1
|
Weight BM, Mandal A, Hu D, Huo P. Ab initio spin-mapping non-adiabatic dynamics simulations of photochemistry. J Chem Phys 2025; 162:084105. [PMID: 39998166 DOI: 10.1063/5.0248950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
We perform on-the-fly non-adiabatic molecular dynamics simulations using the recently developed spin-mapping formalism. Two quantum dynamics approaches based on this mapping formalism, (i) the fully linearized Spin-LSC and (ii) the partially linearized Spin-PLDM, are explored using the quasi-diabatic propagation scheme. We have performed dynamics simulations in four ab initio molecular models for which benchmark ab initio multiple spawning (AIMS) data have been published. We find that the spin-LSC and the previously reported symmetric quasi-classical (SQC) approaches provide nearly equivalent population dynamics. While we expected the more involved spin-PLDM method to provide superior accuracy compared to the other mapping-based approaches, SQC and spin-LSC, we found that it performed with equivalent accuracy compared to the AIMS benchmark results. We further explore the underpinnings of the spin-PLDM correlation function by decomposing its N2 density matrix-focused initial conditions, where N is the number of states in the quantum subsystem. Finally, we found an approximate form of the spin-PLDM correlation function, which simplifies the simulation and reduces the computational costs from N2 to N.
Collapse
Affiliation(s)
- Braden M Weight
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Arkajit Mandal
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA
| | - Deping Hu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
2
|
Li X, Lubbers N, Tretiak S, Barros K, Zhang Y. Machine Learning Framework for Modeling Exciton Polaritons in Molecular Materials. J Chem Theory Comput 2024; 20:891-901. [PMID: 38168674 DOI: 10.1021/acs.jctc.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A light-matter hybrid quasiparticle, called a polariton, is formed when molecules are strongly coupled to an optical cavity. Recent experiments have shown that polariton chemistry can manipulate chemical reactions. Polariton chemistry is a collective phenomenon, and its effects increase with the number of molecules in a cavity. However, simulating an ensemble of molecules in the excited state coupled to a cavity mode is theoretically and computationally challenging. Recent advances in machine learning (ML) techniques have shown promising capabilities in modeling ground-state chemical systems. This work presents a general protocol to predict excited-state properties, such as energies, transition dipoles, and nonadiabatic coupling vectors with the hierarchically interacting particle neural network. ML predictions are then applied to compute the potential energy surfaces and electronic spectra of a prototype azomethane molecule in the collective coupling scenario. These computational tools provide a much-needed framework to model and understand many molecules' emerging excited-state polariton chemistry.
Collapse
Affiliation(s)
- Xinyang Li
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicholas Lubbers
- Information Sciences, Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kipton Barros
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
3
|
Mejia-Rodriguez D, Aprà E, Autschbach J, Bauman NP, Bylaska EJ, Govind N, Hammond JR, Kowalski K, Kunitsa A, Panyala A, Peng B, Rehr JJ, Song H, Tretiak S, Valiev M, Vila FD. NWChem: Recent and Ongoing Developments. J Chem Theory Comput 2023; 19:7077-7096. [PMID: 37458314 DOI: 10.1021/acs.jctc.3c00421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This paper summarizes developments in the NWChem computational chemistry suite since the last major release (NWChem 7.0.0). Specifically, we focus on functionality, along with input blocks, that is accessible in the current stable release (NWChem 7.2.0) and in the "master" development branch, interfaces to quantum computing simulators, interfaces to external libraries, the NWChem github repository, and containerization of NWChem executable images. Some ongoing developments that will be available in the near future are also discussed.
Collapse
Affiliation(s)
- Daniel Mejia-Rodriguez
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Edoardo Aprà
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Nicholas P Bauman
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric J Bylaska
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Niranjan Govind
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jeff R Hammond
- Accelerated Computing, NVIDIA Helsinki Oy, Porkkalankatu 1, 00180 Helsinki, Finland
| | - Karol Kowalski
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alexander Kunitsa
- Zapata Computing, Inc., 100 Federal Street, Boston, Massachusetts 02110, United States
| | - Ajay Panyala
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bo Peng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - John J Rehr
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Marat Valiev
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Mandal A, Taylor MA, Weight BM, Koessler ER, Li X, Huo P. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem Rev 2023; 123:9786-9879. [PMID: 37552606 PMCID: PMC10450711 DOI: 10.1021/acs.chemrev.2c00855] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 08/10/2023]
Abstract
When molecules are coupled to an optical cavity, new light-matter hybrid states, so-called polaritons, are formed due to quantum light-matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light-matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light-matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule-cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A.D. Taylor
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United
States
| | - Eric R. Koessler
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Xinyang Li
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
5
|
Nelson T, Huestis PL, Manner VW. Modeling Photolytic Decomposition of Energetically Functionalized Dodecanes. J Phys Chem A 2022; 126:7094-7101. [PMID: 36196028 PMCID: PMC9574918 DOI: 10.1021/acs.jpca.2c03404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/20/2022] [Indexed: 11/28/2022]
Abstract
The photolytic stability of explosives and energetic functional groups is of importance for those who regularly handle or are exposed to explosives in typical environmental conditions. This study models the photolytic degradation of dodecane substituted with various energetic functional groups: azide, nitro, nitrate ester, and nitramine. For the studied molecules, it was found that excitons localize on the energetic functional group, no matter where they were initially formed, and thus, the predominant degradation pathway involves the degradation of the energetic functional group. The relative trends for both 4 and 8 eV excitation energies followed with what is expected from the relative stability of the energetic functional groups to thermal and sub-shock degradation. The one notable exception was the azide functional group; more work should be done to further understand the photolytic effects on the azide functional group.
Collapse
Affiliation(s)
- Tammie Nelson
- Physics
and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Patricia L. Huestis
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los
Alamos, New Mexico 87545, United States
| | - Virginia W. Manner
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los
Alamos, New Mexico 87545, United States
| |
Collapse
|
6
|
Lyu N, Soley MB, Batista VS. Tensor-Train Split-Operator KSL (TT-SOKSL) Method for Quantum Dynamics Simulations. J Chem Theory Comput 2022; 18:3327-3346. [PMID: 35649210 DOI: 10.1021/acs.jctc.2c00209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerically exact simulations of quantum reaction dynamics, including nonadiabatic effects in excited electronic states, are essential to gain fundamental insights into ultrafast chemical reactivity and rigorous interpretations of molecular spectroscopy. Here, we introduce the tensor-train split-operator KSL (TT-SOKSL) method for quantum simulations in tensor-train (TT)/matrix product state (MPS) representations. TT-SOKSL propagates the quantum state as a tensor train using the Trotter expansion of the time-evolution operator, as in the tensor-train split-operator Fourier transform (TT-SOFT) method. However, the exponential operators of the Trotter expansion are applied using a rank-adaptive TT-KSL scheme instead of using the scaling and squaring approach as in TT-SOFT. We demonstrate the accuracy and efficiency of TT-SOKSL as applied to simulations of the photoisomerization of the retinal chromophore in rhodopsin, including nonadiabatic dynamics at a conical intersection of potential energy surfaces. The quantum evolution is described in full dimensionality by a time-dependent wavepacket evolving according to a two-state 25-dimensional model Hamiltonian. We find that TT-SOKSL converges faster than TT-SOFT with respect to the maximally allowed memory requirement of the tensor-train representation and better preserves the norm of the time-evolving state. When compared to the corresponding simulations based on the TT-KSL method, TT-SOKSL has the advantage of avoiding the need to construct the matrix product state Laplacian by exploiting the linear scaling of multidimensional tensor-train Fourier transforms.
Collapse
Affiliation(s)
- Ningyi Lyu
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Micheline B Soley
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States.,Yale Quantum Institute, Yale University, P.O. Box 208334, New Haven, Connecticut 06520-8263, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States.,Yale Quantum Institute, Yale University, P.O. Box 208334, New Haven, Connecticut 06520-8263, United States
| |
Collapse
|
7
|
Song H, Freixas VM, Fernandez-Alberti S, White AJ, Zhang Y, Mukamel S, Govind N, Tretiak S. An Ab Initio Multiple Cloning Method for Non-Adiabatic Excited-State Molecular Dynamics in NWChem. J Chem Theory Comput 2021; 17:3629-3643. [PMID: 34014085 DOI: 10.1021/acs.jctc.1c00131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recently developed ab initio multiple cloning (AIMC) approach based on the multiconfigurational Ehrenfest (MCE) method provides a powerful and accurate way of describing the excited-state dynamics of molecular systems. The AIMC method is a controlled approximation to nonadiabatic dynamics with a particular strength in the proper description of decoherence effects because of the branching of vibrational wavepackets at a level crossing. Here, we report a new implementation of the AIMC algorithm in the open source NWChem computational chemistry program. The framework combines linear-response time-dependent density functional theory with Ehrenfest mean-field theory to determine the equations of motion for classical trajectories. The multidimensional wave function is decomposed into a superposition of Gaussian coherent states guided by Ehrenfest trajectories (i.e., MCE approach), which can clone with fully quantum mechanical amplitudes and phases. By using an efficient time-derivative based nonadiabatic coupling approach within the AIMC method, all observables are calculated on-the-fly in the nonadiabatic molecular dynamics process. As a representative example, we apply our implementation to study the ultrafast photoinduced electronic and vibrational energy transfer in a pyridine molecule. The effects of the cloning procedure on electronic and vibrational coherence, relaxation and unidirectional energy transfer are discussed. This new AIMC implementation provides a high-level nonadiabatic molecular dynamics framework for simulating photoexcited dynamics in complex molecular systems and experimentally relevant ultrafast spectroscopic probes, such as nonlinear coherent optical and X-ray signals.
Collapse
Affiliation(s)
- Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD, Bernal, Argentina
| | | | - Alexander J White
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Shaul Mukamel
- Departments of Chemistry, Physics, and Astronomy, University of California, Irvine, California 92697, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
8
|
Mukazhanova A, Malone W, Negrin-Yuvero H, Fernandez-Alberti S, Tretiak S, Sharifzadeh S. Photoexcitation dynamics in perylene diimide dimers. J Chem Phys 2020; 153:244117. [PMID: 33380092 DOI: 10.1063/5.0031485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We utilize first-principles theory to investigate photo-induced excited-state dynamics of functionalized perylene diimide. This class of materials is highly suitable for solar energy conversion because of the strong optical absorbance, efficient energy transfer, and chemical tunability. We couple time-dependent density functional theory to a recently developed time-resolved non-adiabatic dynamics approach based on a semi-empirical description. By studying the monomer and dimer, we focus on the role stacking plays on the time-scales associated with excited-state non-radiative relaxation from a high excitonic state to the lowest energy exciton. We predict that the time-scale for energy conversion in the dimer is significantly faster than that in the monomer when equivalent excited states are accounted for. Additionally, for the dimer, the decay from the second to the nearly degenerate lowest energy excited-state involves two time-scales: a rapid decay on the order of ∼10 fs followed by a slower decay of ∼100 fs. Analysis of the spatial localization of the electronic transition density during the internal conversion process points out the existence of localized states on individual monomers, indicating that the strength of thermal fluctuations exceeds electronic couplings between the states such that the exciton hops between localized states throughout the simulation.
Collapse
Affiliation(s)
- Aliya Mukazhanova
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Walter Malone
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Hassiel Negrin-Yuvero
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | | | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Sahar Sharifzadeh
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
9
|
Song H, Fischer SA, Zhang Y, Cramer CJ, Mukamel S, Govind N, Tretiak S. First Principles Nonadiabatic Excited-State Molecular Dynamics in NWChem. J Chem Theory Comput 2020; 16:6418-6427. [DOI: 10.1021/acs.jctc.0c00295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - Sean A. Fischer
- Chemistry Division, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - Christopher J. Cramer
- Department of Chemistry, Supercomputing Institute and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shaul Mukamel
- Departments of Chemistry, and physics and astronomy, University of California, Irvine, California 92697, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|