1
|
Cong Y, Zhai Y, Yang J, Grofe A, Gao J, Li H. Quantum vibration perturbation approach with polyatomic probe in simulating infrared spectra. Phys Chem Chem Phys 2021; 24:1174-1182. [PMID: 34932049 DOI: 10.1039/d1cp04490g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The quantitative prediction of vibrational spectra of chromophore molecules in solution is challenging and numerous methods have been developed. In this work, we present a quantum vibration perturbation (QVP) approach, which is a procedure that combines molecular quantum vibration and molecular dynamics with perturbation theory. In this framework, an initial Newtonian molecular dynamics simulation is performed, followed by a substitution process to embed molecular quantum vibrational wave functions into the trajectory. The instantaneous vibrational frequency shift at each time step is calculated using the Rayleigh-Schrödinger perturbation theory, where the perturbation operator is the difference in the vibrational potential between the reference chromophore and the perturbed chromophore in the environment. Semi-classical statistical mechanics is employed to obtain the spectral lineshape function. We validated our method using HCOOH·nH2O (n = 1-2) clusters and HCOOH aqueous solution as examples. The QVP method can be employed for rapid prediction of the vibrational spectrum of a specific mode in solution.
Collapse
Affiliation(s)
- Yang Cong
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| | - Yu Zhai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| | - Jitai Yang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| | - Adam Grofe
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, MN 55455, USA. .,Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| |
Collapse
|
2
|
Gaigeot MP. Some opinions on MD-based vibrational spectroscopy of gas phase molecules and their assembly: An overview of what has been achieved and where to go. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119864. [PMID: 34052762 DOI: 10.1016/j.saa.2021.119864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
We hereby review molecular dynamics simulations for anharmonic gas phase spectroscopy and provide some of our opinions of where the field is heading. With these new directions, the theoretical IR/Raman spectroscopy of large (bio)-molecular systems will be more easily achievable over longer time-scale MD trajectories for an increase in accuracy of the MD-IR and MD-Raman calculated spectra. With the new directions presented here, the high throughput 'decoding' of experimental IR/Raman spectra into 3D-structures should thus be possible, hence advancing e.g. the field of MS-IR for structural characterization by spectroscopy. We also review the assignment of vibrational spectra in terms of anharmonic molecular modes from the MD trajectories, and especially introduce our recent developments based on Graph Theory algorithms. Graph Theory algorithmic is also introduced in this review for the identification of the molecular 3D-structures sampled over MD trajectories.
Collapse
Affiliation(s)
- Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France.
| |
Collapse
|
3
|
Gonçalves A, Raiol A, da Cunha AR, Manzoni V, Andrade-Filho T, Gester R. Insights on the crossing of the two lowest n-π∗ and π-π∗ absorption lines of thieno[3,4-b]pyrazine in an aqueous environment. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Ludwig V, da Costa Ludwig ZM, Valverde D, Georg HC, Canuto S. Free energy gradient for understanding the stability and properties of neutral and charged L-alanine molecule in water. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Martins-Costa MTC, Ruiz-López MF. Vibrational Sum-Frequency Generation Spectroscopy in the Energy Representation from Dual-Level Molecular Dynamics Simulations. J Phys Chem A 2020; 124:5675-5683. [DOI: 10.1021/acs.jpca.0c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marilia T. C. Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Manuel F. Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
6
|
Puzzarini C, Spada L, Alessandrini S, Barone V. The challenge of non-covalent interactions: theory meets experiment for reconciling accuracy and interpretation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:343002. [PMID: 32203942 DOI: 10.1088/1361-648x/ab8253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
In the past decade, many gas-phase spectroscopic investigations have focused on the understanding of the nature of weak interactions in model systems. Despite the fact that non-covalent interactions play a key role in several biological and technological processes, their characterization and interpretation are still far from being satisfactory. In this connection, integrated experimental and computational investigations can play an invaluable role. Indeed, a number of different issues relevant to unraveling the properties of bulk or solvated systems can be addressed from experimental investigations on molecular complexes. Focusing on the interaction of biological model systems with solvent molecules (e.g., water), since the hydration of the biomolecules controls their structure and mechanism of action, the study of the molecular properties of hydrated systems containing a limited number of water molecules (microsolvation) is the basis for understanding the solvation process and how structure and reactivity vary from gas phase to solution. Although hydrogen bonding is probably the most widespread interaction in nature, other emerging classes, such as halogen, chalcogen and pnicogen interactions, have attracted much attention because of the role they play in different fields. Their understanding requires, first of all, the characterization of the directionality, strength, and nature of such interactions as well as a comprehensive analysis of their competition with other non-covalent bonds. In this review, it is shown how state-of-the-art quantum-chemical computations combined with rotational spectroscopy allow for fully characterizing intermolecular interactions taking place in molecular complexes from both structural and energetic points of view. The transition from bi-molecular complex to microsolvation and then to condensed phase is shortly addressed.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
| | - Lorenzo Spada
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Silvia Alessandrini
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
7
|
Lam J, Abdul-Al S, Allouche AR. Combining Quantum Mechanics and Machine-Learning Calculations for Anharmonic Corrections to Vibrational Frequencies. J Chem Theory Comput 2020; 16:1681-1689. [DOI: 10.1021/acs.jctc.9b00964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Julien Lam
- Center for Nonlinear Phenomena and Complex Systems, Code Postal 231, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Saleh Abdul-Al
- Lebanese International University, Bekaa, Lebanon and International University of Beirut, Beirut, Lebanon
| | - Abdul-Rahman Allouche
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| |
Collapse
|
8
|
Dasgupta S, Rana B, Herbert JM. Ab Initio Investigation of the Resonance Raman Spectrum of the Hydrated Electron. J Phys Chem B 2019; 123:8074-8085. [PMID: 31442044 DOI: 10.1021/acs.jpcb.9b04895] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
According to the conventional picture, the aqueous or "hydrated" electron, e-(aq), occupies an excluded volume (cavity) in the structure of liquid water. However, simulations with certain one-electron models predict a more delocalized spin density for the unpaired electron, with no distinct cavity structure. It has been suggested that only the latter (non-cavity) structure can explain the hydrated electron's resonance Raman spectrum, although this suggestion is based on calculations using empirical frequency maps developed for neat liquid water, not for e-(aq). All-electron ab initio calculations presented here demonstrate that both cavity and non-cavity models of e-(aq) afford significant red-shifts in the O-H stretching region. This effect is nonspecific and arises due to electron penetration into frontier orbitals of the water molecules. Only the conventional cavity model, however, reproduces the splitting of the H-O-D bend (in isotopically mixed water) that is observed experimentally and arises due to the asymmetric environments of the hydroxyl moieties in the electron's first solvation shell. We conclude that the cavity model of e-(aq) is more consistent with the measured resonance Raman spectrum than is the delocalized, non-cavity model, despite previous suggestions to the contrary. Furthermore, calculations with hybrid density functionals and with Hartree-Fock theory predict that non-cavity liquid geometries afford only unbound (continuum) states for an extra electron, whereas in reality this energy level should lie more than 3 eV below vacuum level. As such, the non-cavity model of e-(aq) appears to be inconsistent with available vibrational spectroscopy, photoelectron spectroscopy, and quantum chemistry.
Collapse
Affiliation(s)
- Saswata Dasgupta
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Bhaskar Rana
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - John M Herbert
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|