1
|
Teke N, Melekamburath A, Gaudel B, Valeev EF. "Best" Iterative Coupled-Cluster Triples Model? More Evidence for 3CC. J Phys Chem A 2024; 128:9819-9828. [PMID: 39478319 PMCID: PMC11571224 DOI: 10.1021/acs.jpca.4c04667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
To follow up on the unexpectedly good performance of several coupled-cluster models with approximate inclusion of 3-body clusters [Rishi, V.; Valeev, E. F. J. Chem. Phys. 2019, 151, 064102.] we performed a more complete assessment of the 3CC method [Feller, D. . J. Chem. Phys. 2008, 129, 204105.] for accurate computational thermochemistry in the standard HEAT framework. New spin-integrated implementation of the 3CC method applicable to closed- and open-shell systems utilizes a new automated toolchain for derivation, optimization, and evaluation of operator algebra in many-body electronic structure. We found that with a double-ζ basis set the 3CC correlation energies and their atomization energy contributions are almost always more accurate (with respect to the CCSDTQ reference) than the CCSDT model as well as the standard CCSD(T) model. The mean absolute errors in cc-pVDZ {3CC, CCSDT, and CCSD(T)} electronic (per valence electron) and atomization energies relative to the CCSDTQ reference for the HEAT data set [Tajti, A. . J. Chem. Phys. 2004, 121, 11599-11613.], were {24, 70, 122} μEh/e and {0.46, 2.00, 2.58} kJ/mol, respectively. The mean absolute errors in the complete-basis-set limit {3CC, CCSDT, and CCSD(T)} atomization energies relative to the HEAT model reference, were {0.52, 2.00, and 1.07} kJ/mol, The significant and systematic reduction of the error by the 3CC method and its lower cost than CCSDT suggests it as a viable candidate for post-CCSD(T) thermochemistry applications, as well as the preferred alternative to CCSDT in general.
Collapse
Affiliation(s)
- Nakul
K. Teke
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ajay Melekamburath
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bimal Gaudel
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Michalak P, Lesiuk M. Rank-Reduced Equation-of-Motion Coupled Cluster Triples: an Accurate and Affordable Way of Calculating Electronic Excitation Energies. J Chem Theory Comput 2024; 20:8970-8983. [PMID: 39347964 PMCID: PMC11500429 DOI: 10.1021/acs.jctc.4c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
In the present work, we report an implementation of the rank-reduced equation-of-motion coupled cluster method with approximate triple excitations (RR-EOM-CC3). The proposed variant relies on tensor decomposition techniques in order to alleviate the high cost of computing and manipulating the triply excited amplitudes. In the RR-EOM-CC3 method, both ground-state and excited-state triple-excitation amplitudes are compressed according to the Tucker-3 format. This enables factorization of the working equations such that the formal scaling of the method is reduced to N6, where N is the system size. An additional advantage of our method is the fact that the accuracy can be strictly controlled by proper choice of two parameters defining sizes of triple-excitation subspaces in the Tucker decomposition for the ground and excited states. Optimal strategies of selecting these parameters are discussed. The developed method has been tested in a series of calculations of electronic excitation energies and compared to its canonical EOM-CC3 counterpart. Errors several times smaller than the inherent error of the canonical EOM-CC3 method (in comparison to FCI) are straightforward to achieve. This conclusion holds both for valence states dominated by single excitations and for states with pronounced doubly excited character. Taking advantage of the decreased scaling, we demonstrate substantial computational costs reductions (in comparison with the canonical EOM-CC3) in the case of two large molecules - l-proline and heptazine. This illustrates the usefulness of the RR-EOM-CC3 method for accurate determination of excitation energies of large molecules.
Collapse
Affiliation(s)
- Piotr Michalak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Michał Lesiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| |
Collapse
|
3
|
Zhao T, Thorpe JH, Matthews DA. Prospects for rank-reduced CCSD(T) in the context of high-accuracy thermochemistry. J Chem Phys 2024; 161:154110. [PMID: 39422208 DOI: 10.1063/5.0230899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Obtaining sub-chemical accuracy (1 kJ mol-1) for reaction energies of medium-sized gas-phase molecules is a longstanding challenge in the field of thermochemical modeling. The perturbative triples correction to coupled-cluster single double triple [CCSD(T)] constitutes an important component of all high-accuracy composite model chemistries that obtain this accuracy but can be a roadblock in the calculation of medium to large systems due to its O(N7) scaling, particularly in HEAT-like model chemistries that eschew separation of core and valence correlation. This study extends the work of Lesiuk [J. Chem. Phys. 156, 064103 (2022)] with new approximate methods and assesses the accuracy of five different approximations of (T) in the context of a subset of molecules selected from the W4-17 dataset. It is demonstrated that all of these approximate methods can achieve sub-0.1 kJ mol-1 accuracy with respect to canonical, density-fitted (T) contributions with a modest number of projectors. The approximation labeled Z̃T appears to offer the best trade-off between cost and accuracy and shows significant promise in an order-of-magnitude reduction in the computational cost of the CCSD(T) component of high-accuracy model chemistries.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, USA
| | - James H Thorpe
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, USA
| | - Devin A Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, USA
| |
Collapse
|
4
|
Jiang A, Glick ZL, Poole D, Turney JM, Sherrill CD, Schaefer HF. Accurate and efficient open-source implementation of domain-based local pair natural orbital (DLPNO) coupled-cluster theory using a t1-transformed Hamiltonian. J Chem Phys 2024; 161:082502. [PMID: 39171707 DOI: 10.1063/5.0219963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
We present an efficient, open-source formulation for coupled-cluster theory through perturbative triples with domain-based local pair natural orbitals [DLPNO-CCSD(T)]. Similar to the implementation of the DLPNO-CCSD(T) method found in the ORCA package, the most expensive integral generation and contraction steps associated with the CCSD(T) method are linear-scaling. In this work, we show that the t1-transformed Hamiltonian allows for a less complex algorithm when evaluating the local CCSD(T) energy without compromising efficiency or accuracy. Our algorithm yields sub-kJ mol-1 deviations for relative energies when compared with canonical CCSD(T), with typical errors being on the order of 0.1 kcal mol-1, using our TightPNO parameters. We extensively tested and optimized our algorithm and parameters for non-covalent interactions, which have been the most difficult interaction to model for orbital (PNO)-based methods historically. To highlight the capabilities of our code, we tested it on large water clusters, as well as insulin (787 atoms).
Collapse
Affiliation(s)
- Andy Jiang
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Zachary L Glick
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - David Poole
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Justin M Turney
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
5
|
Yuwono SH, Li RR, Zhang T, Surjuse KA, Valeev EF, Li X, Eugene DePrince A. Relativistic Coupled Cluster with Completely Renormalized and Perturbative Triples Corrections. J Phys Chem A 2024. [PMID: 39074123 DOI: 10.1021/acs.jpca.4c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
We have implemented noniterative triples corrections to the energy from coupled-cluster with single and double excitations (CCSD) within the 1-electron exact two-component (1eX2C) relativistic framework. The effectiveness of both the CCSD(T) and the completely renormalized (CR) CC(2,3) approaches are demonstrated by performing all-electron computations of the potential energy curves and spectroscopic constants of copper, silver, and gold dimers in their ground electronic states. Spin-orbit coupling effects captured via the 1eX2C framework are shown to be crucial for recovering the correct shape of the potential energy curves, and the correlation effects due to triples in these systems change the dissociation energies by about 0.1-0.2 eV or about 4-7%. We also demonstrate that relativistic effects and basis set size and contraction scheme are significantly more important in Au2 than in Ag2 or Cu2.
Collapse
Affiliation(s)
- Stephen H Yuwono
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Run R Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
6
|
Zhou H, Kincaid B, Wang G, Annaberdiyev A, Ganesh P, Mitas L. A new generation of effective core potentials: Selected lanthanides and heavy elements. J Chem Phys 2024; 160:084302. [PMID: 38391016 DOI: 10.1063/5.0180057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/05/2023] [Indexed: 02/24/2024] Open
Abstract
We construct correlation-consistent effective core potentials (ccECPs) for a selected set of heavy atoms and f elements that are currently of significant interest in materials and chemical applications, including Y, Zr, Nb, Rh, Ta, Re, Pt, Gd, and Tb. As is customary, ccECPs consist of spin-orbit (SO) averaged relativistic effective potential (AREP) and effective SO terms. For the AREP part, our constructions are carried out within a relativistic coupled-cluster framework while also taking into account objective function one-particle characteristics for improved convergence in optimizations. The transferability is adjusted using binding curves of hydride and oxide molecules. We address the difficulties encountered with f elements, such as the presence of large cores and multiple near-degeneracies of excited levels. For these elements, we construct ccECPs with core-valence partitioning that includes 4f subshell in the valence space. The developed ccECPs achieve an excellent balance between accuracy, size of the valence space, and transferability and are also suitable to be used in plane wave codes with reasonable energy cutoffs.
Collapse
Affiliation(s)
- Haihan Zhou
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Benjamin Kincaid
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Guangming Wang
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Abdulgani Annaberdiyev
- Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Panchapakesan Ganesh
- Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Lubos Mitas
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| |
Collapse
|
7
|
Stein F, Hutter J. Massively parallel implementation of gradients within the random phase approximation: Application to the polymorphs of benzene. J Chem Phys 2024; 160:024120. [PMID: 38214385 DOI: 10.1063/5.0180704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
The Random-Phase approximation (RPA) provides an appealing framework for semi-local density functional theory. In its Resolution-of-the-Identity (RI) approach, it is a very accurate and more cost-effective method than most other wavefunction-based correlation methods. For widespread applications, efficient implementations of nuclear gradients for structure optimizations and data sampling of machine learning approaches are required. We report a well scaling implementation of RI-RPA nuclear gradients on massively parallel computers. The approach is applied to two polymorphs of the benzene crystal obtaining very good cohesive and relative energies. Different correction and extrapolation schemes are investigated for further improvement of the results and estimations of error bars.
Collapse
Affiliation(s)
- Frederick Stein
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden, Rossendorf (HZDR), Untermarkt 20, 02826 Görlitz, Germany
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
8
|
Datta D, Gordon MS. Accelerating Coupled-Cluster Calculations with GPUs: An Implementation of the Density-Fitted CCSD(T) Approach for Heterogeneous Computing Architectures Using OpenMP Directives. J Chem Theory Comput 2023; 19:7640-7657. [PMID: 37878756 DOI: 10.1021/acs.jctc.3c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
An algorithm is presented for the coupled-cluster singles, doubles, and perturbative triples correction [CCSD(T)] method based on the density fitting or the resolution-of-the-identity (RI) approximation for performing calculations on heterogeneous computing platforms composed of multicore CPUs and graphics processing units (GPUs). The directive-based approach to GPU offloading offered by the OpenMP application programming interface has been employed to adapt the most compute-intensive terms in the RI-CCSD amplitude equations with computational costs scaling as O ( N O 2 N V 4 ) , O ( N O 3 N V 3 ) , and O ( N O 4 N V 2 ) (where NO and NV denote the numbers of correlated occupied and virtual orbitals, respectively) and the perturbative triples correction to execute on GPU architectures. The pertinent tensor contractions are performed using an accelerated math library such as cuBLAS or hipBLAS. Optimal strategies are discussed for splitting large data arrays into tiles to fit them into the relatively small memory space of the GPUs, while also minimizing the low-bandwidth CPU-GPU data transfers. The performance of the hybrid CPU-GPU RI-CCSD(T) code is demonstrated on pre-exascale supercomputers composed of heterogeneous nodes equipped with NVIDIA Tesla V100 and A100 GPUs and on the world's first exascale supercomputer named "Frontier", the nodes of which consist of AMD MI250X GPUs. Speedups within the range 4-8× relative to the recently reported CPU-only algorithm are obtained for the GPU-offloaded terms in the RI-CCSD amplitude equations. Applications to polycyclic aromatic hydrocarbons containing 16-66 carbon atoms demonstrate that the acceleration of the hybrid CPU-GPU code for the perturbative triples correction relative to the CPU-only code increases with the molecule size, attaining a speedup of 5.7× for the largest circumovalene molecule (C66H20). The GPU-offloaded code enables the computation of the perturbative triples correction for the C60 molecule using the cc-pVDZ/aug-cc-pVTZ-RI basis sets in 7 min on Frontier when using 12,288 AMD GPUs with a parallel efficiency of 83.1%.
Collapse
Affiliation(s)
- Dipayan Datta
- Department of Chemistry and Ames Laboratory, Iowa State University, 2416 Pammel Drive, Ames, Iowa 50011-2416, United States
| | - Mark S Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, 2416 Pammel Drive, Ames, Iowa 50011-2416, United States
| |
Collapse
|
9
|
Liu A, Zhang T, Hammes-Schiffer S, Li X. Multicomponent Cholesky Decomposition: Application to Nuclear-Electronic Orbital Theory. J Chem Theory Comput 2023; 19:6255-6262. [PMID: 37699735 DOI: 10.1021/acs.jctc.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The Cholesky decomposition technique is commonly used to reduce the memory requirement for storing two-particle repulsion integrals in quantum chemistry calculations that use atomic orbital bases. However, when quantum methods use multicomponent bases, such as nuclear-electronic orbitals, additional challenges are introduced due to asymmetric two-particle integrals. This work proposes several multicomponent Cholesky decomposition methods for calculations using nuclear-electronic orbital density functional theory. To analyze the errors in different Cholesky decomposition components, benchmark calculations using water clusters are carried out. The largest benchmark calculation is a water cluster (H2O)27 where all 54 protons are treated quantum mechanically. This study provides energetic and complexity analyses to demonstrate the accuracy and performance of the proposed multicomponent Cholesky decomposition method.
Collapse
Affiliation(s)
- Aodong Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Banerjee S, Zhang T, Dyall KG, Li X. Relativistic resolution-of-the-identity with Cholesky integral decomposition. J Chem Phys 2023; 159:114119. [PMID: 37728204 DOI: 10.1063/5.0161871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
In this study, we present an efficient integral decomposition approach called the restricted-kinetic-balance resolution-of-the-identity (RKB-RI) algorithm, which utilizes a tunable RI method based on the Cholesky integral decomposition for in-core relativistic quantum chemistry calculations. The RKB-RI algorithm incorporates the restricted-kinetic-balance condition and offers a versatile framework for accurate computations. Notably, the Cholesky integral decomposition is employed not only to approximate symmetric large-component electron repulsion integrals but also those involving small-component basis functions. In addition to comprehensive error analysis, we investigate crucial conditions, such as the kinetic balance condition and variational stability, which underlie the applicability of Dirac relativistic electronic structure theory. We compare the computational cost of the RKB-RI approach with the full in-core method to assess its efficiency. To evaluate the accuracy and reliability of the RKB-RI method proposed in this work, we employ actinyl oxides as benchmark systems, leveraging their properties for validation purposes. This investigation provides valuable insights into the capabilities and performance of the RKB-RI algorithm and establishes its potential as a powerful tool in the field of relativistic quantum chemistry.
Collapse
Affiliation(s)
- Samragni Banerjee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
11
|
Jiang A, Turney JM, Schaefer HF. Tensor Hypercontraction Form of the Perturbative Triples Energy in Coupled-Cluster Theory. J Chem Theory Comput 2023; 19:1476-1486. [PMID: 36802552 PMCID: PMC10018738 DOI: 10.1021/acs.jctc.2c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
We present the working equations for a reduced-scaling method of evaluating the perturbative triples (T) energy in coupled-cluster theory, through the tensor hypercontraction (THC) of the triples amplitudes (tijkabc). Through our method, we can reduce the scaling of the (T) energy from the traditional O(N7) to a more modest O(N5). We also discuss implementation details to aid future research, development, and software realization of this method. Additionally, we show that this method yields submillihartree (mEh) differences from CCSD(T) when evaluating absolute energies and sub-0.1 kcal/mol energy differences when evaluating relative energies. Finally, we demonstrate that this method converges to the true CCSD(T) energy through the systematic increasing of the rank or eigenvalue tolerance of the orthogonal projector, as well as exhibiting sublinear to linear error growth with respect to system size.
Collapse
Affiliation(s)
- Andy Jiang
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Justin M Turney
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Henry F Schaefer
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
12
|
Żuchowski PS, Moszynski R. Dispersion Energy from the Time-Independent Coupled-Cluster Polarization Propagator. J Chem Theory Comput 2023; 19:1177-1185. [PMID: 36734970 PMCID: PMC9979596 DOI: 10.1021/acs.jctc.2c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We present a new method of calculation of the dispersion energy in the second-order symmetry-adapted perturbation theory. Using the Longuet-Higgins integral and time-independent coupled-cluster response theory, one shows that the general expression for the dispersion energy can be written in terms of cluster amplitudes and the excitation operators σ, which can be obtained by solving a linear equation. We introduced an approximate scheme dubbed CCPP2(T) for the dispersion energy accurate to the second order of intramonomer correlation, which includes certain classes to be summed to infinity. Assessment of the accuracy of the CCPP2(T) dispersion energy against the FCI dispersion for He2 demonstrates its high accuracy. For more complex systems, CCPP2(T) matches the accuracy of the best methods introduced for calculations of dispersion so far. The method can be extended to higher-order levels of excitations, providing a systematically improvable theory of dispersion interaction.
Collapse
Affiliation(s)
- Piotr S. Żuchowski
- Faculty
of Physics, Astronomy and Applied Informatics, Institute of Physics, Nicolas Copernicus University in Torun, Grudziadzka 5/7, Torun87-100, Poland,E-mail:
| | - Robert Moszynski
- Quantum
Chemistry Laboratory, Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw02-093, Poland,E-mail:
| |
Collapse
|
13
|
Abstract
![]()
In this paper, we extend the rank-reduced coupled-cluster
formalism
to the calculation of non-iterative energy corrections due to quadruple
excitations. There are two major components of the proposed formalism.
The first is an approximate compression of the quadruple excitation
amplitudes using the Tucker format. The second is a modified functional
used for the evaluation of the corrections which gives exactly the
same results for the exact amplitudes, but is less susceptible to
errors resulting from the aforementioned compression. We show, both
theoretically and numerically, that the computational cost of the
proposed method scales as the seventh power of the system size. Using
reference results for a set of small molecules, the method is calibrated
to deliver relative accuracy of a few percent in energy corrections.
To illustrate the potential of the theory, we calculate the isomerization
energy of ortho/meta benzyne (C6H4) and the barrier height for the Cope rearrangement
in bullvalene (C10H10). The method retains a
near-black-box nature of the conventional coupled-cluster formalism
and depends on only one additional parameter that controls the accuracy.
Collapse
Affiliation(s)
- Michał Lesiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| |
Collapse
|
14
|
Woo J, Kim WY, Choi S. System-Specific Separable Basis Based on Tucker Decomposition: Application to Density Functional Calculations. J Chem Theory Comput 2022; 18:2875-2884. [PMID: 35437014 PMCID: PMC9098162 DOI: 10.1021/acs.jctc.1c01263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/30/2022]
Abstract
For fast density functional calculations, a suitable basis that can accurately represent the orbitals within a reasonable number of dimensions is essential. Here, we propose a new type of basis constructed from Tucker decomposition of a finite-difference (FD) Hamiltonian matrix, which is intended to reflect the system information implied in the Hamiltonian matrix and satisfies orthonormality and separability conditions. By introducing the system-specific separable basis, the computation time for FD density functional calculations for seven two- and three-dimensional periodic systems was reduced by a factor of 2-71 times, while the errors in both the atomization energy per atom and the band gap were limited to less than 0.1 eV. The accuracy and speed of the density functional calculations with the proposed basis can be systematically controlled by adjusting the rank size of Tucker decomposition.
Collapse
Affiliation(s)
- Jeheon Woo
- Department
of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woo Youn Kim
- Department
of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sunghwan Choi
- National
Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information, Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Hohenstein EG, Fales BS, Parrish RM, Martínez TJ. Rank-reduced coupled-cluster. III. Tensor hypercontraction of the doubles amplitudes. J Chem Phys 2022; 156:054102. [DOI: 10.1063/5.0077770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Edward G. Hohenstein
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - B. Scott Fales
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | | | - Todd J. Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
16
|
Lesiuk M. Quintic-scaling rank-reduced coupled cluster theory with single and double excitations. J Chem Phys 2022; 156:064103. [DOI: 10.1063/5.0071916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Lesiuk M. Near-Exact CCSDT Energetics from Rank-Reduced Formalism Supplemented by Non-iterative Corrections. J Chem Theory Comput 2021; 17:7632-7647. [PMID: 34860018 DOI: 10.1021/acs.jctc.1c00933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce a non-iterative energy correction, added on top of the rank-reduced coupled-cluster method with single, double, and triple substitutions, that accounts for excitations excluded from the parent triple excitation subspace. The formula for the correction is derived by employing the coupled-cluster Lagrangian formalism, with an additional assumption that the parent excitation subspace is closed under the action of the Fock operator. Owing to the rank-reduced form of the triple excitation amplitudes tensor, the computational cost of evaluating the correction scales as N7, where N is the system size. The accuracy and computational efficiency of the proposed method is assessed for both total and relative correlation energies. We show that the non-iterative correction can fulfill two separate roles. If the accuracy level of a fraction of kJ/mol is sufficient for a given system, the correction significantly reduces the dimension of the parent triple excitation subspace needed in the iterative part of the calculations. Simultaneously, it enables reproducing the exact CCSDT results to an accuracy level below 0.1 kJ/mol, with a larger, yet still reasonable, dimension of the parent excitation subspace. This typically can be achieved at a computational cost only several times larger than required for the CCSD(T) method. The proposed method retains the black-box features of the single-reference coupled-cluster theory; the dimension of the parent excitation subspace remains the only additional parameter that has to be specified.
Collapse
Affiliation(s)
- Michał Lesiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
18
|
Agarawal V, Patra C, Maitra R. An approximate coupled cluster theory via nonlinear dynamics and synergetics: The adiabatic decoupling conditions. J Chem Phys 2021; 155:124115. [PMID: 34598582 DOI: 10.1063/5.0060087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The coupled cluster iteration scheme is analyzed as a multivariate discrete time map using nonlinear dynamics and synergetics. The nonlinearly coupled set of equations to determine the cluster amplitudes are driven by a fraction of the entire set of cluster amplitudes. These driver amplitudes enslave all other amplitudes through a synergistic inter-relationship, where the latter class of amplitudes behave as the auxiliary variables. The driver and the auxiliary variables exhibit vastly different time scales of relaxation during the iteration process to reach the fixed points. The fast varying auxiliary amplitudes are small in magnitude, while the driver amplitudes are large, and they have a much longer time scale of relaxation. Exploiting their difference in relaxation time scale, we employ an adiabatic decoupling approximation, where each of the fast relaxing auxiliary modes is expressed as a unique function of the principal amplitudes. This results in a tremendous reduction in the independent degrees of freedom. On the other hand, only the driver amplitudes are determined accurately via exact coupled cluster equations. We will demonstrate that the iteration scheme has an order of magnitude reduction in computational scaling than the conventional scheme. With a few pilot numerical examples, we would demonstrate that this scheme can achieve very high accuracy with significant savings in computational time.
Collapse
Affiliation(s)
- Valay Agarawal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Chayan Patra
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Rahul Maitra
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
19
|
Zhang T, Liu X, Valeev EF, Li X. Toward the Minimal Floating Operation Count Cholesky Decomposition of Electron Repulsion Integrals. J Phys Chem A 2021; 125:4258-4265. [PMID: 33970626 DOI: 10.1021/acs.jpca.1c02317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As quantum chemistry calculations deal with molecular systems of increasing size, the memory requirement to store electron-repulsion integrals (ERIs) greatly outpaces the physical memory available in computing hardware. The Cholesky decomposition of ERIs provides a convenient yet accurate technique to reduce the storage requirement of integrals. Recent developments of a two-step algorithm have drastically reduced the memory operation (MOP) count, leaving the floating operation (FLOP) count as the last frontier of cost reduction in the Cholesky ERI algorithm. In this report, we introduce a dynamic integral tracking, reusing, and compression/elimination protocol embedded in the two-step Cholesky ERI method. Benchmark studies suggest that this technique becomes particularly advantageous when the basis set consists of many computationally expensive high-angular-momentum basis functions. With this dynamic-ERI improvement, the Cholesky ERI approach proves to be a highly efficient algorithm with minimal FLOP and MOP count.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaolin Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
20
|
Joshi R, McNaughton A, Thomas DG, Henry CS, Canon SR, McCue LA, Kumar N. Quantum Mechanical Methods Predict Accurate Thermodynamics of Biochemical Reactions. ACS OMEGA 2021; 6:9948-9959. [PMID: 33869975 PMCID: PMC8047721 DOI: 10.1021/acsomega.1c00997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Thermodynamics plays a crucial role in regulating the metabolic processes in all living organisms. Accurate determination of biochemical and biophysical properties is important to understand, analyze, and synthetically design such metabolic processes for engineered systems. In this work, we extensively performed first-principles quantum mechanical calculations to assess its accuracy in estimating free energy of biochemical reactions and developed automated quantum-chemistry (QC) pipeline (https://appdev.kbase.us/narrative/45710) for the prediction of thermodynamics parameters of biochemical reactions. We benchmark the QC methods based on density functional theory (DFT) against different basis sets, solvation models, pH, and exchange-correlation functionals using the known thermodynamic properties from the NIST database. Our results show that QC calculations when combined with simple calibration yield a mean absolute error in the range of 1.60-2.27 kcal/mol for different exchange-correlation functionals, which is comparable to the error in the experimental measurements. This accuracy over a diverse set of metabolic reactions is unprecedented and near the benchmark chemical accuracy of 1 kcal/mol that is usually desired from DFT calculations.
Collapse
Affiliation(s)
- Rajendra
P. Joshi
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| | - Andrew McNaughton
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| | - Dennis G. Thomas
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| | - Christopher S. Henry
- Argonne
National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United
States
| | - Shane R. Canon
- Lawrence
Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Lee Ann McCue
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| | - Neeraj Kumar
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
21
|
Gyevi-Nagy L, Kállay M, Nagy PR. Accurate Reduced-Cost CCSD(T) Energies: Parallel Implementation, Benchmarks, and Large-Scale Applications. J Chem Theory Comput 2021; 17:860-878. [PMID: 33400527 PMCID: PMC7884001 DOI: 10.1021/acs.jctc.0c01077] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 11/28/2022]
Abstract
The accurate and systematically improvable frozen natural orbital (FNO) and natural auxiliary function (NAF) cost-reducing approaches are combined with our recent coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] implementations. Both of the closed- and open-shell FNO-CCSD(T) codes benefit from OpenMP parallelism, completely or partially integral-direct density-fitting algorithms, checkpointing, and hand-optimized, memory- and operation count effective implementations exploiting all permutational symmetries. The closed-shell CCSD(T) code requires negligible disk I/O and network bandwidth, is MPI/OpenMP parallel, and exhibits outstanding peak performance utilization of 50-70% up to hundreds of cores. Conservative FNO and NAF truncation thresholds benchmarked for challenging reaction, atomization, and ionization energies of both closed- and open-shell species are shown to maintain 1 kJ/mol accuracy against canonical CCSD(T) for systems of 31-43 atoms even with large basis sets. The cost reduction of up to an order of magnitude achieved extends the reach of FNO-CCSD(T) to systems of 50-75 atoms (up to 2124 atomic orbitals) with triple- and quadruple-ζ basis sets, which is unprecedented without local approximations. Consequently, a considerably larger portion of the chemical compound space can now be covered by the practically "gold standard" quality FNO-CCSD(T) method using affordable resources and about a week of wall time. Large-scale applications are presented for organocatalytic and transition-metal reactions as well as noncovalent interactions. Possible applications for benchmarking local CCSD(T) methods, as well as for the accuracy assessment or parametrization of less complete models, for example, density functional approximations or machine learning potentials, are also outlined.
Collapse
Affiliation(s)
- László Gyevi-Nagy
- Department of Physical Chemistry and
Materials Science, Budapest University of
Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and
Materials Science, Budapest University of
Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Péter R. Nagy
- Department of Physical Chemistry and
Materials Science, Budapest University of
Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
22
|
Tucholska AM, Moszynski R. Molecular properties from the explicitly connected expressions of the response functions within the coupled-cluster theory. ADVANCES IN QUANTUM CHEMISTRY 2021. [DOI: 10.1016/bs.aiq.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Tribedi S, Chakraborty A, Maitra R. Formulation of a Dressed Coupled-Cluster Method with Implicit Triple Excitations and Benchmark Application to Hydrogen-Bonded Systems. J Chem Theory Comput 2020; 16:6317-6328. [PMID: 32794747 DOI: 10.1021/acs.jctc.0c00736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we present a coupled-cluster theory based on a double-exponential wave operator ansatz, which is capable of mimicking the effects of connected triple excitations in an iterative manner. The triply excited manifold is spanned via the action of a set of scattering operators on doubly excited determinants, whereas their action annihilates the Hartree-Fock reference determinant. The effect of triple excitations is included at a computational scaling slightly higher than that of conventional coupled-cluster singles and doubles. Furthermore, we demonstrate two approximate schemes, which arise naturally, and argue that both these schemes come equipped with certain renormalization terms capable of handling nonbonding interactions due to robust inclusion of the screened Coulomb interaction. We justify our claims from both a theoretical perspective and a number of numerical applications to prototypical water clusters, in a number of basis functions. Our methods show overall comparable performance to the canonical coupled-cluster theory with singles, doubles, and perturbative triples (CCSD(T)) and allied methods, however, at a lower computational scaling.
Collapse
Affiliation(s)
- Soumi Tribedi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anish Chakraborty
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rahul Maitra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|