1
|
Khuttan S, Gallicchio E. What to Make of Zero: Resolving the Statistical Noise from Conformational Reorganization in Alchemical Binding Free Energy Estimates with Metadynamics Sampling. J Chem Theory Comput 2024; 20:1489-1501. [PMID: 38252868 PMCID: PMC10867849 DOI: 10.1021/acs.jctc.3c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
We introduce the self-relative binding free energy (self-RBFE) approach to evaluate the intrinsic statistical variance of dual-topology alchemical binding free energy estimators. The self-RBFE is the relative binding free energy between a ligand and a copy of the same ligand, and its true value is zero. Nevertheless, because the two copies of the ligand move independently, the self-RBFE value produced by a finite-length simulation fluctuates and can be used to measure the variance of the model. The results of this validation provide evidence that a significant fraction of the errors observed in benchmark studies reflect the statistical fluctuations of unconverged estimates rather than the models' accuracy. Furthermore, we find that ligand reorganization is a significant contributing factor to the statistical variance of binding free energy estimates and that metadynamics-accelerated conformational sampling of the torsional degrees of freedom of the ligand can drastically reduce the time to convergence.
Collapse
Affiliation(s)
- Sheenam Khuttan
- Department
of Chemistry and Biochemistry, Brooklyn
College of the City University of New York, New York, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| | - Emilio Gallicchio
- Department
of Chemistry and Biochemistry, Brooklyn
College of the City University of New York, New York, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
2
|
Chen L, Wu Y, Wu C, Silveira A, Sherman W, Xu H, Gallicchio E. Performance and Analysis of the Alchemical Transfer Method for Binding-Free-Energy Predictions of Diverse Ligands. J Chem Inf Model 2024; 64:250-264. [PMID: 38147877 DOI: 10.1021/acs.jcim.3c01705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The Alchemical Transfer Method (ATM) is herein validated against the relative binding-free energies (RBFEs) of a diverse set of protein-ligand complexes. We employed a streamlined setup workflow, a bespoke force field, and AToM-OpenMM software to compute the RBFEs of the benchmark set prepared by Schindler and collaborators at Merck KGaA. This benchmark set includes examples of standard small R-group ligand modifications as well as more challenging scenarios, such as large R-group changes, scaffold hopping, formal charge changes, and charge-shifting transformations. The novel coordinate perturbation scheme and a dual-topology approach of ATM address some of the challenges of single-topology alchemical RBFE methods. Specifically, ATM eliminates the need for splitting electrostatic and Lennard-Jones interactions, atom mapping, defining ligand regions, and postcorrections for charge-changing perturbations. Thus, ATM is simpler and more broadly applicable than conventional alchemical methods, especially for scaffold-hopping and charge-changing transformations. Here, we performed well over 500 RBFE calculations for eight protein targets and found that ATM achieves accuracy comparable to that of existing state-of-the-art methods, albeit with larger statistical fluctuations. We discuss insights into the specific strengths and weaknesses of the ATM method that will inform future deployments. This study confirms that ATM can be applied as a production tool for RBFE predictions across a wide range of perturbation types within a unified, open-source framework.
Collapse
Affiliation(s)
- Lieyang Chen
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
| | - Yujie Wu
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
- Atommap Corporation, New York, New York 10017, United States
| | - Chuanjie Wu
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
| | - Ana Silveira
- Psivant Therapeutics, 451 D Street, Boston, Massachusetts 02210, United States
| | - Woody Sherman
- Psivant Therapeutics, 451 D Street, Boston, Massachusetts 02210, United States
| | - Huafeng Xu
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
- Atommap Corporation, New York, New York 10017, United States
| | - Emilio Gallicchio
- Department of Chemistry and Biochemistry, Brooklyn College of the City University of New York, New York, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
3
|
Khuttan S, Azimi S, Wu JZ, Dick S, Wu C, Xu H, Gallicchio E. Taming multiple binding poses in alchemical binding free energy prediction: the β-cyclodextrin host-guest SAMPL9 blinded challenge. Phys Chem Chem Phys 2023; 25:24364-24376. [PMID: 37676233 DOI: 10.1039/d3cp02125d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
We apply the Alchemical Transfer Method (ATM) and a bespoke fixed partial charge force field to the SAMPL9 bCD host-guest binding free energy prediction challenge that comprises a combination of complexes formed between five phenothiazine guests and two cyclodextrin hosts. Multiple chemical forms, competing binding poses, and computational modeling challenges pose significant obstacles to obtaining reliable computational predictions for these systems. The phenothiazine guests exist in solution as racemic mixtures of enantiomers related by nitrogen inversions that bind the hosts in various binding poses, each requiring an individual free energy analysis. Due to the large size of the guests and the conformational reorganization of the hosts, which prevent a direct absolute binding free energy route, binding free energies are obtained by a series of absolute and relative binding alchemical steps for each chemical species in each binding pose. Metadynamics-accelerated conformational sampling was found to be necessary to address the poor convergence of some numerical estimates affected by conformational trapping. Despite these challenges, our blinded predictions quantitatively reproduced the experimental affinities for the β-cyclodextrin host and, to a lesser extent, those with a methylated derivative. The work illustrates the challenges of obtaining reliable free energy data in in silico drug design for even seemingly simple systems and introduces some of the technologies available to tackle them.
Collapse
Affiliation(s)
- Sheenam Khuttan
- Department of Chemistry, Brooklyn College of the City University of New York, New York, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, USA
| | - Solmaz Azimi
- Department of Chemistry, Brooklyn College of the City University of New York, New York, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, USA
| | - Joe Z Wu
- Department of Chemistry, Brooklyn College of the City University of New York, New York, USA.
- PhD Program in Chemistry, Graduate Center of the City University of New York, USA
| | | | | | | | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College of the City University of New York, New York, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, USA
| |
Collapse
|
4
|
Yuan Y, Cui Q. Accurate and Efficient Multilevel Free Energy Simulations with Neural Network-Assisted Enhanced Sampling. J Chem Theory Comput 2023; 19:5394-5406. [PMID: 37527495 PMCID: PMC10810721 DOI: 10.1021/acs.jctc.3c00591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Free energy differences (ΔF) are essential to quantitative characterization and understanding of chemical and biological processes. Their direct estimation with an accurate quantum mechanical potential is of great interest and yet impractical due to high computational cost and incompatibility with typical alchemical free energy protocols. One promising solution is the multilevel free energy simulation in which the estimate of ΔF at an inexpensive low level of theory is combined with the correction toward a higher level of theory. The poor configurational overlap generally expected between the two levels of theory, however, presents a major challenge. We overcome this challenge by using a deep neural network model and enhanced sampling simulations. An adversarial autoencoder is used to identify a low-dimensional (latent) space that compactly represents the degrees of freedom that encode the distinct distributions at the two levels of theory. Enhanced sampling in this latent space is then used to drive the sampling of configurations that predominantly contribute to the free energy correction. Results for both gas phase and condensed phase systems demonstrate that this data-driven approach offers high accuracy and efficiency with great potential for scalability to complex systems.
Collapse
Affiliation(s)
- Yuchen Yuan
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
5
|
Schöller A, Woodcock HL, Boresch S. Exploring Routes to Enhance the Calculation of Free Energy Differences via Non-Equilibrium Work SQM/MM Switching Simulations Using Hybrid Charge Intermediates between MM and SQM Levels of Theory or Non-Linear Switching Schemes. Molecules 2023; 28:4006. [PMID: 37241747 PMCID: PMC10222338 DOI: 10.3390/molecules28104006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Non-equilibrium work switching simulations and Jarzynski's equation are a reliable method for computing free energy differences, ΔAlow→high, between two levels of theory, such as a pure molecular mechanical (MM) and a quantum mechanical/molecular mechanical (QM/MM) description of a system of interest. Despite the inherent parallelism, the computational cost of this approach can quickly become very high. This is particularly true for systems where the core region, the part of the system to be described at different levels of theory, is embedded in an environment such as explicit solvent water. We find that even for relatively simple solute-water systems, switching lengths of at least 5 ps are necessary to compute ΔAlow→high reliably. In this study, we investigate two approaches towards an affordable protocol, with an emphasis on keeping the switching length well below 5 ps. Inserting a hybrid charge intermediate state with modified partial charges, which resembles the charge distribution of the desired high level, makes it possible to obtain reliable calculations with 2 ps switches. Attempts using step-wise linear switching paths, on the other hand, did not lead to improvement, i.e., a faster convergence for all systems. To understand these findings, we analyzed the solutes' properties as a function of the partial charges used and the number of water molecules in direct contact with the solute, and studied the time needed for water molecules to reorient themselves upon a change in the solute's charge distribution.
Collapse
Affiliation(s)
- Andreas Schöller
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währingerstr. 42, A-1090 Vienna, Austria
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., CHE205, Tampa, FL 33620-5250, USA;
| | - Stefan Boresch
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria
| |
Collapse
|
6
|
Csizi K, Reiher M. Universal
QM
/
MM
approaches for general nanoscale applications. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Markus Reiher
- Laboratorium für Physikalische Chemie ETH Zürich Zürich Switzerland
| |
Collapse
|
7
|
Tran B, Cai Y, Janik MJ, Milner ST. Hydrogen Bond Thermodynamics in Aqueous Acid Solutions: A Combined DFT and Classical Force-Field Approach. J Phys Chem A 2022; 126:7382-7398. [PMID: 36190836 DOI: 10.1021/acs.jpca.2c04124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The thermodynamics of hydrogen bonds in aqueous and acidic solutions significantly impacts the kinetics and thermodynamics of acid reaction chemistry. We utilize in this work a multiscale approach, combining density functional theory (DFT) with classical molecular dynamics (MD) to model hydrogen bond thermodynamics in an acidic solution. Using thermodynamic cycles, we split the solution phase free energy into its gas phase counterpart plus solvation free energies. We validate this DFT/MD approach by calculating the aqueous phase hydrogen bond free energy between two water molecules (H2O-···-H2O), the free energy to transform an H3O+ cation into an H5O2+ cation, and the hydrogen bond free energy of protonated water clusters (H3O+-···-H2O and H5O2+-···-H2O). The computed equilibrium hydrogen bond free energy of H2O-···-H2O is remarkably accurate, especially considering the large individual contributions to the thermodynamic cycle. Turning to cations, we find the ion to be more stable than H3O+ by roughly 1-2 kBT. This small free energy difference allows for thermal fluctuation between the two idealized motifs, consistent with spectroscopic and simulation studies. Lastly, hydrogen bonding free energies between either H+ cation and H2O in solution were found to be stronger than between two H2O, though much less so than in vacuum because of dielectric screening in solution. Altogether, our results suggest the DFT/MD approach is promising for application in modeling hydrogen bonding and proton transfer thermodynamics in condensed phases.
Collapse
Affiliation(s)
- Bolton Tran
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania16801, United States
| | - Yusheng Cai
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Michael J Janik
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania16801, United States
| | - Scott T Milner
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania16801, United States
| |
Collapse
|
8
|
Demapan D, Kussmann J, Ochsenfeld C, Cui Q. Factors That Determine the Variation of Equilibrium and Kinetic Properties of QM/MM Enzyme Simulations: QM Region, Conformation, and Boundary Condition. J Chem Theory Comput 2022; 18:2530-2542. [PMID: 35226489 PMCID: PMC9652774 DOI: 10.1021/acs.jctc.1c00714] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To analyze the impact of various technical details on the results of quantum mechanical (QM)/molecular mechanical (MM) enzyme simulations, including the QM region size, catechol-O-methyltransferase (COMT) is studied as a model system using an approximate QM/MM method (DFTB3/CHARMM). The results show that key equilibrium and kinetic properties for methyl transfer in COMT exhibit limited variations with respect to the size of the QM region, which ranges from ∼100 to ∼500 atoms in this study. With extensive sampling, local and global structural characteristics of the enzyme are largely conserved across the studied QM regions, while the nature of the transition state (e.g., secondary kinetic isotope effect) and reaction exergonicity are largely maintained. Deviations in the free energy profile with different QM region sizes are similar in magnitude to those observed with changes in other simulation protocols, such as different initial enzyme conformations and boundary conditions. Electronic structural properties, such as the covariance matrix of residual charge fluctuations, appear to exhibit rather long-range correlations, especially when the peptide backbone is included in the QM region; this observation holds when a range-separated DFT approach is used as the QM region, suggesting that delocalization error is unlikely the origin. Overall, the analyses suggest that multiple simulation details determine the results of QM/MM enzyme simulations with comparable contributions.
Collapse
Affiliation(s)
- Darren Demapan
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 7 (C), D-81377 Munich, Germany.,Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jörg Kussmann
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 7 (C), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 7 (C), D-81377 Munich, Germany
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
9
|
Azimi S, Khuttan S, Wu JZ, Pal RK, Gallicchio E. Relative Binding Free Energy Calculations for Ligands with Diverse Scaffolds with the Alchemical Transfer Method. J Chem Inf Model 2022; 62:309-323. [PMID: 34990555 DOI: 10.1021/acs.jcim.1c01129] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present an extension of the alchemical transfer method (ATM) for the estimation of relative binding free energies of molecular complexes applicable to conventional, as well as scaffold-hopping, alchemical transformations. Named ATM-RBFE, the method is implemented in the free and open-source OpenMM molecular simulation package and aims to provide a simpler and more generally applicable route to the calculation of relative binding free energies than what is currently available. ATM-RBFE is based on sound statistical mechanics theory and a novel coordinate perturbation scheme designed to swap the positions of a pair of ligands such that one is transferred from the bulk solvent to the receptor binding site while the other moves simultaneously in the opposite direction. The calculation is conducted directly in a single solvent box with a system prepared with conventional setup tools, without splitting of electrostatic and nonelectrostatic transformations, and without pairwise soft-core potentials. ATM-RBFE is validated here against the absolute binding free energies of the SAMPL8 GDCC host-guest benchmark set and against protein-ligand benchmark sets that include complexes of the estrogen receptor ERα and those of the methyltransferase EZH2. In each case the method yields self-consistent and converged relative binding free energy estimates in agreement with absolute binding free energies and reference literature values, as well as experimental measurements.
Collapse
Affiliation(s)
- Solmaz Azimi
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Sheenam Khuttan
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Joe Z Wu
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Rajat K Pal
- Roivant Sciences, Inc., Boston, Massachusetts 02210, United States
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
10
|
Xue Y, Wang JN, Hu W, Zheng J, Li Y, Pan X, Mo Y, Shao Y, Wang L, Mei Y. Affordable Ab Initio Path Integral for Thermodynamic Properties via Molecular Dynamics Simulations Using Semiempirical Reference Potential. J Phys Chem A 2021; 125:10677-10685. [PMID: 34894680 PMCID: PMC9108008 DOI: 10.1021/acs.jpca.1c07727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Path integral molecular dynamics (PIMD) is becoming a routinely applied method for incorporating the nuclear quantum effect in computer simulations. However, direct PIMD simulations at an ab initio level of theory are formidably expensive. Using the protonated 1,8-bis(dimethylamino)naphthalene molecule as an example, we show in this work that the computational expense for the intramolecular proton transfer between the two nitrogen atoms can be remarkably reduced by implementing the idea of reference-potential methods. The simulation time can be easily extended to a scale of nanoseconds while maintaining the accuracy on an ab initio level of theory for thermodynamic properties. In addition, postprocessing can be carried out in parallel on massive computer nodes. A 545-fold reduction in the total CPU time can be achieved in this way as compared to a direct PIMD simulation at the same ab initio level of theory.
Collapse
Affiliation(s)
- Yuanfei Xue
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Jia-Ning Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Wenxin Hu
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Jun Zheng
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Yongle Li
- Department of Physics, International Center of Quantum and Molecular Structure, and Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China
| | - Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yan Mo
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China,NYU–ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China,NYU–ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
11
|
Zheng D, Wang F. Performing Molecular Dynamics Simulations and Computing Hydration Free Energies on the B3LYP-D3(BJ) Potential Energy Surface with Adaptive Force Matching: A Benchmark Study with Seven Alcohols and One Amine. ACS PHYSICAL CHEMISTRY AU 2021; 1:14-24. [PMID: 34939071 PMCID: PMC8679650 DOI: 10.1021/acsphyschemau.1c00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/13/2022]
Abstract
The potential energy surfaces at the B3LYP-D3(BJ) level for eight solutes in dilute aqueous solutions were mapped into simple pairwise additive force field expressions using the adaptive force matching (AFM) method. The quality of the fits was validated by computing the hydration free energy (HFE), enthalpy of hydration, and diffusion constant for each solute. By force matching B3LYP-D3(BJ), the predictions from the models agree with the closest experimental HFE and enthalpy of hydration within chemical accuracy. The diffusion constants from the models are also in good agreement with experimental references. The good agreement provides confidence on the quality of B3LYP-D3(BJ) in producing potential energy surfaces for thermodynamic property calculations through AFM for the molecules studied. Accurate computational predictions could potentially provide validations to experimental measurements in cases where experimental measurements from different sources do not agree.
Collapse
|
12
|
Wu JZ, Azimi S, Khuttan S, Deng N, Gallicchio E. Alchemical Transfer Approach to Absolute Binding Free Energy Estimation. J Chem Theory Comput 2021; 17:3309-3319. [PMID: 33983730 DOI: 10.1021/acs.jctc.1c00266] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The alchemical transfer method (ATM) for the calculation of standard binding free energies of noncovalent molecular complexes is presented. The method is based on a coordinate displacement perturbation of the ligand between the receptor binding site and the explicit solvent bulk and a thermodynamic cycle connected by a symmetric intermediate in which the ligand interacts with the receptor and solvent environments with equal strength. While the approach is alchemical, the implementation of the ATM is as straightforward as that for physical pathway methods of binding. The method is applicable, in principle, with any force field, as it does not require splitting the alchemical transformations into electrostatic and nonelectrostatic steps, and it does not require soft-core pair potentials. We have implemented the ATM as a freely available and open-source plugin of the OpenMM molecular dynamics library. The method and its implementation are validated on the SAMPL6 SAMPLing host-guest benchmark set. The work paves the way to streamlined alchemical relative and absolute binding free energy implementations on many molecular simulation packages and with arbitrary energy functions including polarizable, quantum-mechanical, and artificial neural network potentials.
Collapse
Affiliation(s)
- Joe Z Wu
- Department of Chemistry, Brooklyn College of the City University of New York, New York, New York 11210-2889, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Solmaz Azimi
- Department of Chemistry, Brooklyn College of the City University of New York, New York, New York 11210-2889, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Sheenam Khuttan
- Department of Chemistry, Brooklyn College of the City University of New York, New York, New York 11210-2889, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, New York 10038, United States
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College of the City University of New York, New York, New York 11210-2889, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
13
|
Yagi K, Ito S, Sugita Y. Exploring the Minimum-Energy Pathways and Free-Energy Profiles of Enzymatic Reactions with QM/MM Calculations. J Phys Chem B 2021; 125:4701-4713. [PMID: 33914537 PMCID: PMC10986901 DOI: 10.1021/acs.jpcb.1c01862] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding molecular mechanisms of enzymatic reactions is of vital importance in biochemistry and biophysics. Here, we introduce new functions of hybrid quantum mechanical/molecular mechanical (QM/MM) calculations in the GENESIS program to compute the minimum-energy pathways (MEPs) and free-energy profiles of enzymatic reactions. For this purpose, an interface in GENESIS is developed to utilize a highly parallel electronic structure program, QSimulate-QM (https://qsimulate.com), calling it as a shared library from GENESIS. Second, algorithms to search the MEP are implemented, combining the string method (E et al. J. Chem. Phys. 2007, 126, 164103) with the energy minimization of the buffer MM region. The method implemented in GENESIS is applied to an enzyme, triosephosphate isomerase, which converts dihyroxyacetone phosphate to glyceraldehyde 3-phosphate in four proton-transfer processes. QM/MM-molecular dynamics simulations show performances of greater than 1 ns/day with the density functional tight binding (DFTB), and 10-30 ps/day with the hybrid density functional theory, B3LYP-D3. These performances allow us to compute not only MEP but also the potential of mean force (PMF) of the enzymatic reactions using the QM/MM calculations. The barrier height obtained as 13 kcal mol-1 with B3LYP-D3 in the QM/MM calculation is in agreement with the experimental results. The impact of conformational sampling in PMF calculations and the level of electronic structure calculations (DFTB vs B3LYP-D3) suggests reliable computational protocols for enzymatic reactions without high computational costs.
Collapse
Affiliation(s)
- Kiyoshi Yagi
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shingo Ito
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, 7-1-26 minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory
for Biomolecular Function Simulation, RIKEN
Center for Biosystems Dynamics Research, 1-6-5 minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
14
|
A Force Field for a Manganese-Vanadium Water Oxidation Catalyst: Redox Potentials in Solution as Showcase. Catalysts 2021. [DOI: 10.3390/catal11040493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We present a molecular mechanics force field in AMBER format for the mixed-valence manganese vanadium oxide cluster [Mn4V4O17(OAc)3]3−—a synthetic analogue of the oxygen-evolving complex that catalyzes the water oxidation reaction in photosystem II—with parameter sets for two different oxidation states. Most force field parameters involving metal atoms have been newly parametrized and the harmonic terms refined using hybrid quantum mechanics/molecular mechanics reference simulations, although some parameters were adapted from pre-existing force fields of vanadate cages and manganese oxo dimers. The characteristic Jahn–Teller distortions of d4 MnIII ions in octahedral environments are recovered by the force field. As an application, the developed parameters have been used to calculate the redox potential of the [MnIIIMn3IV] ⇌ [Mn4IV]+e− half-reaction in acetonitrile by means of Marcus theory.
Collapse
|
15
|
Wang JN, Liu W, Li P, Mo Y, Hu W, Zheng J, Pan X, Shao Y, Mei Y. Accelerated Computation of Free Energy Profile at Ab Initio Quantum Mechanical/Molecular Mechanics Accuracy via a Semiempirical Reference Potential. 4. Adaptive QM/MM. J Chem Theory Comput 2021; 17:1318-1325. [PMID: 33593057 PMCID: PMC8335528 DOI: 10.1021/acs.jctc.0c01149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although quantum mechanical/molecular mechanics (QM/MM) methods are now routinely applied to the studies of chemical reactions in condensed phases and enzymatic reactions, they may experience technical difficulties when the reactive region is varying over time. For instance, when the solvent molecules are directly participating in the reaction, the exchange of water molecules between the QM and MM regions may occur on a time scale comparable to the reaction time. To cope with this situation, several adaptive QM/MM schemes have been proposed. However, these methods either add significantly to the computational cost or introduce artificial restraints to the system. In this work, we developed a novel adaptive QM/MM scheme and applied it to the study of a nucleophilic addition reaction. In this scheme, the configuration sampling was performed with a small QM region (without solvent molecules), and the thermodynamic properties under another potential energy function with a larger QM region (with a certain number of solvent molecules and/or different levels of QM theory) are computed via extrapolation using the reference-potential method. Our simulation results show that this adaptive QM/MM scheme is numerically stable, at least for the case studied in this work. Furthermore, this method also offers an inexpensive way to examine the convergence of the QM/MM calculation with respect to the size of the QM region.
Collapse
Affiliation(s)
- Jia-Ning Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Wei Liu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Pengfei Li
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yan Mo
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Wenxin Hu
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Jun Zheng
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
16
|
Abstract
QM/MM simulations have become an indispensable tool in many chemical and biochemical investigations. Considering the tremendous degree of success, including recognition by a 2013 Nobel Prize in Chemistry, are there still "burning challenges" in QM/MM methods, especially for biomolecular systems? In this short Perspective, we discuss several issues that we believe greatly impact the robustness and quantitative applicability of QM/MM simulations to many, if not all, biomolecules. We highlight these issues with observations and relevant advances from recent studies in our group and others in the field. Despite such limited scope, we hope the discussions are of general interest and will stimulate additional developments that help push the field forward in meaningful directions.
Collapse
Affiliation(s)
- Qiang Cui
- Departments of Chemistry, Physics, and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Tanmoy Pal
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Luke Xie
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
17
|
Hu W, Li P, Wang JN, Xue Y, Mo Y, Zheng J, Pan X, Shao Y, Mei Y. Accelerated Computation of Free Energy Profile at Ab Initio Quantum Mechanical/Molecular Mechanics Accuracy via a Semiempirical Reference Potential. 3. Gaussian Smoothing on Density-of-States. J Chem Theory Comput 2020; 16:6814-6822. [PMID: 32975951 PMCID: PMC7658029 DOI: 10.1021/acs.jctc.0c00794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Calculations of the free energy profile, also known as potential of mean force (PMF), along a chosen collective variable (CV) are now routinely applied in the studies of chemical processes, such as enzymatic reactions and chemical reactions in condensed phases. However, if the ab initio quantum mechanical/molecular mechanics (QM/MM) level of accuracy is required for the PMF, it can be formidably demanding even with the most advanced enhanced sampling methods, such as umbrella sampling. To ameliorate this difficulty, we developed a novel method for the computation of the free energy profile based on the reference-potential method recently, in which a low-level reference Hamiltonian is employed for phase space sampling and the free energy profile can be corrected to the level of interest (the target Hamiltonian) by energy reweighting in a nonparametric way. However, when the reference Hamiltonian is very different from the target Hamiltonian, the calculated ensemble averages, including the PMF, often suffer from numerical instability, which mainly comes from the overestimation of the density-of-states (DoS) in the low-energy region. Stochastic samplings of these low-energy configurations are rare events, and some low-energy conformations may get oversampled in simulations of a finite length. In this work, an assumption of Gaussian distribution is applied to the DoS in each CV bin, and the weight of each configuration is rescaled according to the accumulated DoS. The results show that this smoothing process can remarkably reduce the ruggedness of the PMF and increase the reliability of the reference-potential method.
Collapse
Affiliation(s)
- Wenxin Hu
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Pengfei Li
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Jia-Ning Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yuanfei Xue
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yan Mo
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jun Zheng
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
18
|
König G, Riniker S. On the faithfulness of molecular mechanics representations of proteins towards quantum-mechanical energy surfaces. Interface Focus 2020; 10:20190121. [PMID: 33184586 DOI: 10.1098/rsfs.2019.0121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Force fields based on molecular mechanics (MM) are the main computational tool to study the relationship between protein structure and function at the molecular level. To validate the quality of such force fields, high-level quantum-mechanical (QM) data are employed to test their capability to reproduce the features of all major conformational substates of a series of blocked amino acids. The phase-space overlap between MM and QM is quantified in terms of the average structural reorganization energies over all energy minima. Here, the structural reorganization energy is the MM potential-energy difference between the structure of the respective QM energy minimum and the structure of the closest MM energy minimum. Thus, it serves as a measure for the relative probability of visiting the QM minimum during an MM simulation. We evaluate variants of the AMBER, CHARMM, GROMOS and OPLS biomolecular force fields. In addition, the two blocked amino acids alanine and serine are used to demonstrate the dependence of the measured agreement on the QM method, the phase, and the conformational preferences. Blocked serine serves as an example to discuss possible improvements of the force fields, such as including polarization with Drude particles, or using tailored force fields. The results show that none of the evaluated force fields satisfactorily reproduces all energy minima. By decomposing the average structural reorganization energies in terms of individual energy terms, we can further assess the individual weaknesses of the parametrization strategies of each force field. The dominant problem for most force fields appears to be the van der Waals parameters, followed to a lesser degree by dihedral and bonded terms. Our results show that performing a simple QM energy optimization from an MM-optimized structure can be a first test of the validity of a force field for a particular target molecule.
Collapse
Affiliation(s)
- Gerhard König
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.,Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
19
|
Ito S, Cui Q. Multi-level free energy simulation with a staged transformation approach. J Chem Phys 2020; 153:044115. [PMID: 32752685 DOI: 10.1063/5.0012494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Combining multiple levels of theory in free energy simulations to balance computational accuracy and efficiency is a promising approach for studying processes in the condensed phase. While the basic idea has been proposed and explored for quite some time, it remains challenging to achieve convergence for such multi-level free energy simulations as it requires a favorable distribution overlap between different levels of theory. Previous efforts focused on improving the distribution overlap by either altering the low-level of theory for the specific system of interest or ignoring certain degrees of freedom. Here, we propose an alternative strategy that first identifies the degrees of freedom that lead to gaps in the distributions of different levels of theory and then treats them separately with either constraints or restraints or by introducing an intermediate model that better connects the low and high levels of theory. As a result, the conversion from the low level to the high level model is done in a staged fashion that ensures a favorable distribution overlap along the way. Free energy components associated with different steps are mostly evaluated explicitly, and thus, the final result can be meaningfully compared to the rigorous free energy difference between the two levels of theory with limited and well-defined approximations. The additional free energy component calculations involve simulations at the low level of theory and therefore do not incur high computational costs. The approach is illustrated with two simple but non-trivial solution examples, and factors that dictate the reliability of the result are discussed.
Collapse
Affiliation(s)
- Shingo Ito
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
20
|
Brunken C, Reiher M. Self-Parametrizing System-Focused Atomistic Models. J Chem Theory Comput 2020; 16:1646-1665. [DOI: 10.1021/acs.jctc.9b00855] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christoph Brunken
- Laboratory for Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory for Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
21
|
Giese TJ, York DM. Development of a Robust Indirect Approach for MM → QM Free Energy Calculations That Combines Force-Matched Reference Potential and Bennett's Acceptance Ratio Methods. J Chem Theory Comput 2019; 15:5543-5562. [PMID: 31507179 DOI: 10.1021/acs.jctc.9b00401] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We use the PBE0/6-31G* density functional method to perform ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations under periodic boundary conditions with rigorous electrostatics using the ambient potential composite Ewald method in order to test the convergence of MM → QM/MM free energy corrections for the prediction of 17 small-molecule solvation free energies and eight ligand binding free energies to T4 lysozyme. The "indirect" thermodynamic cycle for calculating free energies is used to explore whether a series of reference potentials improve the statistical quality of the predictions. Specifically, we construct a series of reference potentials that optimize a molecular mechanical (MM) force field's parameters to reproduce the ab initio QM/MM forces from a QM/MM simulation. The optimizations form a systematic progression of successively expanded parameters that include bond, angle, dihedral, and charge parameters. For each reference potential, we calculate benchmark quality reference values for the MM → QM/MM correction by performing the mixed MM and QM/MM Hamiltonians at 11 intermediate states, each for 200 ps. We then compare forward and reverse application of Zwanzig's relation, thermodynamic integration (TI), and Bennett's acceptance ratio (BAR) methods as a function of reference potential, simulation time, and the number of simulated intermediate states. We find that Zwanzig's equation is inadequate unless a large number of intermediate states are explicitly simulated. The TI and BAR mean signed errors are very small even when only the end-state simulations are considered, and the standard deviations of the TI and BAR errors are decreased by choosing a reference potential that optimizes the bond and angle parameters. We find a robust approach for the data sets of fairly rigid molecules considered here is to use bond + angle reference potential together with the end-state-only BAR analysis. This requires QM/MM simulations to be performed in order to generate reference data to parametrize the bond + angle reference potential, and then this same simulation serves a dual purpose as the full QM/MM end state. The convergence of the results with respect to time suggests that computational resources may be used more efficiently by running multiple simulations for no more than 50 ps, rather than running one long simulation.
Collapse
Affiliation(s)
- Timothy J Giese
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854-8087 , United States
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854-8087 , United States
| |
Collapse
|