1
|
Lindoy LP, Mandal A, Reichman DR. Investigating the collective nature of cavity-modified chemical kinetics under vibrational strong coupling. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2617-2633. [PMID: 39678666 PMCID: PMC11636483 DOI: 10.1515/nanoph-2024-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/05/2024] [Indexed: 12/17/2024]
Abstract
In this paper, we develop quantum dynamical methods capable of treating the dynamics of chemically reacting systems in an optical cavity in the vibrationally strong-coupling (VSC) limit at finite temperatures and in the presence of a dissipative solvent in both the few and many molecule limits. In the context of two simple models, we demonstrate how reactivity in the collective VSC regime does not exhibit altered rate behavior in equilibrium but may exhibit resonant cavity modification of reactivity when the system is explicitly out of equilibrium. Our results suggest experimental protocols that may be used to modify reactivity in the collective regime and point to features not included in the models studied, which demand further scrutiny.
Collapse
|
2
|
Takahashi H, Tanimura Y. Discretized hierarchical equations of motion in mixed Liouville-Wigner space for two-dimensional vibrational spectroscopies of liquid water. J Chem Phys 2023; 158:044115. [PMID: 36725520 DOI: 10.1063/5.0135725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A model of a bulk water system describing the vibrational motion of intramolecular and intermolecular modes is constructed, enabling analysis of its linear and nonlinear vibrational spectra as well as the energy transfer processes between the vibrational modes. The model is described as a system of four interacting anharmonic oscillators nonlinearly coupled to their respective heat baths. To perform a rigorous numerical investigation of the non-Markovian and nonperturbative quantum dissipative dynamics of the model, we derive discretized hierarchical equations of motion in mixed Liouville-Wigner space, with Lagrange-Hermite mesh discretization being employed in the Liouville space of the intramolecular modes and Lagrange-Hermite mesh discretization and Hermite discretization in the Wigner space of the intermolecular modes. One-dimensional infrared and Raman spectra and two-dimensional terahertz-infrared-visible and infrared-infrared-Raman spectra are computed as demonstrations of the quantum dissipative description provided by our model.
Collapse
Affiliation(s)
- Hideaki Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Begušić T, Tao X, Blake GA, Miller TF. Equilibrium-nonequilibrium ring-polymer molecular dynamics for nonlinear spectroscopy. J Chem Phys 2022; 156:131102. [PMID: 35395895 DOI: 10.1063/5.0087156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Two-dimensional Raman and hybrid terahertz-Raman spectroscopic techniques provide invaluable insight into molecular structures and dynamics of condensed-phase systems. However, corroborating experimental results with theory is difficult due to the high computational cost of incorporating quantum-mechanical effects in the simulations. Here, we present the equilibrium-nonequilibrium ring-polymer molecular dynamics (RPMD), a practical computational method that can account for nuclear quantum effects on the two-time response function of nonlinear optical spectroscopy. Unlike a recently developed approach based on the double Kubo transformed (DKT) correlation function, our method is exact in the classical limit, where it reduces to the established equilibrium-nonequilibrium classical molecular dynamics method. Using benchmark model calculations, we demonstrate the advantages of the equilibrium-nonequilibrium RPMD over classical and DKT-based approaches. Importantly, its derivation, which is based on the nonequilibrium RPMD, obviates the need for identifying an appropriate Kubo transformed correlation function and paves the way for applying real-time path-integral techniques to multidimensional spectroscopy.
Collapse
Affiliation(s)
- Tomislav Begušić
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Xuecheng Tao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Geoffrey A Blake
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
4
|
Brian D, Sun X. Generalized quantum master equation: A tutorial review and recent advances. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2109157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dominikus Brian
- Division of Arts and Sciences, NYU Shanghai, Shanghai 200122, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York 10003, USA
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, Shanghai 200122, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York 10003, USA
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| |
Collapse
|
5
|
Abstract
Theoretical simulations of electronic excitations and associated processes in molecules are indispensable for fundamental research and technological innovations. However, such simulations are notoriously challenging to perform with quantum mechanical methods. Advances in machine learning open many new avenues for assisting molecular excited-state simulations. In this Review, we track such progress, assess the current state of the art and highlight the critical issues to solve in the future. We overview a broad range of machine learning applications in excited-state research, which include the prediction of molecular properties, improvements of quantum mechanical methods for the calculations of excited-state properties and the search for new materials. Machine learning approaches can help us understand hidden factors that influence photo-processes, leading to a better control of such processes and new rules for the design of materials for optoelectronic applications.
Collapse
|
6
|
Ueno S, Tanimura Y. Modeling and Simulating the Excited-State Dynamics of a System with Condensed Phases: A Machine Learning Approach. J Chem Theory Comput 2021; 17:3618-3628. [PMID: 33999606 DOI: 10.1021/acs.jctc.1c00104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Simulating the irreversible quantum dynamics of exciton- and electron-transfer problems poses a nontrivial challenge. Because the irreversibility of the system dynamics is a result of quantum thermal activation and dissipation caused by the surrounding environment, it is necessary to include infinite environmental degrees of freedom in the simulation. Because the capabilities of full quantum dynamics simulations that include the surrounding molecular degrees of freedom are limited, employing a system-bath model is a practical approach. In such a model, the dynamics of excitons or electrons are described by a system Hamiltonian, while the other degrees of freedom that arise from the environmental molecules are described by a harmonic oscillator bath (HOB) and system-bath interaction parameters. By extending on a previous study of molecular liquids [ J. Chem. Theory Comput. 2020, 16, 2099], here, we construct a system-bath model for exciton- and electron-transfer problems by means of a machine learning approach. We determine both the system and system-bath interaction parameters, including the spectral distribution of the bath, using the electronic excitation energies obtained from a quantum mechanics/molecular mechanics (QM/MM) simulation that is conducted as a function of time. Using the analytical expressions of optical response functions, we calculate linear and two-dimensional electronic spectra (2DES) for indocarbocyanine dimers in methanol. From these results, we demonstrate the capability of our approach to elucidate the nonequilibrium exciton dynamics of a quantum system in a nonintuitive manner.
Collapse
|
7
|
Zhang J, Borrelli R, Tanimura Y. Probing photoinduced proton coupled electron transfer process by means of two-dimensional resonant electronic–vibrational spectroscopy. J Chem Phys 2021; 154:144104. [DOI: 10.1063/5.0046755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jiaji Zhang
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Raffaele Borrelli
- DISAFA, University of Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, Italy
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Tanimura Y. Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM). J Chem Phys 2021; 153:020901. [PMID: 32668942 DOI: 10.1063/5.0011599] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An open quantum system refers to a system that is further coupled to a bath system consisting of surrounding radiation fields, atoms, molecules, or proteins. The bath system is typically modeled by an infinite number of harmonic oscillators. This system-bath model can describe the time-irreversible dynamics through which the system evolves toward a thermal equilibrium state at finite temperature. In nuclear magnetic resonance and atomic spectroscopy, dynamics can be studied easily by using simple quantum master equations under the assumption that the system-bath interaction is weak (perturbative approximation) and the bath fluctuations are very fast (Markovian approximation). However, such approximations cannot be applied in chemical physics and biochemical physics problems, where environmental materials are complex and strongly coupled with environments. The hierarchical equations of motion (HEOM) can describe the numerically "exact" dynamics of a reduced system under nonperturbative and non-Markovian system-bath interactions, which has been verified on the basis of exact analytical solutions (non-Markovian tests) with any desired numerical accuracy. The HEOM theory has been used to treat systems of practical interest, in particular, to account for various linear and nonlinear spectra in molecular and solid state materials, to evaluate charge and exciton transfer rates in biological systems, to simulate resonant tunneling and quantum ratchet processes in nanodevices, and to explore quantum entanglement states in quantum information theories. This article presents an overview of the HEOM theory, focusing on its theoretical background and applications, to help further the development of the study of open quantum dynamics.
Collapse
Affiliation(s)
- Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Zhang J, Borrelli R, Tanimura Y. Proton tunneling in a two-dimensional potential energy surface with a non-linear system–bath interaction: Thermal suppression of reaction rate. J Chem Phys 2020; 152:214114. [DOI: 10.1063/5.0010580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Jiaji Zhang
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Raffaele Borrelli
- DISAFA, University of Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, Italy
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|