1
|
Chen C, Zhou X, Cheng W, Li X, Zhang B, Tu J, Meng J, Peng Y, Duan X, Yu Q, Tan X. Design, synthesis and FXR partial agonistic activity of anthranilic acid derivatives bearing aryloxy moiety as therapeutic agents for metabolic dysfunction-associated steatohepatitis. Bioorg Chem 2024; 153:107940. [PMID: 39515132 DOI: 10.1016/j.bioorg.2024.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/26/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Farnesoid X receptor (FXR) is considered a promising therapeutic target for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). Increasing evidence suggests that targeting FXR with full agonists may lead to side effects. FXR partial agonists, which moderately activate FXR signaling, are emerging as a feasible approach to mitigate side effects and address MASH. Herein, a series of novel anthranilic acid derivatives bearing aryloxy moiety were designed and synthesized using a hybrid strategy from the previously identified FXR partial agonists DM175 and AIV-25. Particularly, compound 26 exhibited potent FXR partial agonistic activity in a dual-luciferase reporter gene assay with an EC50 value of 0.09 ± 0.02 µM (75.13 % maximum efficacy relative to OCA). In the MASH mice model, compound 26 significantly ameliorated the pathological features of the liver, including steatosis, inflammation, and fibrosis. In addition, compound 26 displayed high selectivity, good oral bioavailability, high liver distribution, as well as an acceptable safety profile. Molecular simulation studies showed that compound 26 fitted well with the binding site of FXR. Collectively, these findings demonstrated that compound 26 might serve as a promising candidate targeting FXR for MASH treatment.
Collapse
Affiliation(s)
- Cong Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Environmental Exposure Omics and Life Cycle Health, College of Public Health, Guilin Medical University, Guilin 541199, China
| | - Xianghui Zhou
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China; Department of Pharmacy, Yunfu People's Hospital, Yunfu 527300, China
| | - Wa Cheng
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xin Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Bing Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jiaojiao Tu
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jieyun Meng
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yanfen Peng
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xiaoqun Duan
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China.
| | - Qiming Yu
- Guangxi Key Laboratory of Environmental Exposure Omics and Life Cycle Health, College of Public Health, Guilin Medical University, Guilin 541199, China.
| | - Xiangduan Tan
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
2
|
Xie Z, Li Y, Cheng L, Huang Y, Rao W, Shi H, Li J. Potential therapeutic strategies for MASH: from preclinical to clinical development. LIFE METABOLISM 2024; 3:loae029. [PMID: 39872142 PMCID: PMC11749562 DOI: 10.1093/lifemeta/loae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 01/03/2025]
Abstract
Current treatment paradigms for metabolic dysfunction-associated steatohepatitis (MASH) are based primarily on dietary restrictions and the use of existing drugs, including anti-diabetic and anti-obesity medications. Given the limited number of approved drugs specifically for MASH, recent efforts have focused on promising strategies that specifically target hepatic lipid metabolism, inflammation, fibrosis, or a combination of these processes. In this review, we examined the pathophysiology underlying the development of MASH in relation to recent advances in effective MASH therapy. Particularly, we analyzed the effects of lipogenesis inhibitors, nuclear receptor agonists, glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists, fibroblast growth factor mimetics, and combinatorial therapeutic approaches. We summarize these targets along with their preclinical and clinical candidates with the ultimate goal of optimizing the therapeutic prospects for MASH.
Collapse
Affiliation(s)
- Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Long Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yidan Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanglin Rao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Honglu Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
3
|
Mitra S, Halder AK, Koley A, Ghosh N, Panda P, Mandal SC, Cordeiro MNDS. Unveiling structural determinants for FXR antagonism in 1,3,4-trisubstituted-Pyrazol amide derivatives: A multi-scale in silico modelling approach. Comput Biol Med 2024; 180:108991. [PMID: 39126787 DOI: 10.1016/j.compbiomed.2024.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing global health concern due to its potential to progress into severe liver diseases. Targeting the bile acid receptor FXR has emerged as a promising strategy for managing NAFLD. Building upon our previous research on FXR partial agonism, the present study investigates a series of 1,3,4-trisubstituted-pyrazol amide derivatives as FXR antagonists, aiming to delineate the structural features for antagonism. By means of 2D-QSAR (quantitative structure-activity relationships) modelling techniques, we elucidated the key structural elements responsible for the antagonistic properties of these derivatives. We then employed QPhAR, an open-access software, to identify key molecular features within the compounds that enhance their antagonistic activity. Additionally, 3D-QSAR modelling allowed us to analyse the steric and electrostatic fields of aligned 3D structures, further refining our understanding of structure-activity relationships. Subsequent molecular dynamics simulations provided insights into the binding mode interactions between the compounds and FXR, with varying potencies, confirming and complementing the findings from 2D-QSAR, pharmacophore, and 3D-QSAR modelling. Particularly, our study highlighted the significance of hydrophobic interactions in conferring potent antagonism by the 1,3,4-trisubstituted-pyrazol amide derivatives against FXR. Overall, this work underscores the potential of 1,3,4-trisubstituted-pyrazol amides as FXR antagonists for NAFLD treatment. Notably, our reliance on open-access software fosters reproducibility and broadens the accessibility of our findings.
Collapse
Affiliation(s)
- Soumya Mitra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India; Dr B C Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India
| | - Amit Kumar Halder
- Dr B C Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India; LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Arup Koley
- Dr B C Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Parthasarathi Panda
- Dr B C Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Maria Natalia D S Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal.
| |
Collapse
|
4
|
Li Y, Xu T, Zhao Y, Zhang H, Liu Z, Wang H, Huang C, Shu Z, Gao L, Xie R, Jiao T, Zhang D, Zhang D, Liang X, Zang Y, Sun Y, Liu H, Li J, Zhou Y. Discovery and Optimization of Novel Nonbile Acid FXR Agonists as Preclinical Candidates for the Treatment of Inflammatory Bowel Disease. J Med Chem 2024; 67:5642-5661. [PMID: 38547240 DOI: 10.1021/acs.jmedchem.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Inflammatory bowel disease (IBD) is a multifactorial chronic inflammation of the intestine and has become a global public health concern. A farnesoid X receptor (FXR) was recently reported to play a key role in hepatic-intestinal circulation, intestinal metabolism, immunity, and microbial regulation, and thus, it becomes a promising therapeutic target for IBD. In this study, we identified a series of nonbile acid FXR agonists, in which 33 novel compounds were designed and synthesized by the structure-based drug design strategy from our previously identified hit compound. Compound 33 exhibited a potent FXR agonistic activity, high intestinal distribution, good anti-inflammatory activity, and the ability to repair the colon epithelium in a DSS-induced acute enteritis model. Based on the results of RNA-seq analysis, we further investigated the therapeutic potential of the combination of compound 33 with 5-ASA. Overall, the results indicated that compound 33 is a promising drug candidate for IBD treatment.
Collapse
Affiliation(s)
- Yuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tingting Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zesheng Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chaoying Huang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhihao Shu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lixin Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rongrong Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tingying Jiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dan Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dong Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuewu Liang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Zang
- Lingang laboratory, Shanghai, 201203, China
| | - Yili Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Hong Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jia Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
5
|
Ren Q, Chen Y, Zhou Z, Cai Z, Jiao S, Huang W, Wang B, Chen S, Wang W, Cao Z, Yang Z, Deng L, Hu L, Zhang L, Li Z. Discovery of the First-in-Class Intestinal Restricted FXR and FABP1 Dual Modulator ZLY28 for the Treatment of Nonalcoholic Fatty Liver Disease. J Med Chem 2023; 66:6082-6104. [PMID: 37079895 DOI: 10.1021/acs.jmedchem.2c01918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The prevalence of nonalcoholic steatohepatitis (NASH) is increasing rapidly worldwide, and NASH has become a serious problem for human health. Recently, the selective activation of the intestinal farnesoid X receptor (FXR) was considered as a more promising strategy for the treatment of NASH with lesser side effects due to reduced systemic exposure. Moreover, the inhibition of intestinal fatty acid binding protein 1 (FABP1) alleviated obesity and NASH by reducing dietary fatty acid uptake. In this study, the first-in-class intestinal restricted FXR and FABP1 dual-target modulator ZLY28 was discovered by comprehensive multiparameter optimization studies. The reduced systemic exposure of ZLY28 might provide better safety by decreasing the on- and off-target side effects in vivo. In NASH mice, ZLY28 exerted robust anti-NASH effects by inhibiting FABP1 and activating the FXR-FGF15 signaling pathway in the ileum. With the above attractive efficacy and preliminary safety profiles, ZLY28 is worthy of further evaluation as a novel anti-NASH agent.
Collapse
Affiliation(s)
- Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shixuan Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Siliang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Liming Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijun Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
6
|
Qin T, Gao X, Lei L, Feng J, Zhang W, Hu Y, Shen Z, Liu Z, Huan Y, Wu S, Xia J, Zhang L. Machine learning- and structure-based discovery of a novel chemotype as FXR agonists for potential treatment of nonalcoholic fatty liver disease. Eur J Med Chem 2023; 252:115307. [PMID: 37003047 DOI: 10.1016/j.ejmech.2023.115307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Farnesoid X receptor (FXR) is a promising target for drug discovery against nonalcoholic fatty liver disease (NAFLD). However, no FXR agonist has been approved for NAFLD so far. The R & D of FXR agonists are somewhat hindered by the lack of effective and safe chemotypes. To this end, we developed a multi-stage computational workflow to screen the Specs and ChemDiv chemical library for FXR agonists, which consisted of machine learning (ML)-based classifiers, shape-based and electrostatic-based models, a FRED-based molecular docking protocol, an ADMET prediction protocol and substructure search. As a result, we identified a novel chemotype that has never been reported before, with compound XJ02862 (ChemDiv ID: Y020-6413) as the representative. By designing an asymmetric synthesis strategy, we were able to prepare four isomers of compound XJ02862. Interestingly, one of the isomers, 2-((S)-1-((2S,4R)-2-methyl-4-(phenylamino)-3,4-dihydroquinolin-1(2H)-yl)-1-oxopropan-2-yl)hexahydro-1H-isoindole-1,3(2H)-dione (XJ02862-S2), showed potent FXR agonistic activity in HEK293T cells. The molecular docking, molecular dynamics simulations and site-directed mutagenesis suggested the hydrogen bond between compound XJ02862-S2 and HIS294 of FXR is essential for ligand binding. We further demonstrated that compound XJ02862-S2 had no agonistic effect on TGR5. Further biological experiments have shown that compound XJ02862-S2 could ameliorate hypercholesterolemia, hepatic steatosis, hyperglycemia, insulin resistance (IR) in high-fat-diet induced obese (DIO) mice. In term of molecular mechanism, compound XJ02862-S2 regulates the expression of FXR downstream genes involved in lipogenesis, cholesterol transport and bile acid biosynthesis and transport. Taken together, we have discovered a novel chemotype as potent FXR agonists for NAFLD by computational modeling, chemical synthesis and biological evaluation.
Collapse
Affiliation(s)
- Tong Qin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xuefeng Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lei Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jing Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhua Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhufang Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yi Huan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
7
|
Cai M, Ma J, Wu Q, Lin A, Yao H. Enantioselective Syntheses of 2-Azabicyclo[2.2.1]heptanes via Brønsted Acid Catalyzed Ring-Opening of meso-Epoxides. Org Lett 2022; 24:8791-8795. [PMID: 36414324 DOI: 10.1021/acs.orglett.2c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A chiral phosphoric acid-catalyzed ring-opening of meso-epoxides was developed. A range of 2-azabicyclo[2.2.1]heptanes were obtained in high yields with excellent enantioselectivities. In addition, the hydroxyl and amide groups in the products provided handles for further derivatization.
Collapse
Affiliation(s)
- Min Cai
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiao Ma
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qimin Wu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
8
|
Structural optimization and biological evaluation of 1-adamantylcarbonyl-4-phenylpiperazine derivatives as FXR agonists for NAFLD. Eur J Med Chem 2022; 245:114903. [DOI: 10.1016/j.ejmech.2022.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
9
|
Vasilenko DA, Dronov SE, Grishin YK, Averina EB. An Efficient Access to 5‐(1,2,3‐triazol‐1‐yl)isoxazoles – previously unknown structural type of triazole‐isoxazole hybrid molecule. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dmitry A. Vasilenko
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Chemistry Department Leninskie Gory, 1-3 119991 Moscow RUSSIAN FEDERATION
| | - Sevastian E. Dronov
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Chemistry Department Leninskie Gory, 1-3 119991 Moscow RUSSIAN FEDERATION
| | - Yuri K. Grishin
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Chemistry Department Leninskie Gory, 1-3 119991 Moscow RUSSIAN FEDERATION
| | - Elena B. Averina
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Department of Chemistry Leninskie Gory-1-3Not Available 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
10
|
Wu B, Zheng X, Li X, Wang C, Li L, Tang Z, Cui H, Li Z, Chen L, Ma X. Design, synthesis and activity evaluation of prodrug form JBP485 and Vitamin E for alleviation of NASH. Bioorg Med Chem Lett 2022; 56:128464. [PMID: 34808388 DOI: 10.1016/j.bmcl.2021.128464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is a serious form of non-alcoholic fatty liver disease (NAFLD) characterized by liver steatosis with lobular inflammation, hepatocyte injury and pericellular fibrosis. JBP485 is a hydrophilic dipeptide with protective effects on liver through alleviation of oxidative stress and inhibition of hepatocyte apoptosis and ICAM-1 expression. Vitamin E (VE), as a powerful biological antioxidant, exerts a certain protective effect on cell membranes and lipoproteins from lipid peroxidation. In this study, on the basis of the structural characteristics of two agents, the prodrug form target of JBP485 and VE (JBP485-VE) was designed and synthesized via succinic acid linker. The synthesized compound significantly reduced the degree of inflammation and fibrosis according to hematoxylin-eosin (H&E) and sirius red staining assay for the liver tissue in CCl4-induced NASH mouse model. The clear reduction of TG, T-CHO and ALT, AST content also demonstrated its efficacy in the treatment of NASH. In addition, JBP485-VE also reduced the expression of the inflammatory markers IL-2, IL-17A and malondialdehyde (MDA) in liver tissue, which indicated its higher anti-inflammatory and anti-oxidative stress activity. All these evaluated biological properties suggest that the strategy of prodrug design provided an effective method for the treatment of NASH.
Collapse
Affiliation(s)
- Bin Wu
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Xu Zheng
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Xing Li
- Department of Hematology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Changyuan Wang
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Lei Li
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Zeyao Tang
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Hongxia Cui
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Zhen Li
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Lixue Chen
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China.
| | - Xiaodong Ma
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China.
| |
Collapse
|
11
|
Xu X, Bao L, Ran L, Yang Z, Yan D, Wang CJ, Teng H. Synthesis of bioactive fluoropyrrolidines via copper(i)-catalysed asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chem Sci 2022; 13:1398-1407. [PMID: 35222924 PMCID: PMC8809416 DOI: 10.1039/d1sc04595d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Chiral pyrrolidinyl units are important building blocks in biologically active natural products and drugs, and the development of efficient methods for the synthesis of diverse structured pyrrolidine derivatives is of great importance. Meanwhile, incorporating fluorine containing groups into small molecules often changes their activities to a great extent due to the special physicochemical properties of fluorine atoms. Herein, we report an efficient route to obtain enantioenriched 3,3-difluoro- and 3,3,4-trifluoropyrrolidinyl derivatives by Cu(i)-catalysed enantioselective 1,3-dipolar cycloaddition of azomethine ylides with less active 1,1-difluoro- and 1,1,2-trifluorostyrenes. A series of new fluorinated pyrrolidines have been prepared in high yields (up to 96%) and with excellent stereoselectivities (up to >20 : 1 dr and 97% ee), and these unique structural blocks could be readily introduced into some natural compounds and pharmaceuticals. Additionally, antifungal activity investigation against four common plant fungi showed that some products possess general and high biological activities; comparison with the low antifungal activities of corresponding nonfluorinated compounds revealed that the fluorine atoms at the pyrrolidinyl rings play a crucial role in the antifungal activity. Chiral fluoropyrrolidines were synthesized by Cu(i)-catalyzed enantioselective 1,3-dipolar cycloaddition of azomethine ylides with less active fluorinated styrenes, with broad substrate scope and high yield, stereoselectivity and biological activity.![]()
Collapse
Affiliation(s)
- Xiao Xu
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Longzhu Bao
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Lu Ran
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zhenyan Yang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Dingce Yan
- Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Huailong Teng
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
12
|
Fang Y, Hegazy L, Finck BN, Elgendy B. Recent Advances in the Medicinal Chemistry of Farnesoid X Receptor. J Med Chem 2021; 64:17545-17571. [PMID: 34889100 DOI: 10.1021/acs.jmedchem.1c01017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Farnesoid X receptor (FXR) is an important regulator of bile acid, lipid, amino acid, and glucose homeostasis, hepatic inflammation, regeneration, and fibrosis. FXR has been recognized as a promising drug target for various metabolic diseases such as lipid disorders, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), and chronic kidney disease. A large number of FXR ligands have been developed by pharmaceutical companies and academic institutions, and several candidates have progressed into clinical trials in the past decade. However, it is continually a challenge to discover drugs targeting FXR due to side effects associated with long-term administration. In this perspective, we summarize the research progress on medicinal chemistry of FXR modulators from 2018 to the present by discussing the diverse structures of synthetic FXR modulators including steroidal and non-steroidal ligands, their structure-activity relationships (SARs), and their therapeutic applications.
Collapse
Affiliation(s)
- Yuanying Fang
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Lamees Hegazy
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Brian N Finck
- Department of Medicine, Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bahaa Elgendy
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States.,Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
13
|
Shu X, Li M, Cao Y, Li C, Zhou W, Ji G, Zhang L. Berberine Alleviates Non-alcoholic Steatohepatitis Through Modulating Gut Microbiota Mediated Intestinal FXR Activation. Front Pharmacol 2021; 12:750826. [PMID: 34603061 PMCID: PMC8484326 DOI: 10.3389/fphar.2021.750826] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Berberine is a natural plant alkaloid isolated from a diverse range of genera, it obtains anti-inflammatory, anti-obesity, and hepatoprotective properties, and is a promising agent for non-alcoholic steatohepatitis (NASH). Farnesoid X receptor (FXR) is a bile acid receptor and a drug target for NASH, however, the underlying mechanisms of berberine on regulating FXR are still unknown. In the present study, we feed mice with a 12-week high-fat diet with interval dextran sulfate sodium (0.5% in drinking water) diet to induce NASH, and treat the mice with berberine (100 mg/kg per day) via oral gavage for additional 4 weeks. We demonstrate that administration of berberine alleviates steatosis and infiltration of inflammatory cells in the liver of NASH mice. We apply 16S ribosomal DNA sequencing to screen the structure of gut microbiota, and ultra-performance liquid chromatography-tandem mass spectrometry analysis to determine the bile acid profiles. The results show that berberine modulates gut dysbiosis, and specifically increases the relative abundance of Clostridiales, Lactobacillaceae, and Bacteroidale. Berberine modulated microbiomes are associated with bile acid de-conjugation and transformation, which are consistent with the altered bile acid species (e.g., deoxycholic acid, ursodeoxycholic acid) upon berberine treatment. BA species that respond to berberine treatment are known FXR agonists, thus we performed quantitative Real Time-PCR and western blot to examine the FXR pathway, and find that berberine up-regulates intestinal FXR and fibroblast growth factor 15 (FGF15) expression, and the secretion of FGF15 further inhibits lipogenesis and nuclear factor-κB activation in the liver. Whereas the beneficial effects of berberine are blunted in FXR knockout mice. Our results reveal that berberine alleviates NASH by modulating the interplay of gut microbiota and bile acid metabolism, as well as the subsequent intestinal FXR activation.
Collapse
Affiliation(s)
- Xiangbing Shu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Geratology, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Cao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlin Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Orozco-Aguilar J, Simon F, Cabello-Verrugio C. Redox-Dependent Effects in the Physiopathological Role of Bile Acids. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4847941. [PMID: 34527174 PMCID: PMC8437588 DOI: 10.1155/2021/4847941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/17/2021] [Indexed: 12/17/2022]
Abstract
Bile acids (BA) are recognized by their role in nutrient absorption. However, there is growing evidence that BA also have endocrine and metabolic functions. Besides, the steroidal-derived structure gives BA a toxic potential over the biological membrane. Thus, cholestatic disorders, characterized by elevated BA on the liver and serum, are a significant cause of liver transplant and extrahepatic complications, such as skeletal muscle, central nervous system (CNS), heart, and placenta. Further, the BA have an essential role in cellular damage, mediating processes such as membrane disruption, mitochondrial dysfunction, and the generation of reactive oxygen species (ROS) and oxidative stress. The purpose of this review is to describe the BA and their role on hepatic and extrahepatic complications in cholestatic diseases, focusing on the association between BA and the generation of oxidative stress that mediates tissue damage.
Collapse
Affiliation(s)
- Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility, and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8370146, Chile
- Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility, and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| |
Collapse
|