1
|
Tucker SK, McHugh RE, Roe AJ. One problem, multiple potential targets: Where are we now in the development of small molecule inhibitors against Shiga toxin? Cell Signal 2024; 121:111253. [PMID: 38852937 DOI: 10.1016/j.cellsig.2024.111253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a group of enteric pathogens which carry phage-encoded Shiga toxins (Stx). STEC infections begin with severe abdominal pain and non-bloody diarrhoea, which can progress to bloody diarrhoea after approximately 4-days post-infection. In high-risk groups such as children and the elderly, patients may develop haemolytic uremic syndrome (HUS). HUS is characterised by microangiopathic haemolytic anaemia, thrombocytopenia, and in severe disease acute renal failure. Traditional antibiotics have been linked with increased toxin production due to the activation of recA-mediated bacterial stress response, resulting in poorer patient outcomes. Therefore, treatment relies on supportive therapies. Antivirulence strategies have been explored as an alternative treatment for bacterial infections and blockers of virulence factors such as the Type III Secretion System. Recent improvements in the mechanistic understanding of the Stx pathway have led to the design of inhibitors to disrupt the pathway, leading to toxin-mediated ribosome damage. However, compounds have yet to progress beyond Phase III clinical trials successfully. This review explores the progress in developing small molecule inhibitors by collating lead compounds derived from in-silico and experimental approaches.
Collapse
Affiliation(s)
- Samantha K Tucker
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Rebecca E McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Andrew J Roe
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
2
|
Fan J, Wang Y, Hu X, Liu Y, Che CM. Iron porphyrin-catalysed C(sp 3)–H amination with alkyl azides for the synthesis of complex nitrogen-containing compounds. Org Chem Front 2023. [DOI: 10.1039/d2qo01972h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
With the readily prepared iron porphyrin complex as a catalyst and starting with alkyl azides, a panel of nitrogen-containing skeletons representing the families of natural alkaloids and bioactive compounds could be prepared in good yields.
Collapse
Affiliation(s)
- Jianqiang Fan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Ye Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Xuefu Hu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong 518057, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, China
| |
Collapse
|
3
|
Jiang F, Xu M, Bei W, Cheng K, Huang L. Palladium-catalyzed native α-amino acid derivative-directed arylation/oxidation of benzylic C-H bonds: synthesis of 5-aryl-1,4-benzodiazepin-2-ones. Chem Commun (Camb) 2022; 58:9638-9641. [PMID: 35938553 DOI: 10.1039/d2cc03266j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Pd-catalyzed, native α-amino acid derivative-directed benzylic C-H bond arylation/oxidation with aryl iodides was developed. The natural amino acid auxiliary could serve as a desired building block for formation of 5-aryl-1,4-benzodiazepin-2-ones after removal of the trifluoroacetyl protecting group. The bifunctional reaction probably proceeded through a sequential benzylic arylation/oxidation process.
Collapse
Affiliation(s)
- Fengxuan Jiang
- Key Laboratory of Alternative Technologies for Fine Chemicals Process, Institute of Applied Chemistry, Shaoxing University, Shaoxing, Zhejiang Province 312000, People's Republic of China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, People's Republic of China.
| | - Menghua Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wenfeng Bei
- Key Laboratory of Alternative Technologies for Fine Chemicals Process, Institute of Applied Chemistry, Shaoxing University, Shaoxing, Zhejiang Province 312000, People's Republic of China
| | - Kai Cheng
- Key Laboratory of Alternative Technologies for Fine Chemicals Process, Institute of Applied Chemistry, Shaoxing University, Shaoxing, Zhejiang Province 312000, People's Republic of China
| | - Lehao Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, People's Republic of China.
| |
Collapse
|
4
|
Biyani SA, Lytle C, Hyun SH, McGuire MA, Pendyala R, Thompson DH. Development of a Continuous Flow Synthesis of Lorazepam. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shruti A. Biyani
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, Purdue University, Bindley Bioscience Center, 1203 West State Street, West Lafayette, Indiana 47907, United States
| | - Corryn Lytle
- School of Chemical Engineering, Purdue University, 480 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Seok-Hee Hyun
- Continuity Pharma, LLC, West Lafayette, Indiana 47907, United States
| | | | - Ranya Pendyala
- The Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| | - David H. Thompson
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, Purdue University, Bindley Bioscience Center, 1203 West State Street, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Yang F, Xu S, Fan H, Zhao X, Zhang X. One‐Pot Synthesis of 2‐Aminobenzophenones from 2‐Alkynyl Arylazides Catalyzed by Pd and Cu Precursors. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fan Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Shijie Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Hui Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Xuechun Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Xiaoxiang Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
6
|
Hwang SB, Chelliah R, Kang JE, Rubab M, Banan-MwineDaliri E, Elahi F, Oh DH. Role of Recent Therapeutic Applications and the Infection Strategies of Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2021; 11:614963. [PMID: 34268129 PMCID: PMC8276698 DOI: 10.3389/fcimb.2021.614963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a global foodborne bacterial pathogen that is often accountable for colon disorder or distress. STEC commonly induces severe diarrhea in hosts but can cause critical illnesses due to the Shiga toxin virulence factors. To date, there have been a significant number of STEC serotypes have been evolved. STECs vary from nausea and hemorrhoid (HC) to possible lethal hemolytic-based uremic syndrome (HUS), thrombotic thrombocytopenic purpura (TTP). Inflammation-based STEC is usually a foodborne illness with Shiga toxins (Stx 1 and 2) thought to be pathogenesis. The STEC's pathogenicity depends significantly on developing one or more Shiga toxins, which can constrain host cell protein synthesis leading to cytotoxicity. In managing STEC infections, antimicrobial agents are generally avoided, as bacterial damage and discharge of accumulated toxins are thought the body. It has also been documented that certain antibiotics improve toxin production and the development of these species. Many different groups have attempted various therapies, including toxin-focused antibodies, toxin-based polymers, synbiotic agents, and secondary metabolites remedies. Besides, in recent years, antibiotics' efficacy in treating STEC infections has been reassessed with some encouraging methods. Nevertheless, the primary role of synbiotic effectiveness (probiotic and prebiotic) against pathogenic STEC and other enteropathogens is less recognized. Additional studies are required to understand the mechanisms of action of probiotic bacteria and yeast against STEC infection. Because of the consensus contraindication of antimicrobials for these bacterial pathogens, the examination was focused on alternative remedy strategies for STEC infections. The rise of novel STEC serotypes and approaches employed in its treatment are highlighted.
Collapse
Affiliation(s)
- Su-bin Hwang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ji Eun Kang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Momna Rubab
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Eric Banan-MwineDaliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|