Barba-Rosado LV, Carrascal-Hernández DC, Insuasty D, Grande-Tovar CD. Graphene Oxide (GO) for the Treatment of Bone Cancer: A Systematic Review and Bibliometric Analysis.
NANOMATERIALS (BASEL, SWITZERLAND) 2024;
14:186. [PMID:
38251150 PMCID:
PMC10820493 DOI:
10.3390/nano14020186]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Cancer is a severe disease that, in 2022, caused more than 9.89 million deaths worldwide. One worrisome type of cancer is bone cancer, such as osteosarcoma and Ewing tumors, which occur more frequently in infants. This study shows an active interest in the use of graphene oxide and its derivatives in therapy against bone cancer. We present a systematic review analyzing the current state of the art related to the use of GO in treating osteosarcoma, through evaluating the existing literature. In this sense, studies focused on GO-based nanomaterials for potential applications against osteosarcoma were reviewed, which has revealed that there is an excellent trend toward the use of GO-based nanomaterials, based on their thermal and anti-cancer activities, for the treatment of osteosarcoma through various therapeutic approaches. However, more research is needed to develop highly efficient localized therapies. It is suggested, therefore, that photodynamic therapy, photothermal therapy, and the use of nanocarriers should be considered as non-invasive, more specific, and efficient alternatives in the treatment of osteosarcoma. These options present promising approaches to enhance the effectiveness of therapy while also seeking to reduce side effects and minimize the damage to surrounding healthy tissues. The bibliometric analysis of photothermal and photochemical treatments of graphene oxide and reduced graphene oxide from January 2004 to December 2022 extracted 948 documents with its search strategy, mainly related to research papers, review papers, and conference papers, demonstrating a high-impact field supported by the need for more selective and efficient bone cancer therapies. The central countries leading the research are the United States, Iran, Italy, Germany, China, South Korea, and Australia, with strong collaborations worldwide. At the same time, the most-cited papers were published in journals with impact factors of more than 6.0 (2021), with more than 290 citations. Additionally, the journals that published the most on the topic are high impact factor journals, according to the analysis performed, demonstrating the high impact of the research field.
Collapse