect to a uniform coordinate scaling and on a short-range expansion of the range-separated exchange energy density to derive new RSF models from a gradient expansion of the exchange energy density. After optimizing a small set of empirical parameters introduced to enhance their flexibility, the resulting second- and fourth-order RSFs are evaluated with respect to atomic exchange energies, atomization energies, and transition barrier heights.
Collapse
Affiliation(s)
- Toni M Maier
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Yasuhiro Ikabata
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
15
|
Graf D, Ochsenfeld C. A range-separated generalized Kohn-Sham method including a long-range nonlocal random phase approximation correlation potential. J Chem Phys 2020; 153:244118. [PMID: 33380112 DOI: 10.1063/5.0031310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Based on our recently published range-separated random phase approximation (RPA) functional [Kreppel et al., "Range-separated density-functional theory in combination with the random phase approximation: An accuracy benchmark," J. Chem. Theory Comput. 16, 2985-2994 (2020)], we introduce self-consistent minimization with respect to the one-particle density matrix. In contrast to the range-separated RPA methods presented so far, the new method includes a long-range nonlocal RPA correlation potential in the orbital optimization process, making it a full-featured variational generalized Kohn-Sham (GKS) method. The new method not only improves upon all other tested RPA schemes including the standard post-GKS range-separated RPA for the investigated test cases covering general main group thermochemistry, kinetics, and noncovalent interactions but also significantly outperforms the popular G0W0 method in estimating the ionization potentials and fundamental gaps considered in this work using the eigenvalue spectra obtained from the GKS Hamiltonian.
Collapse
Affiliation(s)
- Daniel Graf
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| |
Collapse
|
16
|
Alipour M, Safari Z. Singlet fission relevant energetics from optimally tuned range-separated hybrids. Phys Chem Chem Phys 2020; 22:27060-27076. [PMID: 33215617 DOI: 10.1039/d0cp03951a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a promising idea to design high-efficiency organic photovoltaics, singlet fission (SF) mechanism, i.e., generating two triplet excitons out of a single photon absorption, has recently come into the spotlight. Even though much effort has been devoted to this arena, accurately accounting for the SF process from the theoretical perspective has proven to be challenging. Herein, the SF energetics have thoroughly been investigated with the help of optimally tuned range-separated hybrid functionals (OT-RSHs) in both gas and solvent phases. Taking a series of experimentally known SF chromophores as working models, we have proposed and validated several variants of OT-RSH approximations for the reliable prediction of the energy levels which match the crucial criteria for the SF process, namely, the negative singlet-triplet and triplet-triplet energy gaps. We scrutinize the role of the OT-RSH ingredients, i.e., the underlying density functional approximations, short- and long-range exact-like exchange, as well as the range-separation parameter, for our purpose. The newly designed OT-RSHs outperform the standard RSHs and other related schemes such as screened-exchange approximations as well as other density functionals from different rungs for describing the SF energetics. More importantly, it is unveiled that although the OT-RSH coupled with the polarizable continuum model, OT-RSH-PCM, as well as the screened versions, OT-SRSHs, which account for the screening effect by the electron correlation through the scalar dielectric constant have some advantages over gas-phase computations using OT-RSHs, the energetics criteria of the SF process may not necessarily be satisfied. This in turn corroborates the idea of performing both the optimal tuning procedure and subsequent computations of the SF relevant energetics using OT-RSHs as a more reliable and affordable framework, at least for the present purpose. The applicability of the proposed models is also put into broader perspective, where they are used for the computational design of several chromophores as promising candidates prone to utilization in the SF-based materials. Hopefully, our recommended OT-RSHs can function as efficient models for both the theoretical modeling of SF chromophores and confirming the experimental observations in the field.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| | | |
Collapse
|
17
|
Weber JL, Churchill EM, Jockusch S, Arthur EJ, Pun AB, Zhang S, Friesner RA, Campos LM, Reichman DR, Shee J. In silico prediction of annihilators for triplet-triplet annihilation upconversion via auxiliary-field quantum Monte Carlo. Chem Sci 2020; 12:1068-1079. [PMID: 34163873 PMCID: PMC8179011 DOI: 10.1039/d0sc03381b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet-triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn-Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T0), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission.
Collapse
Affiliation(s)
- John L Weber
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - Emily M Churchill
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - Steffen Jockusch
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - Evan J Arthur
- Schrodinger Inc 120 West 45th Street New York NY 1003 USA
| | - Andrew B Pun
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute 162 5th Avenue New York NY 10010 USA
- Department of Physics, College of William and Mary Williamsburg VA 23187 USA
| | - Richard A Friesner
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - Luis M Campos
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - David R Reichman
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - James Shee
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| |
Collapse
|
18
|
Brémond É, Pérez-Jiménez ÁJ, Sancho-García JC, Adamo C. Range-separated hybrid and double-hybrid density functionals: A quest for the determination of the range-separation parameter. J Chem Phys 2020; 152:244124. [PMID: 32610956 DOI: 10.1063/5.0010976] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We recently derived a new and simple route to the determination of the range-separation parameter in range-separated exchange hybrid and double-hybrid density functionals by imposing an additional constraint to the exchange-correlation energy to recover the total energy of the hydrogen atom [Brémond et al., J. Chem. Phys. 15, 201102 (2019)]. Here, we thoroughly assess this choice by statistically comparing the derived values of the range-separation parameters to the ones obtained using the optimal tuning (OT) approach. We show that both approaches closely agree, thus, confirming the reliability of ours. We demonstrate that it provides very close performances in the computation of properties particularly prone to the one- and many-electron self-interaction errors (i.e., ionization potentials). Our approach arises as an alternative to the OT procedure, conserving the accuracy and efficiency of a standard Kohn-Sham approach to density-functional theory computation.
Collapse
Affiliation(s)
- Éric Brémond
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | | | | | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), FRE 2027, F-75005 Paris, France
| |
Collapse
|
19
|
Alipour M, Damiri S. Unveiling the role of short-range exact-like exchange in the optimally tuned range-separated hybrids for fluorescence lifetime modeling. J Chem Phys 2020; 152:204301. [PMID: 32486652 DOI: 10.1063/5.0007767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We propose and validate several variants of the optimally tuned range-separated hybrid functionals (OT-RSHs) including different density functional approximations for predicting the fluorescence lifetimes of different categories of fluorophores within the time-dependent density functional theory (TD-DFT) framework using both the polarizable continuum and state-specific solvation models. Our main idea originates from performing the optimal tuning in the presence of a contribution of the exact-like exchange at the short-range part, which, in turn, leads to the small values of the range-separation parameter, and computing the fluorescence lifetimes using the models including no or small portions of the short-range exact-like exchange. Particular attention is also paid to the influence of the geometries of emitters on fluorescence lifetime computations. It is shown that our developed OT-RSHs along with the polarizable continuum model can be considered as the promising candidates within the TD-DFT framework for the prediction of fluorescence lifetimes for various fluorophores. We find that the proposed models not only outperform their standard counterparts but also provide reliable data better than or comparable to the conventional hybrid functionals with both the fixed and interelectronic distance-dependent exact-like exchanges. Furthermore, it is also revealed that when the excited state geometries come into play, more accurate descriptions of the fluorescence lifetimes can be achieved. Hopefully, our findings can give impetus for future developments of OT-RSHs for computational modeling of other characteristics in fluorescence spectroscopy as well as for verification of the related experimental observations.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| | - Samaneh Damiri
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| |
Collapse
|
20
|
Begam K, Bhandari S, Maiti B, Dunietz BD. Screened Range-Separated Hybrid Functional with Polarizable Continuum Model Overcomes Challenges in Describing Triplet Excitations in the Condensed Phase Using TDDFT. J Chem Theory Comput 2020; 16:3287-3293. [DOI: 10.1021/acs.jctc.0c00086] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Khadiza Begam
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Srijana Bhandari
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Buddhadev Maiti
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Barry D. Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
21
|
Zhang M, Cui Z, Wang Y, Jiang H. Hybrid functionals with system‐dependent parameters: Conceptual foundations and methodological developments. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Min‐Ye Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Zhi‐Hao Cui
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena California USA
| | - Yue‐Chao Wang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Hong Jiang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering, Peking University Beijing China
| |
Collapse
|
22
|
Besalú-Sala P, Sitkiewicz SP, Salvador P, Matito E, Luis JM. A new tuned range-separated density functional for the accurate calculation of second hyperpolarizabilities. Phys Chem Chem Phys 2020; 22:11871-11880. [DOI: 10.1039/d0cp01291b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the nine functionals benchmarked, the most accurate γ are obtained by Tα-LC-BLYP, reducing about half the errors of LC-BLYP.
Collapse
Affiliation(s)
- Pau Besalú-Sala
- Departament de Química and Institut de Química Computacional i Catàlisi (IQCC)
- Universitat de Girona
- Girona
- Spain
| | - Sebastian P. Sitkiewicz
- Departament de Química and Institut de Química Computacional i Catàlisi (IQCC)
- Universitat de Girona
- Girona
- Spain
- Donostia International Physics Center (DIPC)
| | - Pedro Salvador
- Departament de Química and Institut de Química Computacional i Catàlisi (IQCC)
- Universitat de Girona
- Girona
- Spain
| | - Eduard Matito
- Donostia International Physics Center (DIPC)
- 20018 Donostia
- Spain
- Ikerbasque
- Basque Foundation for Science
| | - Josep M. Luis
- Departament de Química and Institut de Química Computacional i Catàlisi (IQCC)
- Universitat de Girona
- Girona
- Spain
| |
Collapse
|
23
|
Horbatenko Y, Lee S, Filatov M, Choi CH. Performance Analysis and Optimization of Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory (MRSF-TDDFT) for Vertical Excitation Energies and Singlet–Triplet Energy Gaps. J Phys Chem A 2019; 123:7991-8000. [DOI: 10.1021/acs.jpca.9b07556] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yevhen Horbatenko
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seunghoon Lee
- Department of Chemistry, Seoul National University, Seoul 151747, Republic of Korea
| | - Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
24
|
Alipour M, Safari Z. Toward photophysical characteristics of triplet-triplet annihilation photon upconversion: a promising protocol from the perspective of optimally tuned range-separated hybrids. Phys Chem Chem Phys 2019; 21:17126-17141. [PMID: 31339140 DOI: 10.1039/c9cp02987g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photon upconversion (UC) process assisted by the triplet-triplet annihilation (TTA) mechanism has recently come into the spotlight. Given the rich collection of efforts in this area, theoretical explorations regarding TTA-UC are relatively limited and have proven to be challenging for its control in devices. In this contribution, the photophysical properties crucial for TTA-UC, such as triplet excited state energies and triplet-triplet energy transfer gaps of the essential ingredients involved in the process, namely sensitizers, annihilators and their pairs, have theoretically been investigated using optimally tuned range-separated hybrid functionals (OT-RSHs) and their screened exchange counterparts, OT-SRSHs. Taking a series of experimentally proven-to-work sensitizer/annihilator pairs as working models, we have constructed and validated several variants of OT-RSHs using both full time-dependent and Tamm-Dancoff formalisms for a reliable description of the TTA-UC photophysics. Given the bimolecular biphotonic nature of the TTA-UC process under study, particular attention is paid to the influence of the factors like the underlying density functional approximations and the tunable parameters such as short- and long-range exact-like exchanges as well as the range-separation parameter for both the sensitizers and annihilators separately. Dissecting all the aspects and relying on the appropriate choices from the tested models, we propose an OT-RSH with the correct asymptotic behavior as a cost-effective yet useful tool for this purpose. Not only against the standard RSHs but also in comparison to the conventional hybrids, the newly developed OT-RSH yields a more reliable description for the TTA-UC energetics in the gas phase and dielectric medium. Accountability of the proposed model has further been confirmed for several theoretically designed sensitizer/annihilator pairs prone to be used in the TTA-UC process. Summing up, in light of this study additional pieces of convincing evidence on the quality of OT-(S)RSHs for computational modeling and experimental verifications of the photophysics of the photon UC based on TTA and other possible technologies are showcased.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran.
| | - Zahra Safari
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran.
| |
Collapse
|
25
|
Eng J, Laidlaw BA, Penfold TJ. On the geometry dependence of tuned‐range separated hybrid functionals. J Comput Chem 2019; 40:2191-2199. [DOI: 10.1002/jcc.25868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Julien Eng
- Chemistry School of Natural and Environmental SciencesNewcastle University Newcastle upon Tyne NE1 7RU United Kingdom
| | - Beth A. Laidlaw
- Chemistry School of Natural and Environmental SciencesNewcastle University Newcastle upon Tyne NE1 7RU United Kingdom
| | - Thomas J. Penfold
- Chemistry School of Natural and Environmental SciencesNewcastle University Newcastle upon Tyne NE1 7RU United Kingdom
| |
Collapse
|
26
|
Brémond É, Pérez-Jiménez ÁJ, Sancho-García JC, Adamo C. Range-separated hybrid density functionals made simple. J Chem Phys 2019; 150:201102. [PMID: 31153220 DOI: 10.1063/1.5097164] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this communication, we present a new and simple route to derive range-separated exchange (RSX) hybrid and double hybrid density functionals in a nonempirical fashion. In line with our previous developments [Brémond et al., J. Chem. Theory Comput. 14, 4052 (2018)], we show that by imposing an additional physical constraint to the exchange-correlation energy, i.e., by enforcing to reproduce the total energy of the hydrogen atom, we are able to generalize the nonempirical determination of the range-separation parameter to a family of RSX hybrid density functionals. The success of the resulting models is illustrated by an accurate modeling of several molecular systems and properties, like ionization potentials, particularly prone to the one- and many-electron self-interaction errors.
Collapse
Affiliation(s)
- Éric Brémond
- Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | | | | | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), FRE 2027, F-75005 Paris, France
| |
Collapse
|