1
|
Marshall-Burghardt S, Migueles-Ramírez RA, Lin Q, El Baba N, Saada R, Umar M, Mavalwala K, Hayer A. Excitable Rho dynamics control cell shape and motility by sequentially activating ERM proteins and actomyosin contractility. SCIENCE ADVANCES 2024; 10:eadn6858. [PMID: 39241071 PMCID: PMC11378911 DOI: 10.1126/sciadv.adn6858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
Migration of endothelial and many other cells requires spatiotemporal regulation of protrusive and contractile cytoskeletal rearrangements that drive local cell shape changes. Unexpectedly, the small GTPase Rho, a crucial regulator of cell movement, has been reported to be active in both local cell protrusions and retractions, raising the question of how Rho activity can coordinate cell migration. Here, we show that Rho activity is absent in local protrusions and active during retractions. During retractions, Rho rapidly activated ezrin-radixin-moesin proteins (ERMs) to increase actin-membrane attachment, and, with a delay, nonmuscle myosin 2 (NM2). Rho activity was excitable, with NM2 acting as a slow negative feedback regulator. Strikingly, inhibition of SLK/LOK kinases, through which Rho activates ERMs, caused elongated cell morphologies, impaired Rho-induced cell contractions, and reverted Rho-induced blebbing. Together, our study demonstrates that Rho activity drives retractions by sequentially enhancing ERM-mediated actin-membrane attachment for force transmission and NM2-dependent contractility.
Collapse
Affiliation(s)
- Seph Marshall-Burghardt
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- Graduate Program in Biology, McGill University, Montréal, Québec, Canada
| | - Rodrigo A Migueles-Ramírez
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- PhD Program in Quantitative Life Sciences, McGill University, Montréal, Québec, Canada
| | - Qiyao Lin
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- Graduate Program in Biology, McGill University, Montréal, Québec, Canada
| | - Nada El Baba
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- Graduate Program in Biology, McGill University, Montréal, Québec, Canada
| | - Rayan Saada
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Mustakim Umar
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Kian Mavalwala
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Arnold Hayer
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| |
Collapse
|
2
|
Tang J, Zhang Y, Zhou L, Song X, Wei Y, Qi J, Wu J, Song Z, Zhan L. Design, synthesis and biological evaluation of indoline-maleimide conjugates as potential antitumor agents for the treatment of colorectal cancer. Bioorg Med Chem 2024; 108:117786. [PMID: 38843656 DOI: 10.1016/j.bmc.2024.117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/17/2024]
Abstract
An efficient protocol for direct coupling of maleimides and indolines at the C7-position was achieved under Rh(III) catalysis. Thirty four novel indoline-maleimide conjugates were prepared in good to excellent yields using this method. All compounds were evaluated for their anti-proliferative effect against colorectal cell lines. Among them, compound 3ab showed the most potent anti-proliferative activity against the CRC cells, and displayed low toxicity in the normal cell. Further investigation indicated that 3ab could effectively suppress the proliferation and migration of CRC cells, along with inducing cell cycle arrest and apoptosis. Mechanistic studies revealed that compound 3ab inhibited the proliferation of CRC cells via suppressing the AKT/GSK-3β pathway. In vivo evaluation demonstrated remarkable antitumor effect of 3ab (10 mg/kg) in the HCT116 xenograft model with no obvious toxicity, which is superior to that of 5-Fluorouracil (20 mg/kg). Therefore, conjugate 3ab could be considered as a potential CRC therapy agent for further development.
Collapse
Affiliation(s)
- Jielin Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuxin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lingling Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiangrui Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yusi Wei
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ji Qi
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianmin Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Lingling Zhan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
3
|
Wang Y, Zheng H, Jiang X, Wu H, Ren Y, Xi Z, Zheng C, Xu H. Caged xanthone derivatives to promote mitochondria-mediated apoptosis in breast cancer cells. Bioorg Med Chem 2024; 103:117655. [PMID: 38493728 DOI: 10.1016/j.bmc.2024.117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Caged xanthones represent a class of natural secondary metabolites exhibiting significant potential as antitumor agents. These compounds are characterized by their distinct cage-like structures, which offer novel and compelling frameworks for drug design. Nonetheless, there exists a dearth of research focused on the structural modification of these compounds, particularly in relation to their cage-like architectures. This study aims to address this gap by introducing an innovative synthetic method for constructing a novel caged structure that incorporates a widely employed maleimide group. Drawing upon the well-established synthetic approach for dihydroxanthones previously developed within our research group, we successfully synthesized 13 new caged xanthones using the Diels-Alder reaction. Subsequently, we evaluated their anti-proliferative activity against HepG2, A549, and MDA-MB-231 cell lines. The results revealed that compound 10i exhibited IC50 values of 15.86 µM ± 1.29, 19.27 µM ± 1.58, and 12.96 µM ± 0.09 against these cell lines, respectively. Further investigations into the mechanism of action of 10i demonstrated its ability to induce G2/M cell cycle arrest and initiate mitochondria-mediated apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Youyi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Huimin Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Huaimo Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Yi Ren
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China.
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China.
| |
Collapse
|
4
|
Baqai U, Kurimchak AM, Trachtenberg IV, Purwin TJ, Haj JI, Han A, Luo K, Pachon NF, Jeon A, Chua V, Davies MA, Gutkind JS, Benovic JL, Duncan JS, Aplin AE. Kinome profiling identifies MARK3 and STK10 as potential therapeutic targets in uveal melanoma. J Biol Chem 2023; 299:105418. [PMID: 37923138 PMCID: PMC10716579 DOI: 10.1016/j.jbc.2023.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Most uveal melanoma cases harbor activating mutations in either GNAQ or GNA11. Despite activation of the mitogen-activated protein kinase (MAPK) signaling pathway downstream of Gαq/11, there are no effective targeted kinase therapies for metastatic uveal melanoma. The human genome encodes numerous understudied kinases, also called the "dark kinome". Identifying additional kinases regulated by Gαq/11 may uncover novel therapeutic targets for uveal melanoma. In this study, we treated GNAQ-mutant uveal melanoma cell lines with a Gαq/11 inhibitor, YM-254890, and conducted a kinase signaling proteomic screen using multiplexed-kinase inhibitors followed by mass spectrometry. We observed downregulated expression and/or activity of 22 kinases. A custom siRNA screen targeting these kinases demonstrated that knockdown of microtubule affinity regulating kinase 3 (MARK3) and serine/threonine kinase 10 (STK10) significantly reduced uveal melanoma cell growth and decreased expression of cell cycle proteins. Additionally, knockdown of MARK3 but not STK10 decreased ERK1/2 phosphorylation. Analysis of RNA-sequencing and proteomic data showed that Gαq signaling regulates STK10 expression and MARK3 activity. Our findings suggest an involvement of STK10 and MARK3 in the Gαq/11 oncogenic pathway and prompt further investigation into the specific roles and targeting potential of these kinases in uveal melanoma.
Collapse
Affiliation(s)
- Usman Baqai
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alison M Kurimchak
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Isabella V Trachtenberg
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Timothy J Purwin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jelan I Haj
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anna Han
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Kristine Luo
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nikole Fandino Pachon
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Angela Jeon
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Vivian Chua
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James S Duncan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Andrew E Aplin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Organocatalytic Enantioselective Michael Reaction of Aminomaleimides with Nitroolefins Catalyzed by Takemoto's Catalyst. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227787. [PMID: 36431888 PMCID: PMC9696348 DOI: 10.3390/molecules27227787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Known as electrophiles, maleimides are often used as acceptors in Michael additions to produce succinimides. However, reactions with maleimides as nucleophiles for enantioselective functionalization are only rarely performed. In this paper, a series of bifunctional Takemoto's catalysts were used to organocatalyze the enantioselective Michael reaction of aminomaleimides with nitroolefins. The resulting products were obtained in good yields (76-86%) with up to 94% enantiomer excess (ee). The catalyst type and the substrate scope were broadened using this methodology.
Collapse
|
6
|
Zhou X, Shi S, Chen L, Wu G, Ma Y. Copper‐Catalyzed Oxidative Carboamination of Maleimides with Amines and α‐Bromo Carboxylates. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Ge Wu
- Wenzhou Medical University CHINA
| | | |
Collapse
|
7
|
Ma C, Wang Y, Chen G, Li J, Jiang Y, Zhang X, Fan X. Divergent construction of 3-(indol-2-yl)succinimide/maleimide and fused benzodiazepine skeletons from 2-(1 H-indol-1-yl)anilines and maleimides. Org Chem Front 2022. [DOI: 10.1039/d2qo00779g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Divergent construction of 3-(indol-2-yl)succinimide/maleimide and indoyl/pyrrolyl fused benzodiazepine skeletons from 2-(1H-indol-1-yl)anilines and maleimides is presented.
Collapse
Affiliation(s)
- Chunhua Ma
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yue Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guang Chen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jingyi Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqin Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|