1
|
Keot N, Sarma M. Unraveling the Stability and Magnetic Properties of Bis-Hydrated Mn(II) Complexes via Tailored Ligand Design. J Phys Chem A 2024; 128:8346-8359. [PMID: 39292621 DOI: 10.1021/acs.jpca.4c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Exploring the electronic structure and dynamic behavior of Mn(II) complexes reveals fascinating magnetic properties and prospective biomedical applications. In this study, we investigate the solvent phase dynamics of heptacoordinated Mn(II) complexes through ab initio molecular dynamics simulations and density functional theory (DFT) calculations with effectively varying temperatures. We observed that the complex with high stability ([Mn(pmpa)(H2O)2]) remains relatively rigid as the temperature increases to 90 °C, with only a minor change in its radial distribution functions (RDFs), compared to the RDF peaks at 25 °C. To elucidate the impact of halogens on the magnetic anisotropy of seven-coordinated Mn(II) complexes, we performed both DFT and multireference calculations. This shows that the zero-field splitting (ZFS) parameter D follows the order D(I)> D(Br)> D(Cl). We observed a significant increase in the D-value following the substitution of soft Se-donors in the equatorial position and heavier halogens in the axial position. The D-value of halogen derivatives of Se-analogues varies in the order of D(Cl) < D(I) < D(Br), deviating from the regular spectrochemical series with the discrepancy between the covalency of the Mn(II)-Se bond and the ligand field strength. We anticipate that this study will enhance our understanding of the solvent phase dynamics and structural aspects of ZFS in various Mn(II) complexes with different electronic environments.
Collapse
Affiliation(s)
- Niharika Keot
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
2
|
Nishimoto Y. Analytic first-order derivatives of CASPT2 with IPEA shift. J Chem Phys 2023; 158:2888841. [PMID: 37144712 DOI: 10.1063/5.0147611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Complete active space second-order perturbation theory (CASPT2) is useful for accurately predicting properties of complex electronic structures, but it is well known that it systematically underestimates excitation energies. The underestimation can be corrected using the ionization potential-electron affinity (IPEA) shift. In this study, analytic first-order derivatives of CASPT2 with the IPEA shift are developed. CASPT2-IPEA is not invariant with respect to rotations among active molecular orbitals, and two additional constraint conditions are necessary in the CASPT2 Lagrangian to formulate analytic derivatives. The method developed here is applied to methylpyrimidine derivatives and cytosine, and minimum energy structures and conical intersections are located. By comparing energies relative to the closed-shell ground state, we find that the agreement with experiments and high-level calculations is indeed improved by the inclusion of the IPEA shift. The agreement of geometrical parameters with high-level calculations may also be improved in some cases.
Collapse
Affiliation(s)
- Yoshio Nishimoto
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Iino T, Shiozaki T, Yanai T. Algorithm for analytic nuclear energy gradients of state averaged DMRG-CASSCF theory with newly derived coupled-perturbed equations. J Chem Phys 2023; 158:054107. [PMID: 36754810 DOI: 10.1063/5.0130636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We present an algorithm for evaluating analytic nuclear energy gradients of the state-averaged density matrix renormalization group complete-active-space self-consistent field (SA-DMRG-CASSCF) theory based on the newly derived coupled-perturbed (CP) DMRG-CASSCF equations. The Lagrangian for the conventional SA-CASSCF analytic gradient theory is extended to the SA-DMRG-CASSCF variant that can fully consider a whole set of constraints on the parameters of multi-root canonical matrix product states formed at all the DMRG block configurations. An efficient algorithm to solve the CP-DMRG-CASSCF equations for determining the multipliers was developed. The complexity of the resultant analytic gradient algorithm is overall the same as that of the unperturbed SA-DMRG-CASSCF algorithm. In addition, a reduced-scaling approach was developed to directly compute the SA reduced density matrices (SA-RDMs) and their perturbed ones without calculating separate state-specific RDMs. As part of our implementation scheme, we neglect the term associated with the constraint on the active orbitals in terms of the active-active rotation in the Lagrangian. Thus, errors from the true analytic gradients may be caused in this scheme. The proposed gradient algorithm was tested with the spin-adapted implementation by checking how accurately the computed analytic energy gradients reproduce numerical gradients of the SA-DMRG-CASSCF energies using a common number of renormalized bases. The illustrative applications show that the errors are sufficiently small when using a typical number of the renormalized bases, which is required to attain adequate accuracy in DMRG's total energies.
Collapse
Affiliation(s)
- Tsubasa Iino
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| | - Toru Shiozaki
- Quantum Simulation Technologies, Inc., Boston, Massachusetts 02135, USA
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
4
|
Majumder R, Sokolov AY. Simulating Spin-Orbit Coupling with Quasidegenerate N-Electron Valence Perturbation Theory. J Phys Chem A 2023; 127:546-559. [PMID: 36599072 DOI: 10.1021/acs.jpca.2c07952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We present the first implementation of spin-orbit coupling effects in fully internally contracted second-order quasidegenerate N-electron valence perturbation theory (SO-QDNEVPT2). The SO-QDNEVPT2 approach enables the computations of ground- and excited-state energies and oscillator strengths combining the description of static electron correlation with an efficient treatment of dynamic correlation and spin-orbit coupling. In addition to SO-QDNEVPT2 with the full description of one- and two-body spin-orbit interactions at the level of two-component Breit-Pauli Hamiltonian, our implementation also features a simplified approach that takes advantage of spin-orbit mean-field approximation (SOMF-QDNEVPT2). The accuracy of these methods is tested for the group 14 and 16 hydrides, 3d and 4d transition metal ions, and two actinide dioxides (neptunyl and plutonyl dications). The zero-field splittings of group 14 and 16 molecules computed using SO-QDNEVPT2 and SOMF-QDNEVPT2 are in good agreement with the available experimental data. For the 3d transition metal ions, the SO-QDNEVPT2 method is significantly more accurate than SOMF-QDNEVPT2, while no substantial difference in the performance of two methods is observed for the 4d ions. Finally, we demonstrate that for the actinide dioxides the results of SO-QDNEVPT2 and SOMF-QDNEVPT2 are in good agreement with the data from previous theoretical studies of these systems. Overall, our results demonstrate that SO-QDNEVPT2 and SOMF-QDNEVPT2 are promising multireference methods for treating spin-orbit coupling with a relatively low computational cost.
Collapse
Affiliation(s)
- Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|
5
|
Behnle S, Richter R, Völkl L, Idzko P, Förstner A, Bozkaya U, Fink RF. Accurate Property Prediction by Second Order Perturbation Theory: The REMP and OO-REMP Hybrids. J Chem Phys 2022; 157:104111. [DOI: 10.1063/5.0105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The prediction of molecular properties such as equilibrium structures or vibrationalwavenumbers is a routine task in computational chemistry. If very high accuracy is required, however, the use of computationally demanding ab initio wavefunction methods is mandatory. We present property calculations utilizing the REMP and OO-REMP hybrid perturbation theories showing that with the latter approach, very accurate results are obtained at second order in perturbation theory. Specifically, equilibrium structures and harmonic vibrational wavenumbers as well as dipole moments of closed and open shell molecules were calculated and compared to the best available experimental results or very accurate calculations.OO-REMP is capable of predicting bond lengths of small closed and open shell molecules with an accuracy of 0.2 pm and 0.5 pm, respectively, often within the range of experimental uncertainty. Equilibrium harmonic vibrational wavenumbers are predicted with an accuracy better than 20 cm−1 . Dipole moments of small closed and open shell molecules are reproduced with a relative error of less than 3 %. Across all investigated properties it turns out that a 20 %:80 % MP:RE mixing ratio consistently provides the best results. This is in line with our previous findings featuring closed and open shell reaction energies.
Collapse
Affiliation(s)
- Stefan Behnle
- Fachbereich II Chemie, Eberhard Karls Universität Tübingen Fachbereich II Chemie, Germany
| | - Robert Richter
- Eberhard Karls Universitat Tubingen Fachbereich II Chemie, Germany
| | - Luca Völkl
- Eberhard Karls Universitat Tubingen Fachbereich II Chemie, Germany
| | - Paul Idzko
- Eberhard Karls Universitat Tubingen Fachbereich II Chemie, Germany
| | - André Förstner
- Eberhard Karls Universitat Tubingen Fachbereich II Chemie, Germany
| | - Uğur Bozkaya
- Department of Chemistry, Hacettepe University, Turkey
| | - Reinhold F Fink
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen Fachbereich II Chemie, Germany
| |
Collapse
|
6
|
Affiliation(s)
- Milica Feldt
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Theory & Catalysis Albert-Einstein-Str 29A 18059 Rostock GERMANY
| | - Quan Manh Phung
- Nagoya University: Nagoya Daigaku Department of Chemistry JAPAN
| |
Collapse
|
7
|
Park JW. Analytical Gradient Theory for Spin-Free State-Averaged Second-Order Driven Similarity Renormalization Group Perturbation Theory (SA-DSRG-MRPT2) and Its Applications for Conical Intersection Optimizations. J Chem Theory Comput 2022; 18:2233-2245. [PMID: 35229599 DOI: 10.1021/acs.jctc.1c01150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Second-order multireference-driven similarity renormalization group perturbation theory (DSRG-MRPT2) provides an efficient means of correcting the dynamical correlation with the multiconfiguration reference function. The state-averaged DSRG-MRPT2 (SA-DSRG-MRPT2) method is the simplest means of treating the excited states with DSRG-MRPT2. In this method, the Hamiltonian dressed with dynamical correlation is diagonalized in the CASCI state subspace (SA-DSRG-MRPT2c) or the configuration subspace (SA-DSRG-MRPT2). This work develops analytical gradient theory for spin-free SA-DSRG-MRPT2(c) with the density-fitting approximation. We check the accuracy of the analytical gradients against the numerical gradients. We present applications for optimizing minimum energy conical intersections (MECI) of ethylene and retinal model chromophores (PSB3 and RPSB6). We investigate the dependence of the optimized geometries and energies on the flow parameters and reference relaxations. The smoothness of the SA-DSRG-MRPT2(c) potential energy surfaces near the reference (complete active space self-consistent field) MECI is comparable to the XMCQDPT2 one. These results render SA-DSRG-MRPT2(c) theory a promising approach for studies of conical intersections.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
8
|
Wang S, Li C, Evangelista FA. Analytic Energy Gradients for the Driven Similarity Renormalization Group Multireference Second-Order Perturbation Theory. J Chem Theory Comput 2021; 17:7666-7681. [PMID: 34839660 DOI: 10.1021/acs.jctc.1c00980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We derive analytic energy gradients of the driven similarity renormalization group (DSRG) multireference second-order perturbation theory (MRPT2) using the method of Lagrange multipliers. In the Lagrangian, we impose constraints for a complete-active-space self-consistent-field reference wave function and the semicanonical orthonormal molecular orbitals. Solving for the associated Lagrange multipliers is found to share the same asymptotic scaling of a single DSRG-MRPT2 energy computation. A pilot implementation of the DSRG-MRPT2 analytic gradients is used to optimize the geometry of the singlet and triplet states of p-benzyne. The equilibrium bond lengths and angles are similar to those computed via other MRPT2s and Mukherjee's multireference coupled cluster theory. An approximate DSRG-MRPT2 method that neglects the contributions of the three-body density cumulant is found to introduce negligible errors in the geometry of p-benzyne, lending itself to a promising low-cost approach for molecular geometry optimizations using large active spaces.
Collapse
Affiliation(s)
- Shuhe Wang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
9
|
Park JW. Analytical Gradient Theory for Resolvent-Fitted Second-Order Extended Multiconfiguration Perturbation Theory (XMCQDPT2). J Chem Theory Comput 2021; 17:6122-6133. [PMID: 34582217 DOI: 10.1021/acs.jctc.1c00613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We present the formulation and implementation of an analytical gradient algorithm for extended multiconfiguration quasidegenerate perturbation theory (XMCQDPT2) with the resolvent-fitting approximation by Granovsky. This algorithm is powerful when optimizing molecular configurations with a moderate-sized active space and many electronic states. First, we present the powerfulness and accuracy of resolvent-fitting approximations compared to canonical XMCQDPT2 theory. Then, we demonstrate the utility of the current algorithm in frequency analyses, optimizing the minimum energy conical intersection geometries of the retinal chromophore model RPSB6 and evaluating nuclear gradients when there are many electronic states. Furthermore, we parallelize the algorithm using the OpenMP/MPI hybrid approach. Additionally, we report the computational cost and parallel efficiency of the program.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
10
|
Khedkar A, Roemelt M. Modern multireference methods and their application in transition metal chemistry. Phys Chem Chem Phys 2021; 23:17097-17112. [PMID: 34355719 DOI: 10.1039/d1cp02640b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal chemistry is a challenging playground for quantum chemical methods owing to the simultaneous presence of static and dynamic electron correlation effects in many systems. Wavefunction based multireference (MR) methods constitute a physically sound and systematically improvable Ansatz to deal with this complexity but suffer from some conceptual difficulties and high computational costs. The latter problem partially arises from the unfavorable scaling of the Full Configuration Interaction (Full-CI) problem which in the majority of MR methods is solved for a subset of the molecular orbital space, the so-called active space. In the last years multiple methods such as modern variants of selected CI, Full-CI Quantum Monte Carlo (FCIQMC) and the density matrix renormalization group (DMRG) have been developed that solve the Full-CI problem approximately for a fraction of the computational cost required by conventional techniques thereby significantly extending the range of applicability of modern MR methods. This perspective review outlines recent advancements in the field of MR electronic structure methods together with the resulting chances and challenges for theoretical studies in the field of transition metal chemistry. In light of its emerging importance a special focus is put on the selection of adequate active spaces and the concomitant development of numerous selection aides in recent years.
Collapse
Affiliation(s)
- Abhishek Khedkar
- Lehrstuhl für theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| | | |
Collapse
|
11
|
Matsika S. Electronic Structure Methods for the Description of Nonadiabatic Effects and Conical Intersections. Chem Rev 2021; 121:9407-9449. [PMID: 34156838 DOI: 10.1021/acs.chemrev.1c00074] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonadiabatic effects are ubiquitous in photophysics and photochemistry, and therefore, many theoretical developments have been made to properly describe them. Conical intersections are central in nonadiabatic processes, as they promote efficient and ultrafast nonadiabatic transitions between electronic states. A proper theoretical description requires developments in electronic structure and specifically in methods that describe conical intersections between states and nonadiabatic coupling terms. This review focuses on the electronic structure aspects of nonadiabatic processes. We discuss the requirements of electronic structure methods to describe conical intersections and nonadiabatic couplings, how the most common excited state methods perform in describing these effects, and what the recent developments are in expanding the methodology and implementing nonadiabatic couplings.
Collapse
Affiliation(s)
- Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
12
|
Khokhlov D, Belov A. Toward an Accurate Ab Initio Description of Low-Lying Singlet Excited States of Polyenes. J Chem Theory Comput 2021; 17:4301-4315. [PMID: 34125516 DOI: 10.1021/acs.jctc.0c01293] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The low-lying excited states of carotenoids play a crucial role in many important biophysical processes such as photosynthesis. Most of these excited states are strongly correlated, which makes them both challenging for a qualitative ab initio description and an engaging model system for trying out emerging multireference methods. Among these methods, driven similarity renormalization group (DSRG) and its perturbative version (DSRG-MRPT2) are especially attractive in terms of both accuracy and moderate numerical complexity. In this paper, we applied density matrix renormalization group (DMRG) followed by DSRG-MRPT2 for the calculation of vertical and adiabatic excitation energies into the 2Ag-, 1Bu-, and 1Bu+ electronic states of polyenes containing from 8 to 13 conjugating double bonds acting as a model for natural carotenoids. It was shown that the DSRG flow parameter should be adjusted to ensure both the energy convergence with respect to it and the agreement with the experimental data. With the increased flow parameter, the proposed combination of methods provides a reasonable agreement with the experiment. The deviations of the adiabatic excitation energies are less than 1000 cm-1 for the 2Ag- and less than 3000 cm-1 for the excited states of the Bu symmetry, which in terms of accuracy significantly outperforms the N-electron valence state perturbation theory. At the same time, DSRG-MRPT2 is shown to be robust with respect to variation of quality of the DMRG reference wave function such as the orbital optimization or the number of electronic states in the averaging.
Collapse
Affiliation(s)
- Daniil Khokhlov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Aleksandr Belov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
13
|
Guo Y, Sivalingam K, Neese F. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). I. Revisiting the NEVPT2 construction. J Chem Phys 2021; 154:214111. [PMID: 34240991 DOI: 10.1063/5.0051211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over the last decade, the second-order N-electron valence state perturbation theory (NEVPT2) has developed into a widely used multireference perturbation method. To apply NEVPT2 to systems with large active spaces, the computational bottleneck is the construction of the fourth-order reduced density matrix. Both its generation and storage become quickly problematic beyond the usual maximum active space of about 15 active orbitals. To reduce the computational cost of handling fourth-order density matrices, the cumulant approximation (CU) has been proposed in several studies. A more conventional strategy to address the higher-order density matrices is the pre-screening approximation (PS), which is the default one in the ORCA program package since 2010. In the present work, the performance of the CU, PS, and extended PS (EPS) approximations for the fourth-order density matrices is compared. Following a pedagogical introduction to NEVPT2, contraction schemes, as well as the approximations to density matrices, and the intruder state problem are discussed. The CU approximation, while potentially leading to large computational savings, virtually always leads to intruder states. With the PS approximation, the computational savings are more modest. However, in conjunction with conservative cutoffs, it produces stable results. The EPS approximation to the fourth-order density matrices can reproduce very accurate NEVPT2 results without any intruder states. However, its computational cost is not much lower than that of the canonical algorithm. Moreover, we found that a good indicator of intrude states problems in any approximation to high order density matrices is the eigenspectra of the Koopmans matrices.
Collapse
Affiliation(s)
- Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
14
|
Nishimoto Y. Analytic gradients for restricted active space second-order perturbation theory (RASPT2). J Chem Phys 2021; 154:194103. [PMID: 34240887 DOI: 10.1063/5.0050074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The computational cost of analytic derivatives in multireference perturbation theory is strongly affected by the size of the active space employed in the reference self-consistent field calculation. To overcome previous limits on the active space size, the analytic gradients of single-state restricted active space second-order perturbation theory (RASPT2) and its complete active space second-order perturbation theory (CASPT2) have been developed and implemented in a local version of OpenMolcas. Similar to previous implementations of CASPT2, the RASPT2 implementation employs the Lagrangian or Z-vector method. The numerical results show that restricted active spaces with up to 20 electrons in 20 orbitals can now be employed for geometry optimizations.
Collapse
Affiliation(s)
- Yoshio Nishimoto
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
Song C, Neaton JB, Martínez TJ. Reduced scaling formulation of CASPT2 analytical gradients using the supporting subspace method. J Chem Phys 2021; 154:014103. [PMID: 33412861 DOI: 10.1063/5.0035233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a reduced scaling and exact reformulation of state specific complete active space second-order perturbation (CASPT2) analytical gradients in terms of the MP2 and Fock derivatives using the supporting subspace method. This work follows naturally from the supporting subspace formulation of the CASPT2 energy in terms of the MP2 energy using dressed orbitals and Fock builds. For a given active space configuration, the terms corresponding to the MP2-gradient can be evaluated with O(N5) operations, while the rest of the calculations can be computed with O(N3) operations using Fock builds, Fock gradients, and linear algebra. When tensor-hyper-contraction is applied simultaneously, the computational cost can be further reduced to O(N4) for a fixed active space size. The new formulation enables efficient implementation of CASPT2 analytical gradients by leveraging the existing graphical processing unit (GPU)-based MP2 and Fock routines. We present benchmark results that demonstrate the accuracy and performance of the new method. Example applications of the new method in ab initio molecular dynamics simulation and constrained geometry optimization are given.
Collapse
Affiliation(s)
- Chenchen Song
- Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
| | - Jeffrey B Neaton
- Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
16
|
Park JW. Analytical First-Order Derivatives of Second-Order Extended Multiconfiguration Quasi-Degenerate Perturbation Theory (XMCQDPT2): Implementation and Application. J Chem Theory Comput 2020; 16:5562-5571. [PMID: 32786905 DOI: 10.1021/acs.jctc.0c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Analytical gradient theory for the second-order extended multiconfiguration quasi-degenerate perturbation theory (XMCQDPT2), which can be regarded as the multistate version of the multireference second-order Møller-Plesset perturbation theory (MRMP2), is formulated and implemented. The theory is similar to the previous analytical gradient theory for MCQDPT2, but we take into account the intruder state avoidance (ISA) technique and the "extension" of the MCQDPT2 theory by Granovsky. Although the (X)MCQDPT2 theory is not invariant with respect to rotations among the active orbitals, the resulting analytical gradients are accurate. We demonstrate the utility of the current algorithm in optimizing the minimum energy conical intersections (MECIs) of ethylene, butadiene, benzene, the retinal model chromophore PSB3, and the green fluorescent protein model chromophore pHBI. The XMCQDPT2 MECIs are very similar to the XMS-CASPT2 MECIs in terms of molecular conformation and the computed energies. We also discuss possible improvements of the current algorithm.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
17
|
Park JW, Al-Saadon R, MacLeod MK, Shiozaki T, Vlaisavljevich B. Multireference Electron Correlation Methods: Journeys along Potential Energy Surfaces. Chem Rev 2020; 120:5878-5909. [PMID: 32239929 DOI: 10.1021/acs.chemrev.9b00496] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multireference electron correlation methods describe static and dynamical electron correlation in a balanced way and, therefore, can yield accurate and predictive results even when single-reference methods or multiconfigurational self-consistent field theory fails. One of their most prominent applications in quantum chemistry is the exploration of potential energy surfaces. This includes the optimization of molecular geometries, such as equilibrium geometries and conical intersections and on-the-fly photodynamics simulations, both of which depend heavily on the ability of the method to properly explore the potential energy surface. Because such applications require nuclear gradients and derivative couplings, the availability of analytical nuclear gradients greatly enhances the scope of quantum chemical methods. This review focuses on the developments and advances made in the past two decades. A detailed account of the analytical nuclear gradient and derivative coupling theories is presented. Emphasis is given to the software infrastructure that allows one to make use of these methods. Notable applications of multireference electron correlation methods to chemistry, including geometry optimizations and on-the-fly dynamics, are summarized at the end followed by a discussion of future prospects.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University, Chungdae-ro 1, Cheongju 28644, Korea
| | - Rachael Al-Saadon
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew K MacLeod
- Workday, 4900 Pearl Circle East, Suite 100, Boulder, Colorado 80301, United States
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Quantum Simulation Technologies, Inc., 625 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, 414 East Clark Street, Vermillion, South Dakota 57069, United States
| |
Collapse
|
18
|
Locating conical intersections using the quasidegenerate partially and strongly contracted NEVPT2 methods. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Park JW. Analytical Gradient Theory for Quasidegenerate N-Electron Valence State Perturbation Theory (QD-NEVPT2). J Chem Theory Comput 2019; 16:326-339. [DOI: 10.1021/acs.jctc.9b00919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|