1
|
Liu HM, Zhou Y, Chen HX, Wu JW, Ji SK, Shen L, Wang SP, Liu HM, Liu Y, Dai XJ, Zheng YC. LSD1 in drug discovery: From biological function to clinical application. Med Res Rev 2024; 44:833-866. [PMID: 38014919 DOI: 10.1002/med.22000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/18/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) is a flavin adenine dinucleotide (FAD) dependent monoamine oxidase (MAO) that erases the mono-, and dimethylation of histone 3 lysine 4 (H3K4), resulting in the suppression of target gene transcriptions. Besides, it can also demethylate some nonhistone substrates to regulate their biological functions. As reported, LSD1 is widely upregulated and plays a key role in several kinds of cancers, pharmacological or genetic ablation of LSD1 in cancer cells suppresses cell aggressiveness by several distinct mechanisms. Therefore, numerous LSD1 inhibitors, including covalent and noncovalent, have been developed and several of them have entered clinical trials. Herein, we systemically reviewed and discussed the biological function of LSD1 in tumors, lymphocytes as well as LSD1-targeting inhibitors in clinical trials, hoping to benefit the field of LSD1 and its inhibitors.
Collapse
Affiliation(s)
- Hui-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Zhou
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - He-Xiang Chen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiang-Wan Wu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shi-Kun Ji
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Shen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shao-Peng Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Department of Pharmacy, Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xing-Jie Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Sheikh KA, Iqubal A, Alam MM, Akhter M, Khan MA, Ehtaishamul Haque S, Parvez S, Jahangir U, Amir M, Khanna S, Shaquiquzzaman M. A Quinquennial Review of Potent LSD1 Inhibitors Explored for the Treatment of Different Cancers, with Special Focus on SAR Studies. Curr Med Chem 2024; 31:152-207. [PMID: 36718063 DOI: 10.2174/0929867330666230130093442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 02/01/2023]
Abstract
Cancer bears a significant share of global mortality. The enzyme Lysine Specific Demethylase 1 (LSD1, also known as KDM1A), since its discovery in 2004, has captured the attention of cancer researchers due to its overexpression in several cancers like acute myeloid leukaemia (AML), solid tumours, etc. The Lysine Specific Demethylase (LSD1) downregulation is reported to have an effect on cancer proliferation, migration, and invasion. Therefore, research to discover safer and more potent LSD1 inhibitors can pave the way for the development of better cancer therapeutics. These efforts have resulted in the synthesis of many types of derivatives containing diverse structural nuclei. The present manuscript describes the role of Lysine Specific Demethylase 1 (LSD1) in carcinogenesis, reviews the LSD1 inhibitors explored in the past five years and discusses their comprehensive structural activity characteristics apart from the thorough description of LSD1. Besides, the potential challenges, opportunities, and future perspectives in the development of LSD1 inhibitors are also discussed. The review suggests that tranylcypromine derivatives are the most promising potent LSD1 inhibitors, followed by triazole and pyrimidine derivatives with IC50 values in the nanomolar and sub-micromolar range. A number of potent LSD1 inhibitors derived from natural sources like resveratrol, protoberberine alkaloids, curcumin, etc. are also discussed. The structural-activity relationships discussed in the manuscript can be exploited to design potent and relatively safer LSD1 inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Khursheed Ahmad Sheikh
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Umar Jahangir
- Department of Amraaz-e-Jild wa Tazeeniyat, School of Unani Medical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Amir
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suruchi Khanna
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
3
|
Koike T. Development of Specific PET Tracers for Central Nervous System Drug Targets. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tatsuki Koike
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited
| |
Collapse
|
4
|
Hattori Y, Matsumoto S, Morimoto S, Daini M, Toyofuku M, Matsuda S, Baba R, Murakami K, Iwatani M, Oki H, Iwasaki S, Matsumiya K, Tominari Y, Kimura H, Ito M. Design, synthesis, and structure–activity relationship of TAK-418 and its derivatives as a novel series of LSD1 inhibitors with lowered risk of hematological side effects. Eur J Med Chem 2022; 239:114522. [DOI: 10.1016/j.ejmech.2022.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 11/04/2022]
|
5
|
He X, Zhang H, Zhang Y, Ye Y, Wang S, Bai R, Xie T, Ye XY. Drug discovery of histone lysine demethylases (KDMs) inhibitors (progress from 2018 to present). Eur J Med Chem 2022; 231:114143. [DOI: 10.1016/j.ejmech.2022.114143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
|
6
|
Baba R, Matsuda S, Maeda R, Murakami K, Yamamoto Y, Nakatani A, Kimura H. Investigating the Therapeutic Potential of LSD1 Enzyme Activity-Specific Inhibition by TAK-418 for Social and Memory Deficits in Rodent Disease Models. ACS Chem Neurosci 2022; 13:313-321. [PMID: 35061371 DOI: 10.1021/acschemneuro.1c00713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity is a promising approach to treat diseases associated with epigenetic dysregulation, such as neurodevelopmental disorders. However, this concept has not been fully validated because genetic LSD1 deletion causes embryonic lethality and conventional LSD1 inhibitors cause thrombocytopenia via the dissociation of LSD1-cofactor complex. To characterize the therapeutic potential of LSD1 enzyme inhibition, we used TAK-418 and T-448, the LSD1 enzyme activity-specific inhibitors with minimal impact on the LSD1-cofactor complex. TAK-418 and T-448, by inhibiting brain LSD1 enzyme activity, consistently improved social deficits in animal models of neurodevelopmental disorders without causing thrombocytopenia. Moreover, TAK-418 improved memory deficits caused by aging or amyloid precursor protein overexpression. In contrast, TAK-418 did not improve memory deficits caused by miR-137 overexpression. Thus, miR-137 modulation may be involved in memory improvement by LSD1 inhibition. TAK-418 warrants further investigation as a novel therapeutic agent for diseases with epigenetic dysregulation.
Collapse
Affiliation(s)
- Rina Baba
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoru Matsuda
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryota Maeda
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Koji Murakami
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukiko Yamamoto
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Atsushi Nakatani
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
7
|
Song Y, Zhang H, Yang X, Shi Y, Yu B. Annual review of lysine-specific demethylase 1 (LSD1/KDM1A) inhibitors in 2021. Eur J Med Chem 2022; 228:114042. [PMID: 34915312 DOI: 10.1016/j.ejmech.2021.114042] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022]
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A) has emerged as a promising epigenetic target for disease treatment. Several LSD1 inhibitors have advanced into clinical trials. Following our last annual review on LSD1 inhibitors in 2020 (Eur. J. Med. Chem. 2021, 214, 113254), in this review we aim to update LSD1 inhibitors including natural products, synthetic compounds and cyclic peptides reported during 2021. Design strategies, structure-activity relationships, binding model analysis and modes of action are highlighted. In particular, two FDA-approved antihypertensive drugs raloxifene and fenoldopam were repurposed as reversible LSD1 inhibitors. The clinical candidate TAK-418 for treating neurodevelopmental disorders and PET imaging agent [18F]30 for LSD1 were identified. Moreover, dual inhibitors targeting both LSD1 and HDAC6 or tubulin displayed enhanced anti-cancer effects than single agents. These compounds further enrich the structural types of LSD1 inhibitors.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100000, China
| | - Huiqing Zhang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoke Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuting Shi
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100000, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
8
|
Matsuda S, Hattori Y, Matsumiya K, McQuade P, Yamashita T, Aida J, Sandiego CM, Gouasmat A, Carroll VM, Barret O, Tamagnan G, Koike T, Kimura H. Design, Synthesis, and Evaluation of [ 18F]T-914 as a Novel Positron-Emission Tomography Tracer for Lysine-Specific Demethylase 1. J Med Chem 2021; 64:12680-12690. [PMID: 34423983 DOI: 10.1021/acs.jmedchem.1c00653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Histone methylation is associated with the pathophysiology of neurodevelopmental disorders. Lysine-specific demethylase 1 (LSD1) catalyzes histone demethylation in a flavin adenine dinucleotide (FAD)-dependent manner. Thus, inhibiting LSD1 enzyme activity could offer a novel way to treat neurodevelopmental disorders. Assessing LSD1 target engagement using positron-emission tomography (PET) imaging could aid in developing therapeutic LSD1 inhibitors. In this study, PET probes based on 4-(2-aminocyclopropyl)benzamide derivatives that bind irreversibly to FAD found in LSD1 were examined. By optimizing the profiles of brain penetrance and brain-penetrant metabolites, T-914 (1g) was identified as a suitable PET tracer candidate. PET studies in nonhuman primates demonstrated that [18F]1g had heterogeneous brain uptake, which corresponded to known LSD1 expression levels. Moreover, brain uptake of [18F]1g was reduced by coadministration of unlabeled 1g, demonstrating blockable binding. These data suggest that [18F]1g warrants further investigation as a potential PET tracer candidate for assessing target engagement of LSD1.
Collapse
Affiliation(s)
- Satoru Matsuda
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasushi Hattori
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kouta Matsumiya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Paul McQuade
- Quantitative Translational Science - Imaging, Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Tohru Yamashita
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Jumpei Aida
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Christine M Sandiego
- Invicro, A Konica Minolta Company, 60 Temple Street, Suite 8A, New Haven, Connecticut 06510, United States
| | - Alexandra Gouasmat
- Invicro, A Konica Minolta Company, 60 Temple Street, Suite 8A, New Haven, Connecticut 06510, United States
| | - Vincent M Carroll
- Invicro, A Konica Minolta Company, 60 Temple Street, Suite 8A, New Haven, Connecticut 06510, United States
| | - Olivier Barret
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Gilles Tamagnan
- XingImaging LLC, 760 Temple Street, New Haven, Connecticut 06510, United States
| | - Tatsuki Koike
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|