1
|
Li Y, Wang W, Cai J, Feng N, Xu S, Wang L, Wang X. Selective Inhibition of P2Y 1 and P2Y 12 Receptor Signal Pathways in Platelet Aggregation in Transgenic Cell Lines and Rats by Potassium 2-(1-Hydroxypentyl)-Benzoate, Puerarin and Salvianolic Acid B. CNS Neurosci Ther 2024; 30:e70089. [PMID: 39563013 PMCID: PMC11576485 DOI: 10.1111/cns.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024] Open
Abstract
AIM Potassium 2-(1-hydroxypentyl)-benzoate (dl-PHPB), puerarin and salvianolic acid B are three natural products or derivatives that can inhibit platelet aggregation. However, the mechanisms of dl-PHPB, puerarin and salvianolic acid B to inhibit platelet aggregation are still not clear. METHOD Here, 2-methylthioadenosine diphosphate (2-MeSADP) was used as an inducer to confirm the effects of three drugs on platelet aggregation and illustrate the corresponding mechanisms. RESULT The results indicated that dl-PHPB, puerarin and salvianolic acid B significantly inhibited platelet aggregation both in vivo and in vitro. In addition, the content of IP3, cAMP and intracellular [Ca2+]i were measured in HEK293 cell lines overexpressing P2Y1 and P2Y12. Dl-PHPB and puerarin could obviously reduce 2-MeSADP-induced IP3 increase, but salvianolic acid B showed no effects. Unlike dl-PHPB and puerarin, which had no effects on 2-MeSADP-induced cAMP decrease, salvianolic acid B significantly reversed the reduction of cAMP. Both dl-PHPB and puerarin could decrease the enhanced intracellular [Ca2+]i induced by 2-MeSADP; however, salvianolic acid B showed no effect on intracellular [Ca2+]i elevation. CONCLUSION These results suggested that dl-PHPB and puerarin inhibited platelet aggregation via targeting at P2Y1 receptor and P2Y1-Gq-IP3-Ca2+ signal pathway. Differently, salvianolic acid B inhibited platelet aggregation via targeting at P2Y12 receptor and via Gi-AC-cAMP signal pathway.
Collapse
Affiliation(s)
- Yiying Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- School of Basic Medicine and Life SciencesHainan Medical UniversityHaikouChina
| | - Weiping Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie Cai
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Nan Feng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shaofeng Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ling Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
2
|
Basanova EI, Kulikova EA, Bormotov NI, Serova OA, Shishkina LN, Ovchinnikova AS, Odnoshevskiy DA, Pyankov OV, Agafonov AP, Yarovaya OI, Borisevich SS, Ilyina MG, Kolybalov DS, Arkhipov SG, Bogdanov NE, Pavlova MA, Salakhutdinov NF, Perevalov VP, Nikitina PA. 2-Aryl-1-hydroxyimidazoles possessing antiviral activity against a wide range of orthopoxviruses, including the variola virus. RSC Med Chem 2024:d4md00181h. [PMID: 39165907 PMCID: PMC11331333 DOI: 10.1039/d4md00181h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/25/2024] [Indexed: 08/22/2024] Open
Abstract
Scientific interest in orthopoxvirus infections and search for new highly effective compounds possessing antiviral activity against orthopoxviruses have significantly increased as a result of worldwide mpox outbreak in 2022. The present work deals with the synthesis of new 2-arylimidazoles exhibiting in vitro activity not only against the vaccinia virus, cowpox virus and ectromelia (mousepox) virus but also against the variola virus. Among the imidazole derivatives under consideration (1-hydroxyimidazoles, 1-methoxyimidazoles, 1-benzyloxyimidazoles, and imidazole N-oxides), the most promising antiviral activity is demonstrated by 1-hydroxyimidazoles, which may exist as two prototropic tautomers. Both of these tautomers may be manifested in different crystal structures of these compounds, according to single-crystal X-ray diffraction analysis, while predominantly one of them (N-hydroxy-tautomeric form) is present in DMSO-d 6 solutions and in the gaseous state, as shown by NMR spectroscopy and quantum-chemical calculations. The leader compound 1-hydroxy-2-(4-nitrophenyl)imidazole 4a demonstrated the highest selectivity indices against the vaccinia virus (SI = 1072) and the variola virus (SI = 373).
Collapse
Affiliation(s)
- Elizaveta I Basanova
- Department of Fine Organic Synthesis and Chemistry of Dyes, D.I. Mendeleev University of Chemical Technology of Russia Miusskaya sq., 9 125047 Moscow Russia
| | - Ekaterina A Kulikova
- Department of Fine Organic Synthesis and Chemistry of Dyes, D.I. Mendeleev University of Chemical Technology of Russia Miusskaya sq., 9 125047 Moscow Russia
| | - Nikolai I Bormotov
- State Research Center of Virology and Biotechnology VECTOR Rospotrebnadzor 630559 Koltsovo Russia
| | - Olga A Serova
- State Research Center of Virology and Biotechnology VECTOR Rospotrebnadzor 630559 Koltsovo Russia
| | - Larisa N Shishkina
- State Research Center of Virology and Biotechnology VECTOR Rospotrebnadzor 630559 Koltsovo Russia
| | - Alyona S Ovchinnikova
- State Research Center of Virology and Biotechnology VECTOR Rospotrebnadzor 630559 Koltsovo Russia
| | - Dmitry A Odnoshevskiy
- State Research Center of Virology and Biotechnology VECTOR Rospotrebnadzor 630559 Koltsovo Russia
| | - Oleg V Pyankov
- State Research Center of Virology and Biotechnology VECTOR Rospotrebnadzor 630559 Koltsovo Russia
| | - Alexander P Agafonov
- State Research Center of Virology and Biotechnology VECTOR Rospotrebnadzor 630559 Koltsovo Russia
| | - Olga I Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Institute of Organic Chemistry SB RAS Lavrentyev Ave., 9 630090 Novosibirsk Russia
| | | | | | - Dmitry S Kolybalov
- Scientific Educational Center "Institute of Chemical Technology", Novosibirsk State University Pirogova str., 1 630090 Novosibirsk Russia
| | - Sergey G Arkhipov
- Scientific Educational Center "Institute of Chemical Technology", Novosibirsk State University Pirogova str., 1 630090 Novosibirsk Russia
| | - Nikita E Bogdanov
- Scientific Educational Center "Institute of Chemical Technology", Novosibirsk State University Pirogova str., 1 630090 Novosibirsk Russia
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences Koptyuga Ave., 3 630090 Novosibirsk Russia
| | - Marina A Pavlova
- Laboratory of Photoactive Supramolecular Systems, A.N. Nesmeyanov Institute of Organoelement Compounds RAS Vavilova str., 28 119991 Moscow Russia
| | - Nariman F Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Institute of Organic Chemistry SB RAS Lavrentyev Ave., 9 630090 Novosibirsk Russia
| | - Valery P Perevalov
- Department of Fine Organic Synthesis and Chemistry of Dyes, D.I. Mendeleev University of Chemical Technology of Russia Miusskaya sq., 9 125047 Moscow Russia
| | - Polina A Nikitina
- Department of Fine Organic Synthesis and Chemistry of Dyes, D.I. Mendeleev University of Chemical Technology of Russia Miusskaya sq., 9 125047 Moscow Russia
| |
Collapse
|
3
|
Guo Y, Mao T, Fang Y, Wang H, Yu J, Zhu Y, Shen S, Zhou M, Li H, Hu Q. Comprehensive insights into potential roles of purinergic P2 receptors on diseases: Signaling pathways involved and potential therapeutics. J Adv Res 2024:S2090-1232(24)00123-1. [PMID: 38565403 DOI: 10.1016/j.jare.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Purinergic P2 receptors, which can be divided into ionotropic P2X receptors and metabotropic P2Y receptors, mediate cellular signal transduction of purine or pyrimidine nucleoside triphosphates and diphosphate. Based on the wide expression of purinergic P2 receptors in tissues and organs, their significance in homeostatic maintenance, metabolism, nociceptive transmission, and other physiological processes is becoming increasingly evident, suggesting that targeting purinergic P2 receptors to regulate biological functions and signal transmission holds significant promise for disease treatment. AIM OF REVIEW This review highlights the detailed mechanisms by which purinergic P2 receptors engage in physiological and pathological progress, as well as providing prospective strategies for discovering clinical drug candidates. KEY SCIENTIFIC CONCEPTS OF REVIEW The purinergic P2 receptors regulate complex signaling and molecular mechanisms in nervous system, digestive system, immune system and as a result, controlling physical health states and disease progression. There has been a significant rise in research and development focused on purinergic P2 receptors, contributing to an increased number of drug candidates in clinical trials. A few influential pioneers have laid the foundation for advancements in the evaluation, development, and of novel purinergic P2 receptors modulators, including agonists, antagonists, pharmaceutical compositions and combination strategies, despite the different scaffolds of these drug candidates. These advancements hold great potential for improving therapeutic outcomes by specifically targeting purinergic P2 receptors.
Collapse
Affiliation(s)
- Yanshuo Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yafei Fang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Jiayue Yu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| | - Qinghua Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Ma BB, Montgomery AP, Chen B, Kassiou M, Danon JJ. Strategies for targeting the P2Y 12 receptor in the central nervous system. Bioorg Med Chem Lett 2022; 71:128837. [PMID: 35640763 DOI: 10.1016/j.bmcl.2022.128837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Abstract
The purinergic 2Y type 12 receptor (P2Y12R) is a well-known biological target for anti-thrombotic drugs due to its role in platelet aggregation and blood clotting. While the importance of the P2Y12R in the periphery has been known for decades, much less is known about its expression and roles in the central nervous system (CNS), where it is expressed exclusively on microglia - the first responders to brain insults and neurodegeneration. Several seminal studies have shown that P2Y12 is a robust, translatable biomarker for anti-inflammatory and neuroprotective microglial phenotypes in models of degenerative diseases such as multiple sclerosis and Alzheimer's disease. An enduring problem for studying this receptor in vivo, however, is the lack of selective, high-affinity small molecule ligands that can bypass the blood-brain barrier and accumulate in the CNS. In this Digest, we discuss previous attempts by researchers to target the P2Y12R in the CNS and opine on strategies that may be employed to design and assess the suitability of novel P2Y12 ligands for this purpose going forward.
Collapse
Affiliation(s)
- Ben B Ma
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Biling Chen
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan J Danon
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Al-Najjar BO, Saqallah FG, Abbas MA, Al-Hijazeen SZ, Sibai OA. P2Y 12 antagonists: Approved drugs, potential naturally isolated and synthesised compounds, and related in-silico studies. Eur J Med Chem 2022; 227:113924. [PMID: 34731765 DOI: 10.1016/j.ejmech.2021.113924] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
P2Y12 is a platelet surface protein which is responsible for the amplification of P2Y1 response. It plays a crucial role in platelet aggregation and thrombus formation through an ADP-induced platelet activation mechanism. Despite that P2Y12 platelets' receptor is an excellent target for developing antiplatelet agents, only five approved medications are currently in clinical use which are classified into thienopyridines and nucleoside-nucleotide derivatives. In the past years, many attempts for developing new candidates as P2Y12 inhibitors have been made. This review highlights the importance and the role of P2Y12 receptor as part of the coagulation cascade, its reported congenital defects, and the type of assays which are used to verify and measure its activity. Furthermore, an overview is given of the clinically approved medications, the potential naturally isolated inhibitors, and the synthesised candidates which were tested either in-vitro, in-vivo and/or clinically. Finally, we outline the in-silico attempts which were carried out using virtual screening, molecular docking and dynamics simulations in efforts of designing novel P2Y12 antagonists. Various phytochemical classes might be considered as a corner stone for the discovery of novel P2Y12 inhibitors, whereas a wide range of ring systems can be deliberated as leading scaffolds in that area synthetically and theoretically.
Collapse
Affiliation(s)
- Belal O Al-Najjar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, 19328, Amman, Jordan; Pharmacological and Diagnostic Research Lab, Al-Ahliyya Amman University, 19328, Amman, Jordan.
| | - Fadi G Saqallah
- Pharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Manal A Abbas
- Pharmacological and Diagnostic Research Lab, Al-Ahliyya Amman University, 19328, Amman, Jordan; Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328, Amman, Jordan
| | | | - Obada A Sibai
- Faculty of Pharmacy, Al-Ahliyya Amman University, 19328, Amman, Jordan
| |
Collapse
|
6
|
Guo X, Li Q, Pi S, Xia Y, Mao L. G protein-coupled purinergic P2Y receptor oligomerization: Pharmacological changes and dynamic regulation. Biochem Pharmacol 2021; 192:114689. [PMID: 34274353 DOI: 10.1016/j.bcp.2021.114689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
P2Y receptors (P2YRs) are a δ group of rhodopsin-like G protein-coupled receptors (GPCRs) with many essential functions in physiology and pathology, such as platelet aggregation, immune responses, neuroprotective effects, inflammation, and cellular proliferation. Thus, they are among the most researched therapeutic targets used for the clinical treatment of diseases (e.g., the antithrombotic drug clopidogrel and the dry eye treatment drug diquafosol). GPCRs transmit signals as dimers to increase the diversity of signalling pathways and pharmacological activities. Many studies have frequently confirmed dimerization between P2YRs and other GPCRs due to their functions in cardiovascular and cerebrovascular processes in vivo and in vitro. Recently, some P2YR dimers that dynamically balance physiological functions in the body were shown to be involved in effective signal transduction and exert pathological responses. In this review, we summarize the types, pharmacological changes, and active regulators of P2YR-related dimerization, and delineate new functions and pharmacological activities of P2YR-related dimers, which may be a novel direction to improve the effectiveness of medications.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shulan Pi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
7
|
Lei Y, Zhang B, Zhang Y, Dai X, Duan Y, Mao Q, Gao J, Yang Y, Bao Z, Fu X, Ping K, Yan C, Mou Y, Wang S. Design, synthesis and biological evaluation of novel FXIa inhibitors with 2-phenyl-1H-imidazole-5-carboxamide moiety as P1 fragment. Eur J Med Chem 2021; 220:113437. [PMID: 33894565 DOI: 10.1016/j.ejmech.2021.113437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/05/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
Factor XIa, as a blood coagulation enzyme, amplifies the generation of the last enzyme thrombin in the blood coagulation cascade. It was proved that direct inhibition of factor XIa could reduce pathologic thrombus formation without an enhanced risk of bleeding. WSJ-557, a nonpurine imidazole-based xanthine oxidase inhibitor in our previous reports, could delay blood coagulation during its animal experiments, which prompted us to investigate its action mechanism. Subsequently, during the exploration of the action mechanism, it was found that WSJ-557 exhibited weak in vitro factor XIa binding affinity. Under the guide of molecular modeling, we adopted molecular hybridization strategy to develop novel factor XIa inhibitors with WSJ-557 as an initial compound. This led to the identification of the most potent compound 44g with a Ki value of 0.009 μM, which was close to that of BMS-724296 (Ki = 0.0015 μM). Additionally, serine protease selectivity study indicated that compound 44g display a desired selectivity, more 400-fold than those of thrombin, factor VIIa and factor Xa in coagulation cascade. Moreover, enzyme kinetics studies suggested that the representative compound 44g acted as a competitive-type inhibitor for FXIa, and molecular modeling revealed that it could tightly bind to the S1, S1' and S2' pockets of factor XIa. Furthermore, in vivo efficacy in the rabbit arteriovenous shunt model suggested that compound 44g demonstrated dose-dependent antithrombotic efficacy. Therefore, these results supported that compound 44g could be a potential and efficacious agent for the treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Yu Lei
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Bing Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Yan Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xiwen Dai
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Yulin Duan
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Qing Mao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Jun Gao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Yuwei Yang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Ziyang Bao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xuefeng Fu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Kunqi Ping
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Chengda Yan
- Department of Pharmacy, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
8
|
Wang X, Fu J, Mo J, Tian Y, Liu C, Tang H, Sun Z, Pan Y. Assembly of 5‐Aminoimidazoles via Palladium‐Catalysed Double Isocyanide Insertion Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xu Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Jin‐Ping Fu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Jia‐Hui Mo
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Yu‐Hong Tian
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Chun‐You Liu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Zi‐Jun Sun
- Research Centre for Materials Science and Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|