1
|
Choi H, An S, Hyun YE, Noh M, Jeong LS. Design, synthesis and biological evaluation of truncated 1'-homologated 4'-selenonucleosides as PPARγ/δ dual modulators. Bioorg Chem 2025; 154:108042. [PMID: 39705933 DOI: 10.1016/j.bioorg.2024.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
This study explores the synthesis and evaluation of truncated 1'-homologated 4'-selenonucleosides as dual modulators of PPARγ and PPARδ. Starting with d-lyxose, a 4'-selenosugar was synthesized and condensed with a nucleobase via an SN2 reaction, followed by modifications at the C2- and N6-positions, yielding compounds 3a-l. Structure-activity trend analysis identified compound 3h, featuring 2-chloro and N6-3-iodobenzylamine substituents, as a potent PPARγ partial agonist and PPARδ antagonist (PPARγ Ki = 2.8 μM, PPARδ Ki = 43 nM). This compound significantly enhanced adiponectin production and promoted adipogenic differentiation in hBM-MSCs. The 4'-seleno substitution preserved ligand functionality while enhancing binding affinity and pharmacological efficacy. In silico docking studies supported these binding affinities, demonstrating optimal binding poses for 3h at both PPARγ and PPARδ. These findings underscore the potential of 4'-selenonucleosides as therapeutic agents for metabolic disorders associated with hypoadiponectinemia, meriting further investigation and clinical development.
Collapse
Affiliation(s)
- Hongseok Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungchan An
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsoo Noh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Future Medicine Co., Ltd, 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea.
| |
Collapse
|
2
|
Ma L, Tang J, Chen F, Liu Q, Huang J, Liu X, Zhou Z, Yi W. Structure-based screening, optimization and biological evaluation of novel chrysin-based derivatives as selective PPARγ modulators for the treatment of T2DM and hepatic steatosis. Eur J Med Chem 2024; 276:116728. [PMID: 39089002 DOI: 10.1016/j.ejmech.2024.116728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
In consideration of several serious side effects induced by the classical AF-2 involved "lock" mechanism, recently disclosed PPARγ-Ser273 phosphorylation mode of action has become an alternative and mainstream mechanism for currently PPARγ-based drug discovery and development with an improved therapeutic index. In this study, by virtue of structure-based virtual high throughput screening (SB-VHTS), structurally chemical optimization by targeting the inhibition of the PPARγ-Ser273 phosphorylation as well as in vitro biological evaluation, which led to the final identification of a chrysin-based potential hit (YGT-31) as a novel selective PPARγ modulator with potent binding affinity and partial agonism. Further in vivo evaluation demonstrated that YGT-31 possessed potent glucose-lowering and relieved hepatic steatosis effects without involving the TZD-associated side effects. Mechanistically, YGT-31 presented such desired therapeutic index, mainly because it effectively inhibited the CDK5-mediated PPARγ-Ser273 phosphorylation, selectively elevated the level of insulin sensitivity-related Glut4 and adiponectin but decreased the expression of insulin-resistance-associated genes PTP1B and SOCS3 as well as inflammation-linked genes IL-6, IL-1β and TNFα. Finally, the molecular docking study was also conducted to uncover an interesting hydrogen-bonding network of YGT-31 with PPARγ-Ser273 phosphorylation-related key residues Ser342 and Glu343, which not only gave a clear verification for our targeting modification but also provided a proof of concept for the abovementioned molecular mechanism.
Collapse
Affiliation(s)
- Lei Ma
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Junyuan Tang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China; Department of Food and Chemical Engineering, Shaoyang University, Shao Shui Xi Road, Shaoyang, 422100, China
| | - Fangyuan Chen
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Qingmei Liu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Junjun Huang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Xiawen Liu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Zhi Zhou
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Wei Yi
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|
3
|
An S, Park IG, Hwang SY, Gong J, Lee Y, Ahn S, Noh M. Cheminformatic Read-Across Approach Revealed Ultraviolet Filter Cinoxate as an Obesogenic Peroxisome Proliferator-Activated Receptor γ Agonist. Chem Res Toxicol 2024; 37:1344-1355. [PMID: 39095321 DOI: 10.1021/acs.chemrestox.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
This study introduces a novel cheminformatic read-across approach designed to identify potential environmental obesogens, substances capable of disrupting metabolism and inducing obesity by mainly influencing nuclear hormone receptors (NRs). Leveraging real-valued two-dimensional features derived from chemical fingerprints of 8435 Tox21 compounds, cluster analysis and subsequent statistical testing revealed 385 clusters enriched with compounds associated with specific NR targets. Notably, one cluster exhibited selective enrichment in peroxisome proliferator-activated receptor γ (PPARγ) agonist activity, prominently featuring methoxy cinnamate ultraviolet (UV) filters and obesogen-related compounds. Experimental validation confirmed that 2-ethoxyethyl 4-methoxycinnamate, an organic UV filter cinoxate, could selectively bind to PPARγ (Ki = 18.0 μM), eliciting an obesogenic phenotype in human bone marrow-derived mesenchymal stem cells during adipogenic differentiation. Molecular docking and further experiments identified cinoxate as a potent PPARγ full agonist, demonstrating a preference for coactivator SRC3 recruitment. Moreover, cinoxate upregulated transcription levels of genes encoding lipid metabolic enzymes in normal human epidermal keratinocytes as primary cells exposed during clinical usage. This study provides compelling evidence for the efficacy of cheminformatic read-across analysis in prioritizing potential obesogens, showcasing its utility in unveiling cinoxate as an obesogenic PPARγ agonist.
Collapse
Affiliation(s)
- Seungchan An
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - In Guk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seok Young Hwang
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junpyo Gong
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yeonjin Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungjin Ahn
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Nguyen M, Aslam MA, Nguyen Y, Javaid HM, Pham L, Huh JY, Kim G. Design and Synthesis of l-1'-Homologated Adenosine Derivatives as Potential Anti-inflammatory Agents. ACS OMEGA 2023; 8:36361-36369. [PMID: 37810713 PMCID: PMC10552512 DOI: 10.1021/acsomega.3c05029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
Inflammatory responses are fundamental protective warning mechanisms. However, in certain instances, they contribute significantly to the development of several chronic diseases such as cancer. Based on previous studies of truncated 1'-homologated adenosine derivatives, l-nucleosides and their nucleobase-modified quinolone analogues were designed, synthesized, and evaluated for anti-inflammatory activities. The target molecules were synthesized via the key intramolecular cyclization of monotosylate and Mitsunobu condensation from the natural product, d-ribose. All compounds tested and showed potent anti-inflammatory activities, as indicated by their inhibition of LPS-induced IL-1β secretion from the RAW 264.7 macrophages. Gene expressions of pro-inflammatory cytokines showed that all compounds, except 3a and 3b, significantly reduced LPS-induced IL-1β and IL-6 mRNA expressions. The half-maximal inhibitory concentrations (IC50) of 2g and 2h against IL-1β were 1.08 and 2.28 μM, respectively. In contrast, only 2d, 2g, and 3d effectively reversed LPS-induced TNFα mRNA expression. Our mechanistic study revealed that LPS-induced phosphorylation of NF-κB was significantly downregulated by all compounds tested, providing evidence that the NF-κB signaling pathway is involved in their anti-inflammatory activities. Among the compounds tested, 2g and 2h had the most potent anti-inflammatory effects, as shown by the extent of decrease in pro-inflammatory gene expression, protein secretion, and NF-κB phosphorylation. These findings suggest that the l-truncated 1'-homologated adenosine skeleton and its nucleobase-modified analogues have therapeutic potential as treatments for various human diseases by mediating inflammatory processes.
Collapse
Affiliation(s)
| | | | - Yen Nguyen
- College of Pharmacy and Research Institute
of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Hafiz Muhammad
Ahmad Javaid
- College of Pharmacy and Research Institute
of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Linh Pham
- College of Pharmacy and Research Institute
of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Joo Young Huh
- College of Pharmacy and Research Institute
of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Gyudong Kim
- College of Pharmacy and Research Institute
of Drug Development, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
5
|
Munir R, Zahoor AF, Javed S, Parveen B, Mansha A, Irfan A, Khan SG, Irfan A, Kotwica-Mojzych K, Mojzych M. Simmons-Smith Cyclopropanation: A Multifaceted Synthetic Protocol toward the Synthesis of Natural Products and Drugs: A Review. Molecules 2023; 28:5651. [PMID: 37570621 PMCID: PMC10420228 DOI: 10.3390/molecules28155651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Simmons-Smith cyclopropanation is a widely used reaction in organic synthesis for stereospecific conversion of alkenes into cyclopropane. The utility of this reaction can be realized by the fact that the cyclopropane motif is a privileged synthetic intermediate and a core structural unit of many biologically active natural compounds such as terpenoids, alkaloids, nucleosides, amino acids, fatty acids, polyketides and drugs. The modified form of Simmons-Smith cyclopropanation involves the employment of Et2Zn and CH2I2 (Furukawa reagent) toward the total synthesis of a variety of structurally complex natural products that possess broad range of biological activities including anticancer, antimicrobial and antiviral activities. This review aims to provide an intriguing glimpse of the Furukawa-modified Simmons-Smith cyclopropanation, within the year range of 2005 to 2022.
Collapse
Affiliation(s)
- Ramsha Munir
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ameer Fawad Zahoor
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Sadia Javed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Bushra Parveen
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Asim Mansha
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Samreen Gul Khan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ali Irfan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Katarzyna Kotwica-Mojzych
- Laboratory of Experimental Cytology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
6
|
An S, Ko H, Jang H, Park IG, Ahn S, Hwang SY, Gong J, Oh S, Kwak SY, Lee Y, Kim H, Noh M. Prenylated Chrysin Derivatives as Partial PPARγ Agonists with Adiponectin Secretion-Inducing Activity. ACS Med Chem Lett 2023; 14:425-431. [PMID: 37077388 PMCID: PMC10107909 DOI: 10.1021/acsmedchemlett.2c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Decreased circulating adiponectin levels are associated with an increased risk of human metabolic diseases. The chemical-mediated upregulation of adiponectin biosynthesis has been proposed as a novel therapeutic approach to managing hypoadiponectinemia-associated diseases. In preliminary screening, the natural flavonoid chrysin (1) exhibited adiponectin secretion-inducing activity during adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). Here, we provide the 7-prenylated chrysin derivatives, chrysin 5-benzyl-7-prenylether compound 10 and chrysin 5,7-diprenylether compound 11, with the improved pharmacological profile compared with chrysin (1). Nuclear receptor binding and ligand-induced coactivator recruitment assays revealed that compounds 10 and 11 functioned as peroxisome proliferator-activated receptor (PPAR)γ partial agonists. These findings were supported by molecular docking simulation, followed by experimental validation. Notably, compound 11 showed PPARγ binding affinity as potent as that of the PPARγ agonists pioglitazone and telmisartan. This study presents a novel PPARγ partial agonist pharmacophore and suggests that prenylated chrysin derivatives have therapeutic potential in various human diseases associated with hypoadiponectinemia.
Collapse
Affiliation(s)
- Seungchan An
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyejin Ko
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hongjun Jang
- Research
Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - In Guk Park
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungjin Ahn
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seok Young Hwang
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junpyo Gong
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soyeon Oh
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soo Yeon Kwak
- Research
Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Yeonjin Lee
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyoungsu Kim
- Research
Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Minsoo Noh
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Hyun YE, An S, Kim M, Park IG, Yoon S, Javaid HMA, Vu TNL, Kim G, Choi H, Lee HW, Noh M, Huh JY, Choi S, Kim HR, Jeong LS. Structure–Activity Relationships of Truncated 1′-Homologated Carbaadenosine Derivatives as New PPARγ/δ Ligands: A Study on Sugar Puckering Affecting Binding to PPARs. J Med Chem 2023; 66:4961-4978. [PMID: 36967575 DOI: 10.1021/acs.jmedchem.2c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are associated with the regulation of metabolic homeostasis. Based on a previous report that 1'-homologated 4'-thionucleoside acts as a dual PPARγ/δ modulator, carbocyclic nucleosides 2-5 with various sugar conformations were synthesized to determine whether sugar puckering affects binding to PPARs. (S)-conformer 2 was synthesized using Charette asymmetric cyclopropanation, whereas (N)-conformer 3 was synthesized using stereoselective Simmons-Smith cyclopropanation. All synthesized nucleosides did not exhibit binding affinity to PPARα but exhibited significant binding affinities to PPARγ/δ. The binding affinity of final nucleosides to PPARγ did not differ significantly based on their conformation, but their affinity to PPARδ depended greatly on their conformation, correlated with adiponectin production. (N)-conformer 3h was discovered to be the most potent PPARδ antagonist with good adiponectin production, which exhibited the most effective activity in inhibiting the mRNA levels of LPS-induced IL-1β expression in RAW 264.7 macrophages, implicating its anti-inflammatory activity.
Collapse
|
8
|
An S, Hwang SY, Gong J, Ahn S, Park IG, Oh S, Chin YW, Noh M. Computational Prediction of the Phenotypic Effect of Flavonoids on Adiponectin Biosynthesis. J Chem Inf Model 2023; 63:856-869. [PMID: 36716271 DOI: 10.1021/acs.jcim.3c00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In silico machine learning applications for phenotype-based screening have primarily been limited due to the lack of machine-readable data related to disease phenotypes. Adiponectin, a nuclear receptor (NR)-regulated adipocytokine, is relatively downregulated in human metabolic diseases. Here, we present a machine-learning model to predict the adiponectin-secretion-promoting activity of flavonoid-associated phytochemicals (FAPs). We modeled a structure-activity relationship between the chemical similarity of FAPs and their bioactivities using a random forest-based classifier, which provided the NR activity of each FAP as a probability. To link the classifier-predicted NR activity to the phenotype, we next designed a single-cell transcriptomics-based multiple linear regression model to generate the relative adiponectin score (RAS) of FAPs. In experimental validation, estimated RAS values of FAPs isolated from Scutellaria baicalensis exhibited a significant correlation with their adiponectin-secretion-promoting activity. The combined cheminformatics and bioinformatics approach enables the computational reconstruction of phenotype-based screening systems.
Collapse
Affiliation(s)
- Seungchan An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Seok Young Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Junpyo Gong
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Sungjin Ahn
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - In Guk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Soyeon Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Young-Won Chin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
9
|
Kalník M, Šesták S, Kóňa J, Bella M, Poláková M. Synthesis, α-mannosidase inhibition studies and molecular modeling of 1,4-imino-ᴅ-lyxitols and their C-5-altered N-arylalkyl derivatives. Beilstein J Org Chem 2023; 19:282-293. [PMID: 36925565 PMCID: PMC10012049 DOI: 10.3762/bjoc.19.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
A synthesis of 1,4-imino-ᴅ-lyxitols and their N-arylalkyl derivatives altered at C-5 is reported. Their inhibitory activity and selectivity toward four GH38 α-mannosidases (two Golgi types: GMIIb from Drosophila melanogaster and AMAN-2 from Caenorhabditis elegans, and two lysosomal types: LManII from Drosophila melanogaster and JBMan from Canavalia ensiformis) were investigated. 6-Deoxy-DIM was found to be the most potent inhibitor of AMAN-2 (K i = 0.19 μM), whose amino acid sequence and 3D structure of the active site are almost identical to the human α-mannosidase II (GMII). Although 6-deoxy-DIM was 3.5 times more potent toward AMAN-2 than DIM, their selectivity profiles were almost the same. N-Arylalkylation of 6-deoxy-DIM resulted only in a partial improvement as the selectivity was enhanced at the expense of potency. Structural and physicochemical properties of the corresponding inhibitor:enzyme complexes were analyzed by molecular modeling.
Collapse
Affiliation(s)
- Martin Kalník
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.,Medical Vision, Civic Research Association, Záhradnícka 4837/55, 82108 Bratislava, Slovakia
| | - Maroš Bella
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Monika Poláková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| |
Collapse
|
10
|
Kim J, Ko H, Hur JS, An S, Lee JW, Deyrup ST, Noh M, Shim SH. Discovery of Pan-peroxisome Proliferator-Activated Receptor Modulators from an Endolichenic Fungus, Daldinia childiae. JOURNAL OF NATURAL PRODUCTS 2022; 85:2804-2816. [PMID: 36475432 DOI: 10.1021/acs.jnatprod.2c00791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Adiponectin-synthesis-promoting compounds possess therapeutic potential to treat diverse metabolic diseases, including obesity and diabetes. Phenotypic screening to find adiponectin-synthesis-promoting compounds was performed using the adipogenesis model of human bone marrow mesenchymal stem cells. The extract of the endolichenic fungus Daldinia childiae 047215 significantly promoted adiponectin production. Bioactivity-guided isolation led to 13 active polyketides (1-13), which include naphthol monomers, dimers, and trimers. To the best of our knowledge, trimers of naphthol (1-4) have not been previously isolated as either natural or synthetic products. The novel naphthol trimer 3,1',3',3″-ternaphthalene-5,5',5″-trimethoxy-4,4',4″-triol (2) and a dimer, nodulisporin A (12), exhibited concentration-dependent adiponectin-synthesis-promoting activity (EC50 30.8 and 15.2 μM, respectively). Compounds 2 and 12 bound to all three peroxisome proliferator-activated receptor (PPAR) subtypes, PPARα, PPARγ, and PPARδ. In addition, compound 2 transactivated retinoid X receptor α, whereas 12 did not. Naphthol oligomers 2 and 12 represent novel pan-PPAR modulators and are potential pharmacophores for designing new therapeutic agents against hypoadiponectinemia-associated metabolic diseases.
Collapse
Affiliation(s)
- Jaekyeong Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyejin Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seungchan An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Stephen T Deyrup
- Department of Chemistry and Biochemistry, Siena College, Londonville, New York 12211, United States
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Virendra SA, Kumar A, Chawla PA, Mamidi N. Development of Heterocyclic PPAR Ligands for Potential Therapeutic Applications. Pharmaceutics 2022; 14:2139. [PMID: 36297575 PMCID: PMC9611956 DOI: 10.3390/pharmaceutics14102139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
The family of nuclear peroxisome proliferator-activated receptors (PPARα, PPARβ/δ, and PPARγ) is a set of ligand-activated transcription factors that regulate different functions in the body. Whereas activation of PPARα is known to reduce the levels of circulating triglycerides and regulate energy homeostasis, the activation of PPARγ brings about insulin sensitization and increases the metabolism of glucose. On the other hand, PPARβ when activated increases the metabolism of fatty acids. Further, these PPARs have been claimed to be utilized in various metabolic, neurological, and inflammatory diseases, neurodegenerative disorders, fertility or reproduction, pain, and obesity. A series of different heterocyclic scaffolds have been synthesized and evaluated for their ability to act as PPAR agonists. This review is a compilation of efforts on the part of medicinal chemists around the world to find novel compounds that may act as PPAR ligands along with patents in regards to PPAR ligands. The structure-activity relationship, as well as docking studies, have been documented to better understand the mechanistic investigations of various compounds, which will eventually aid in the design and development of new PPAR ligands. From the results of the structural activity relationship through the pharmacological and in silico evaluation the potency of heterocycles as PPAR ligands can be described in terms of their hydrogen bonding, hydrophobic interactions, and other interactions with PPAR.
Collapse
Affiliation(s)
- Sharma Arvind Virendra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Ankur Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
12
|
Nguyen M, An S, Nguyen Y, Hyun YE, Choi H, Pham L, Kim JA, Noh M, Kim G, Jeong LS. Design, Synthesis, and Biological Activity of l-1′-Homologated Adenosine Derivatives. ACS Med Chem Lett 2022; 13:1131-1136. [DOI: 10.1021/acsmedchemlett.2c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Mai Nguyen
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Seungchan An
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
- Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Yen Nguyen
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hongseok Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Linh Pham
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea
| | - Minsoo Noh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
- Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Gyudong Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
13
|
IJzerman AP, Jacobson KA, Müller CE, Cronstein BN, Cunha RA. International Union of Basic and Clinical Pharmacology. CXII: Adenosine Receptors: A Further Update. Pharmacol Rev 2022; 74:340-372. [PMID: 35302044 PMCID: PMC8973513 DOI: 10.1124/pharmrev.121.000445] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors (2011) contained a number of emerging developments with respect to this G protein-coupled receptor subfamily, including protein structure, protein oligomerization, protein diversity, and allosteric modulation by small molecules. Since then, a wealth of new data and results has been added, allowing us to explore novel concepts such as target binding kinetics and biased signaling of adenosine receptors, to examine a multitude of receptor structures and novel ligands, to gauge new pharmacology, and to evaluate clinical trials with adenosine receptor ligands. This review should therefore be considered a further update of our previous reports from 2001 and 2011. SIGNIFICANCE STATEMENT: Adenosine receptors (ARs) are of continuing interest for future treatment of chronic and acute disease conditions, including inflammatory diseases, neurodegenerative afflictions, and cancer. The design of AR agonists ("biased" or not) and antagonists is largely structure based now, thanks to the tremendous progress in AR structural biology. The A2A- and A2BAR appear to modulate the immune response in tumor biology. Many clinical trials for this indication are ongoing, whereas an A2AAR antagonist (istradefylline) has been approved as an anti-Parkinson agent.
Collapse
Affiliation(s)
- Adriaan P IJzerman
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Kenneth A Jacobson
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Christa E Müller
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Bruce N Cronstein
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Rodrigo A Cunha
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| |
Collapse
|
14
|
Wikramanayake TC, Chéret J, Sevilla A, Birch-Machin M, Paus R. Targeting mitochondria in dermatological therapy: Beyond oxidative damage and skin aging. Expert Opin Ther Targets 2022; 26:233-259. [PMID: 35249436 DOI: 10.1080/14728222.2022.2049756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The analysis of the role of the mitochondria in oxidative damage and skin aging is a significant aspect of dermatological research. Mitochondria generate most reactive oxygen species (ROS); however, excessive ROS are cytotoxic and DNA-damaging and promote (photo-)aging. ROS also possesses key physiological and regulatory functions and mitochondrial dysfunction is prominent in several skin diseases including skin cancers. Although many standard dermatotherapeutics modulate mitochondrial function, dermatological therapy rarely targets the mitochondria. Accordingly, there is a rationale for "mitochondrial dermatology"-based approaches to be applied to therapeutic research. AREAS COVERED This paper examines the functions of mitochondria in cutaneous physiology beyond energy (ATP) and ROS production. Keratinocyte differentiation and epidermal barrier maintenance, appendage morphogenesis and homeostasis, photoaging and skin cancer are considered. Based on related PubMed search results, the paper evaluates thyroid hormones, glucocorticoids, Vitamin D3 derivatives, retinoids, cannabinoid receptor agonists, PPARγ agonists, thyrotropin, and thyrotropin-releasing hormone as instructive lead compounds. Moreover, the mitochondrial protein MPZL3 as a promising new drug target for future "mitochondrial dermatology" is highlighted. EXPERT OPINION Future dermatological therapeutic research should have a mitochondrial medicine emphasis. Focusing on selected lead agents, protein targets, in silico drug design, and model diseases will fertilize a mito-centric approach.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Jérémy Chéret
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Alec Sevilla
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Mark Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, and The UK National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Paus
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
15
|
Chen L, Yan G, Ohwada T. Building on endogenous lipid mediators to design synthetic receptor ligands. Eur J Med Chem 2022; 231:114154. [DOI: 10.1016/j.ejmech.2022.114154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023]
|
16
|
Hyun YE, Kim HR, Jeong LS. Stereoselective Synthesis of ( S)- and ( N)-Cyclopropyl-Fused Carbocyclic Nucleosides Using Stereoselective Cyclopropanation. J Org Chem 2021; 86:9828-9837. [PMID: 34184528 DOI: 10.1021/acs.joc.1c00705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To determine which sugar conformation is favorable in binding to peroxisome proliferator-activated receptors, the conformationally locked south (S) and north (N) analogues were asymmetrically synthesized using a bicyclo[3.1.0]hexane template. The (S)-conformer was synthesized by employing "reagent-controlled" Charette asymmetric cyclopropanation in a 100% stereoselective manner, whereas the (N)-conformer was stereoselectively synthesized by using "substrate-controlled" hydroxyl-directed Simmons-Smith cyclopropanation as a key step.
Collapse
Affiliation(s)
- Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hong-Rae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|