1
|
Tozer DJ. Effective homogeneity of Fermi-Amaldi-containing exchange-correlation functionals. J Chem Phys 2023; 159:244102. [PMID: 38131479 DOI: 10.1063/5.0179111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Parr and Ghosh [Phys. Rev. A. 51 3564 (1995)] demonstrated that when near-exact electron densities and potentials are used, the exchange-correlation energies of first- and second-row atoms are well-described by a combination of the Fermi-Amaldi functional with a functional that is homogeneous of degree one under density scaling. Insight into this observation is provided by considering their work from the perspective of the effective homogeneity of the overall exchange-correlation functional. By considering a general form that combines the Fermi-Amaldi functional with a functional that is homogeneous of degree k, it is shown that for these atoms, the functional of Parr and Ghosh (k = 1) exhibits essentially optimal effective homogeneities on the electron-deficient side of the integer. Percentage errors in effective homogeneities are close to percentage errors in exchange-correlation energies.
Collapse
Affiliation(s)
- David J Tozer
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
2
|
Gruber E, Kollotzek S, Bergmeister S, Zappa F, Ončák M, Scheier P, Echt O. Phenanthrene: establishing lower and upper bounds to the binding energy of a very weakly bound anion. Phys Chem Chem Phys 2022; 24:5138-5143. [PMID: 35156966 PMCID: PMC8865840 DOI: 10.1039/d1cp04755h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023]
Abstract
Quite a few molecules do not form stable anions that survive the time needed for their detection; their electron affinities (EA) are either very small or negative. How does one measure the EA if the anion cannot be observed? Or, at least, can one establish lower and upper bounds to their EA? We propose two approaches that provide lower and upper bounds. We choose the phenanthrene (Ph) molecule whose EA is controversial. Through competition between helium evaporation and electron detachment in HenPh- clusters, formed in helium nanodroplets, we estimate the lower bound of the vertical detachment energy (VDE) of Ph- as about -3 meV. In the second step, Ph is complexed with calcium whose electron affinity is just 24.55 meV. When CaPh- ions are collided with a thermal gas of argon, one observes Ca- product ions but no Ph-, suggesting that the EA of Ph is below that of Ca.
Collapse
Affiliation(s)
- Elisabeth Gruber
- Institut für Ionenphysik und Angewandte Physik Universität Innsbruck Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Siegfried Kollotzek
- Institut für Ionenphysik und Angewandte Physik Universität Innsbruck Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Stefan Bergmeister
- Institut für Ionenphysik und Angewandte Physik Universität Innsbruck Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Fabio Zappa
- Institut für Ionenphysik und Angewandte Physik Universität Innsbruck Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik Universität Innsbruck Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik Universität Innsbruck Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Olof Echt
- Institut für Ionenphysik und Angewandte Physik Universität Innsbruck Technikerstraße 25, 6020 Innsbruck, Austria.
- Department of Physics University of New Hampshire Durham, NH 03824, USA.
| |
Collapse
|
3
|
Dillon DJ, Tozer DJ. Incorporation of the Fermi-Amaldi Term into Direct Energy Kohn-Sham Calculations. J Chem Theory Comput 2022; 18:703-709. [PMID: 34978791 DOI: 10.1021/acs.jctc.1c00840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In direct energy Kohn-Sham (DEKS) theory, the density functional theory electronic energy equals the sum of occupied orbital energies, obtained from Kohn-Sham-like orbital equations involving a shifted Hartree exchange-correlation potential, which must be approximated. In the present study, the Fermi-Amaldi term is incorporated into approximate DEKS calculations, introducing the required -1/r contribution to the exchange-correlation component of the shifted potential in asymptotic regions. It also provides a mechanism for eliminating one-electron self-interaction error, and it introduces a nonzero exchange-correlation component of the shift in the potential that is of appropriate magnitude. The resulting electronic energies are very sensitive to the methodologies considered, whereas the highest occupied molecular orbital energies and exchange-correlation potentials are much less sensitive and are similar to those obtained from DEKS calculations using a conventional exchange-correlation functional.
Collapse
Affiliation(s)
- Daisy J Dillon
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - David J Tozer
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| |
Collapse
|
4
|
DFT study of iminodiacetic acid functionalised polyaniline copolymer interaction with heavy metal ions through binding energy, stability constant and charge transfer calculations. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Med J, Sršeň Š, Slavíček P, Domaracka A, Indrajith S, Rousseau P, Fárník M, Fedor J, Kočišek J. Vibrationally Mediated Stabilization of Electrons in Nonpolar Matter. J Phys Chem Lett 2020; 11:2482-2489. [PMID: 32154726 DOI: 10.1021/acs.jpclett.0c00278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We explore solvation of electrons in nonpolar matter, here represented by butadiene clusters. Isolated butadiene supports only the existence of transient anions (resonances). Two-dimensional electron energy loss spectroscopy shows that the resonances lead to an efficient vibrational excitation of butadiene, which can result into the almost complete loss of energy of the interacting electron. Cluster-beam experiments show that molecular clusters of butadiene form stable anions, however only at sizes of more than 9 molecular units. We have calculated the distribution of electron affinities of clusters using classical and path integral molecular dynamics simulations. There is almost a continuous transition from the resonant to the bound anions with an increase in cluster size. The comparison of the classical and quantum dynamics reveals that the electron binding is strongly supported by molecular vibrations, brought about by nuclear zero-point motion and thermal agitation. We also inspected the structure of the solvated electron, finding it well localized.
Collapse
Affiliation(s)
- Jakub Med
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Štěpán Sršeň
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - A Domaracka
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - S Indrajith
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - P Rousseau
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - M Fárník
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - J Fedor
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - J Kočišek
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| |
Collapse
|
6
|
Ma F, Wang Z, Guo M, Wang F. Approximate equation-of-motion coupled-cluster methods for electron affinities of closed-shell molecules. J Chem Phys 2020; 152:124111. [PMID: 32241115 DOI: 10.1063/1.5142736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate performance of the equation-of-motion coupled-cluster method at the single and doubles level (EOM-CCSD) and a series of approximate methods based on EOM-CCSD on electron affinities (EA) of closed-shell cations and neutral molecules with positive and negative EAs in this work. Our results confirm that P-EOM-MBPT2 can provide reasonable EAs when molecules with significant multireference character are not considered and its mean absolute error on EAs of these molecules is around or less than 0.2 eV. Its accuracy is comparable to that of the more expensive EOM-CCSD(2) method. Results of EOM-CCSD(2), P-EOM-MBPT2, and CIS(D∞) indicate that the [[H, ac +], T2] term in the 1h2p-1h block is more important on EAs than the term neglected in the 1h2p-1h2p block in P-EOM-MBPT2. We proposed an economical method where EAs from CIS(D∞) are corrected by treating this [[H, ac +], T2] term in the 1h2p-1h block perturbatively [corr-CIS(D∞)]. EAs with corr-CIS(D∞) agree very well with those of P-EOM-MBPT2 with a difference of less than 0.02 eV. Computational scaling of this method is N4 for the iterative part and N5 for some non-iterative steps. Its storage requirement is only of OV3. Corr-CIS(D∞) is an economical and reliable method on EAs, and it can be applied to EAs of large molecules.
Collapse
Affiliation(s)
- Fengjiao Ma
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhifan Wang
- School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, People's Republic of China
| | - Minggang Guo
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People's Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
7
|
Carmona-Espíndola J, Gázquez JL, Vela A, Trickey SB. Negative Electron Affinities and Derivative Discontinuity Contribution from a Generalized Gradient Approximation Exchange Functional. J Phys Chem A 2020; 124:1334-1342. [PMID: 31978298 DOI: 10.1021/acs.jpca.9b10956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Two methods to calculate negative electron affinities systematically from ground-state density functional methods are presented. One makes use of the lowest unoccupied molecular orbital energy shift provided by approximate inclusion of derivative discontinuity in the nearly correct asymptotic potential (NCAP) nonempirical, constraint-based generalized gradient approximation exchange functional. The other uses a second-order perturbation calculation of the derivative discontinuity based on the NCAP exchange-correlation potential. On a set of thirty-eight molecules, NCAP leads to a rather accurate description that is improved further through the perturbation correction. The results presented show the importance of the asymptotic behavior of the exchange-correlation potential in the calculation of negative electron affinities as well as demonstrating the versatility of the NCAP functional.
Collapse
Affiliation(s)
- Javier Carmona-Espíndola
- Departamento de Química , CONACYT-Universidad Autónoma Metropolitana-Iztapalapa , Av. San Rafael Atlixco 186 , Ciudad de México , 09340 , México
| | - José L Gázquez
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , Av. San Rafael Atlixco 186 , México, Ciudad de México , 09340 , México
| | - Alberto Vela
- Departamento de Química , Centro de Investigación y de Estudios Avanzados , Av. Instituto Politécnico Nacional 2508 , Ciudad de México , 07360 , México
| | - S B Trickey
- Quantum Theory Project, Department of Physics and Department of Chemistry , P.O. Box 118435, University of Florida , Gainesville , Florida 32611-8435 , United States
| |
Collapse
|