1
|
Yang R, Cui L, Xu T, Zhong Y, Hu S, Liu J, Qin S, Wang X, Guo Y. Discovery of membrane-targeting amphiphilic honokiol derivatives containing an oxazolethione moiety to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. Eur J Med Chem 2024; 279:116868. [PMID: 39270450 DOI: 10.1016/j.ejmech.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a major pathogen causing infections in hospitals and the community, and there is an urgent need for the development of novel antibacterials to combat MRSA infections. Herein, a series of amphiphilic honokiol derivatives containing an oxazolethione moiety were prepared and evaluated for their in vitro antibacterial and hemolytic activities. The screened optimal derivative, I3, exhibited potent in vitro antibacterial activity against S. aureus and clinical MRSA isolates with MIC values of 2-4 μg/mL, which was superior to vancomycin in terms of its rapid bactericidal properties and was less susceptible to the development of resistance. The SARs analysis indicated that amphiphilic honokiol derivatives with fluorine substituents had better antibacterial activity than those with chlorine and bromine substituents. In vitro and in vivo toxicity studies revealed that I3 has relatively low toxicity. In a MRSA-infected mouse skin abscess model, I3 (5 mg/kg) effectively killed MRSA at the infected site and attenuated the inflammation effects, comparable to vancomycin. In a MRSA-infected mouse sepsis model, I3 (12 mg/kg) was found to significantly reduce the bacterial load in infected mice and increase survival of infected mice. Mechanistic studies indicated that I3 has membrane targeting properties and can interact with phosphatidylglycerol (PG) and cardiolipin (CL) of MRSA cell membranes, thereby disrupting MRSA cell membranes, further inducing the increase of reactive oxygen species (ROS), protein and DNA leakage to achieve rapid bactericidal effects. Finally, we hope that I3 is a potential candidate molecule for the development of antibiotics to conquer superbacteria-related infections.
Collapse
Affiliation(s)
- Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liping Cui
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Yan Zhong
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Songlin Hu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Xiaoliu Wang
- Department of Dermatology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China.
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China.
| |
Collapse
|
2
|
Wang Y, Miao G, Wang S, Zhou F. Design, synthesis, and evaluation of pyranochromene derivatives as membrane targeting antibacterials against Gram-positive bacteria. Bioorg Med Chem Lett 2024; 113:129949. [PMID: 39243868 DOI: 10.1016/j.bmcl.2024.129949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The rapid growth of bacterial resistance has created obstacles for the effective treatment with conventional antibiotics, simultaneously posing a major threat to public health. In this study, a class of novel amphipathic pyranochromene derivatives were designed and synthesized by mimicking the amphiphilic characteristics of AMPs. Bioactivity screening identified a lead compound 5a with broad-spectrum antibacterial activity against Gram-positive stains (MICs = 1-4 μg/mL) and low hemolytic toxicity (HC50 = 111.6 μg/mL). Additionally, compound 5a displayed rapid bactericidal action, and was unlikely to induce bacterial resistance. Mechanistic investigation further demonstrated that compound 5a was able to disrupt the transmembrane potential and increased membrane permeability of S. aureus, which in turn causes leakage of cell contents such as DNA and proteins, ultimately leading to bacterial death. These findings indicated that compound 5a is a promising lead to combat bacterial infection caused by Gram-positive bacteria.
Collapse
Affiliation(s)
- Yinhu Wang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Guoqing Miao
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Shuo Wang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Fen Zhou
- Department of Pharmacy, Liaocheng People's Hospital, Liaocheng, China.
| |
Collapse
|
3
|
Liu F, Yang S, Zhang L, Zhang M, Bi Y, Wang S, Wang X, Wang Y. Design, synthesis and biological evaluation of amphiphilic benzopyran derivatives as potent antibacterial agents against multidrug-resistant bacteria. Eur J Med Chem 2024; 277:116784. [PMID: 39178727 DOI: 10.1016/j.ejmech.2024.116784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Antimicrobial resistance has emerged as a significant threat to global public health. To develop novel, high efficiency antibacterial alternatives to combat multidrug-resistant bacteria, A total of thirty-two novel amphiphilic benzopyran derivatives by mimicking the structure and function of antimicrobial peptides were designed and synthesized. Among them, the most promising compounds 4h and 17e displayed excellent antibacterial activity against Gram-positive bacteria (MICs = 1-4 μg/mL) with weak hemolytic activity and good membrane selectivity. Additionally, compounds 4h and 17e had rapid bactericidal properties, low resistance frequency, good plasma stability, and strong capabilities of inhibiting and eliminating bacterial biofilms. Mechanistic studies revealed that compounds 4h and 17e could effectively disrupt the integrity of bacterial cell membranes, and accompanied by an increase in intracellular reactive oxygen species and the leakage of proteins and DNA, ultimately leading to bacterial death. Notably, compound 4h exhibited comparable in vivo antibacterial potency in a mouse septicemia model infected by Staphylococcus aureus ATCC43300, as compared to vancomycin. These findings indicated that 4h might be a promising antibacterial candidate to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Fangquan Liu
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Siyu Yang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Lei Zhang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Meiyue Zhang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Ying Bi
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Shuo Wang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xuekun Wang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China.
| | - Yinhu Wang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
4
|
Yang R, Cui L, Xu S, Zhong Y, Xu T, Liu J, Lan Z, Qin S, Guo Y. Membrane-Targeting Amphiphilic Honokiol Derivatives Containing an Oxazole Moiety as Potential Antibacterials against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2024; 67:16858-16872. [PMID: 39259708 DOI: 10.1021/acs.jmedchem.4c01860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Infections with methicillin-resistant Staphylococcus aureus (MRSA) are becoming increasingly serious, making the development of novel antimicrobials urgent. Here, we synthesized some amphiphilic honokiol derivatives bearing an oxazole moiety and investigated their antibacterial and hemolytic activities. Bioactivity evaluation showed that E17 possessed significant in vitro antibacterial activity against S. aureus and MRSA, along with low hemolytic activity. Moreover, E17 exhibited rapid bactericidal properties and was not susceptible to resistance. Mechanistic studies indicated that E17 interacts with phosphatidylglycerol and cardiolipin of bacterial cell membranes, leading to changes in cell membrane permeability and polarization, increased intracellular ROS, and leakage of DNA and proteins, thus accelerating bacterial death. Transcriptome analysis further demonstrated that E17 has membrane-targeting effects, affecting the expression of genes related to cell membranes and ABC transporter proteins. Notably, in vivo activity showed that E17 has prominent anti-MRSA efficacy, comparable to vancomycin, and is expected to be a new anti-MRSA drug candidate.
Collapse
Affiliation(s)
- Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Liping Cui
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Shengnan Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Yan Zhong
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Zhenwei Lan
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
5
|
Jian T, Wang M, Hettige J, Li Y, Wang L, Gao R, Yang W, Zheng R, Zhong S, Baer MD, Noy A, De Yoreo JJ, Cai J, Chen CL. Self-Assembling and Pore-Forming Peptoids as Antimicrobial Biomaterials. ACS NANO 2024; 18:23077-23089. [PMID: 39146502 DOI: 10.1021/acsnano.4c05250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Bacterial infections have been a serious threat to mankind throughout history. Natural antimicrobial peptides (AMPs) and their membrane disruption mechanism have generated immense interest in the design and development of synthetic mimetics that could overcome the intrinsic drawbacks of AMPs, such as their susceptibility to proteolytic degradation and low bioavailability. Herein, by exploiting the self-assembly and pore-forming capabilities of sequence-defined peptoids, we discovered a family of low-molecular weight peptoid antibiotics that exhibit excellent broad-spectrum activity and high selectivity toward a panel of clinically significant Gram-positive and Gram-negative bacterial strains, including vancomycin-resistant Enterococcus faecalis (VREF), methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE), Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Tuning the peptoid side chain chemistry and structure enabled us to tune the efficacy of antimicrobial activity. Mechanistic studies using transmission electron microscopy (TEM), bacterial membrane depolarization and lysis, and time-kill kinetics assays along with molecular dynamics simulations reveal that these peptoids kill both Gram-positive and Gram-negative bacteria through a membrane disruption mechanism. These robust and biocompatible peptoid-based antibiotics can provide a valuable tool for combating emerging drug resistance.
Collapse
Affiliation(s)
- Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jeevapani Hettige
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Lei Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Renyu Zheng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Shengliang Zhong
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Marcel D Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- School of Natural Sciences, University of California, Merced, Merced, California 95343, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Yang S, Liu F, Leng Y, Zhang M, Zhang L, Wang X, Wang Y. Development of Xanthoangelol-Derived Compounds with Membrane-Disrupting Effects against Gram-Positive Bacteria. Antibiotics (Basel) 2024; 13:744. [PMID: 39200044 PMCID: PMC11350758 DOI: 10.3390/antibiotics13080744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Infections caused by multidrug-resistant pathogens have emerged as a serious threat to public health. To develop new antibacterial agents to combat such drug-resistant bacteria, a class of novel amphiphilic xanthoangelol-derived compounds were designed and synthesized by mimicking the structure and function of antimicrobial peptides (AMPs). Among them, compound 9h displayed excellent antimicrobial activity against the Gram-positive strains tested (MICs = 0.5-2 μg/mL), comparable to vancomycin, and with low hemolytic toxicity and good membrane selectivity. Additionally, compound 9h demonstrated rapid bactericidal effects, low resistance frequency, low cytotoxicity, and good plasma stability. Mechanistic studies further revealed that compound 9h had good membrane-targeting ability and was able to destroy the integrity of bacterial cell membranes, causing an increase in intracellular ROS and the leakage of DNA and proteins, thus accelerating bacterial death. These results make 9h a promising antimicrobial candidate to combat bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuekun Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.Y.); (F.L.); (Y.L.); (M.Z.); (L.Z.)
| | - Yinhu Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.Y.); (F.L.); (Y.L.); (M.Z.); (L.Z.)
| |
Collapse
|
7
|
Xue M, Chakraborty S, Gao R, Wang S, Gu M, Shen N, Wei L, Cao C, Sun X, Cai J. Antimicrobial Guanidinylate Polycarbonates Show Oral In Vivo Efficacy Against Clostridioides Difficile. Adv Healthc Mater 2024; 13:e2303295. [PMID: 38321619 PMCID: PMC11144102 DOI: 10.1002/adhm.202303295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/22/2024] [Indexed: 02/08/2024]
Abstract
The emerging antibiotic resistance has been named by the World Health Organization (WHO) as one of the top 10 threats to public health. Notably, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VREF) are designated as serious threats, whereas Clostridioides difficile (C. difficile) is recognized as one of the most urgent threats to human health and unmet medical need. Herein, they report the design and application of novel biodegradable polymers - the lipidated antimicrobial guanidinylate polycarbonates. These polymers showed potent antimicrobial activity against a panel of bacteria with fast-killing kinetics and low resistance development tendency, mainly due to their bacterial membrane disruption mechanism. More importantly, the optimal polymer showed excellent antibacterial activity against C. difficile infection (CDI) in vivo via oral administration. In addition, compared with vancomycin, the polymer demonstrated a much-prolonged therapeutic effect and virtually diminished recurrence rate of CDI. The convenient synthesis, easy scale-up, low cost, as well as biodegradability of this class of polycarbonates, together with their in vitro broad-spectrum antimicrobial activity and orally in vivo efficacy against CDI, suggest the great potential of lipidated guandinylate polycarbonates as a new class of antibacterial biomaterials to treat CDI and combat emerging antibiotic resistance.
Collapse
Affiliation(s)
- Menglin Xue
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Soumyadeep Chakraborty
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Meng Gu
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Ning Shen
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Lulu Wei
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| |
Collapse
|
8
|
Wang L, Liu L, Zhang C, Yu G, Lin W, Duan X, Xiong Y, Jiang G, Wang J, Liao X. Design, synthesis, anti-infective potency and mechanism study of novel Ru-based complexes containing substituted adamantane as antibacterial agents. Eur J Med Chem 2024; 270:116378. [PMID: 38604098 DOI: 10.1016/j.ejmech.2024.116378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
Infections caused by Staphylococcus aureus (S. aureus) are increasing difficult to treat because this pathogen is easily resistant to antibiotics. However, the development of novel antibacterial agents with high antimicrobial activity and low frequency of resistance remains a huge challenge. Here, building on the coupling strategy, an adamantane moiety was linked to the membrane-active Ru-based structure and then developed three novel metalloantibiotics: [Ru(bpy)2(L)](PF6)2 (Ru1) (bpy = 2,2-bipyridine, L = amantadine modified ligand), [Ru(dmb)2(L)](PF6)2 (Ru2) (dmb = 4,4'-dimethyl-2,2'-bipyridine) and [Ru(dpa)2(L)](PF6)2 (Ru3), (dpa = 2,2'-dipyridylamine). Notably, complex Ru1 was identified to be the best candidate agent, showing greater efficacy against S. aureus than most of clinical antibiotics and low resistance frequencies. Mechanism studies demonstrated that Ru1 could not only increase the permeability of bacterial cell membrane and then caused the leakage of bacterial contents, but also promoted the production of reactive oxygen species (ROS) in bacteria. Importantly, complex Ru1 inhibited the biofilm formation, exotoxin secretion and increased the potency of some clinical used antibiotics. In addition, Ru1 showed low toxic in vivo and excellent anti-infective efficacy in two animal infection model. Thus, Ru-based metalloantibiotic bearing adamantane moiety are promising antibacterial agents, providing a certain research basis for the future antibiotics research.
Collapse
Affiliation(s)
- Liqiang Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang, 330013, China
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Chunyan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang, 330013, China
| | - Guangying Yu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang, 330013, China
| | - Wenjing Lin
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang, 330013, China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang, 330013, China
| | - Yanshi Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang, 330013, China
| | - Guijuan Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang, 330013, China.
| | - Jintao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang, 330013, China.
| | - Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
9
|
Yang R, Cheng W, Huang M, Xu T, Zhang M, Liu J, Qin S, Guo Y. Novel membrane-targeting isoxanthohumol-amine conjugates for combating methicillin-resistant Staphylococcus aureus (MRSA) infections. Eur J Med Chem 2024; 268:116274. [PMID: 38408389 DOI: 10.1016/j.ejmech.2024.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Here, a series of novel isoxanthohumol-amine conjugates were synthesized as antibacterials. After bioactivity evaluation, a compound E2 was obtained, which showed excellent antibacterial activity against S. aureus and clinical MRSA isolates (MICs = 0.25-1 μg/mL), superior to vancomycin, and with negligible hemolysis and good membrane selectivity. Additionally, E2 exhibited fast bacterial killing, less susceptible to resistance, relatively low cytotoxicity, and good plasma stability. Mechanism investigation revealed that E2 can disrupt bacterial membranes by specifically binding to phosphatidylglycerol on the bacterial membrane, thus causing elevated intracellular ROS and leakage of DNA and proteins, and ultimately killing bacteria. Noticeably, E2 displayed a good in vivo safety profile and better in vivo therapeutic efficacy than the same dose of vancomycin, allowing it to be a potential antibacterial to conquer MRSA infections.
Collapse
Affiliation(s)
- Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Meijuan Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China
| | - Miaomiao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China.
| |
Collapse
|
10
|
Chen S, Qin S, Li R, Qu Y, Ampomah-Wireko M, Nininahazwe L, Wang M, Gao C, Zhang E. Design, synthesis and antibacterial evaluation of low toxicity amphiphilic-cephalosporin derivatives. Eur J Med Chem 2024; 268:116293. [PMID: 38447461 DOI: 10.1016/j.ejmech.2024.116293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Global public health is facing a serious problem as a result of the rise in antibiotic resistance and the decline in the discovery of new antibiotics. In this study, two series of amphiphilic-cephalosporins were designed and synthesized, several of which showed good antibacterial activity against both Gram-positive and Gram-negative bacteria. Structure-activity relationships indicated that the length of the hydrophobic alkyl chain significantly affects the antibacterial activity against Gram-negative bacteria. The best compound 2d showed high activity against drug-susceptible Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) with MICs of 0.5 and 2-4 μg/mL, respectively. Furthermore, 2d remained active in complex mammalian body fluids and had a longer post-antibiotic effect (PAE) than vancomycin. Mechanism studies indicated that compound 2d lacks membrane-damaging properties and can target penicillin-binding proteins to disrupt bacterial cell wall structure, inhibit the metabolic activity and induce the accumulation of reactive oxygen species (ROS) in bacteria. Compound 2d showed minimal drug resistance and was nontoxic to HUVEC and HBZY-1 cells with CC50 > 128 μg/mL. These findings suggest that 2d is a promising drug candidate for treating bacterial infections.
Collapse
Affiliation(s)
- Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
11
|
Li T, He X, Tao W, Zhang R, He Q, Gong H, Liu Y, Luo D, Zhang M, Zou C, Zhang SL, He Y. Development of membrane-targeting TPP +-chloramphenicol conjugates to combat methicillin-resistant staphylococcus aureus (MRSA) infections. Eur J Med Chem 2024; 264:115973. [PMID: 38096652 DOI: 10.1016/j.ejmech.2023.115973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
Infections caused by drug-resistant bacteria have become a new challenge in infection treatment, gravely endangering public health. Chloramphenicol (CL) is a well-known antibiotic which has lost its efficacy due to bacterial resistance. To address this issue, herein we report the design, synthesis and biological evaluations of novel triphenylphosphonium chloramphenicol conjugates (TPP+-CL). Study results indicated that compounds 39 and 42 possessed remarkable antibacterial effects against clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) with MIC values ranging from 1 to 2 μg/mL, while CL was inactive to the tested MRSA strains. In addition, these conjugates exhibited rapid bactericidal properties and low toxicity, and did not readily induced bacterial resistance, obviously outperforming the parent drug CL. In a mouse model infected with a clinically isolated MRSA strain, compound 39 at a dose of 20 mg/kg exhibited a comparable or even better in vivo anti-MRSA efficacy than the golden standard drug vancomycin, while no toxicity was observed.
Collapse
Affiliation(s)
- Tao Li
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Xiaoli He
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Ave, Shuitu Technology Development Zone, Beibei, Chongqing, 400714, PR China
| | - Wenlan Tao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Ave, Shuitu Technology Development Zone, Beibei, Chongqing, 400714, PR China
| | - Ruixue Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Qiaolin He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Hongzhi Gong
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Ye Liu
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Dong Luo
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Maojie Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Cheng Zou
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, PR China.
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Ave, Shuitu Technology Development Zone, Beibei, Chongqing, 400714, PR China.
| |
Collapse
|
12
|
Chen Y, Ye Z, Zhen W, Zhang L, Min X, Wang Y, Liu F, Su M. Design and synthesis of broad-spectrum antimicrobial amphiphilic peptidomimetics to combat drug-resistance. Bioorg Chem 2023; 140:106766. [PMID: 37572534 DOI: 10.1016/j.bioorg.2023.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The gradual depletion of antibiotic discovery pipeline makes the antibiotic resistance a difficult clinical problem and a global health emergency. The membrane-active antimicrobial peptides (AMPs) attracted much attention due to a lower tendency to bacterial resistance than traditional antibiotics. However, some immanent drawbacks of AMPs may hamper their application in combating antibiotic resistance in the long run, such as susceptible to enzymatic degradation and low cell permeability. Herein, we report the design and synthesis of a novel series of amphiphilic peptidomimetics, from which we identified compounds that exhibited potent antimicrobial activity against a panel of clinically relevant Gram-positive and Gram-negative bacteria strains. The most potent compound 20 (SD-110-12) is able to kill intracellular bacterial pathogens and prevent the development of bacterial resistance under the tested conditions by targeting cell membranes. Additionally, compound 20 (SD-110-12) obtains good in vivo efficacy that is comparative to vancomycin by eradicating MRSA and suppressing inflammation in a mice infected skin wound model, demonstrating its promising therapeutic potential.
Collapse
Affiliation(s)
- Yating Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Zifan Ye
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenteng Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Lu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Xiangyang Min
- Department of Clinical Laboratory Medicine, Yangpu Hospital of Tongji University, Shanghai 200000, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
13
|
Yuan J, Wang J, Li X, Zhang Y, Xian J, Wang C, Zhang J, Wu C. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials. Eur J Med Chem 2023; 262:115896. [PMID: 39491431 DOI: 10.1016/j.ejmech.2023.115896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Bacterial infections are characterized by their rapid and widespread proliferation, leading to significant morbidity. Despite the availability of a variety of antimicrobial drugs, the resistance exhibited by pathogenic microorganisms towards these drugs demonstrates a consistent upward trajectory year after year. This trend can be attributed to the abuse or misuse of antibiotics. Although antimicrobial peptides can avoid the emergence of drug resistance to a certain extent, their clinical application has been hindered by factors such as their high production cost, poor in vivo stability, and potential cytotoxicity. Consequently, there arises an urgent need for the development of novel antimicrobial drugs. Small-molecule amphiphatic antimicrobials have a good prospect for research and development. These peptides hold the potential to address several issues, including the high cost of antimicrobial peptide production, poor in vivo stability, and cytotoxicity. Moreover, they exhibit the capability to overcome bacterial resistance, thereby considerably satisfying market demands and clinical needs. This paper reviews recent research pertaining to small molecule host-defending amphiphatic antimicrobials with cationic amphiphilic structures. It focuses on the design concepts, inherent relationships, drug-like properties, antimicrobial activities, application prospects, and emerging screening methods for novel antimicrobial. This review assumes paramount importance in mitigating the current shortcomings of antimicrobial agents. It also provides potential new ideas and methodologies for the research and development of antimicrobial agents.
Collapse
Affiliation(s)
- Jiani Yuan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinghong Xian
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Liang Y, Huang Z, Shen X, Zhang Y, Chai Y, Jiang K, Chen Q, Zhao F. Global Trends in Research of Antimicrobial Peptides for the Treatment of Drug-Resistant Bacteria from 1995 to 2021: A Bibliometric Analysis. Infect Drug Resist 2023; 16:4789-4806. [PMID: 37520454 PMCID: PMC10377575 DOI: 10.2147/idr.s411222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/01/2023] [Indexed: 08/01/2023] Open
Abstract
Background Antimicrobial peptides (AMPs) can act on the bacterial cell membrane to play an antibacterial role in types of drug-resistant bacteria. Therefore, AMPs have attracted more and more attention in the treatment of drug-resistant bacteria. Methods Bibliometric analysis was employed to sort out the development and trends in the research of AMPs in the treatment of drug-resistant bacteria and map the knowledge structure for scholars. Results Since 2010, the publications and citations in this field have exploded, indicating a growing global interest in the field of AMPs for the treatment of drug-resistant bacteria. And as major countries in this field, China and the USA had conducted very in-depth exchanges and cooperation, which had injected a steady stream of impetus into this field. Both old and new scholars have made efforts, and related fields have developed rapidly, especially in the synthesis and improvement of novel AMPs. In recent years, research directions in the field of AMPs for the treatment of drug-resistant bacteria gradually focused on the practical application, optimization of drug delivery mode, optimization of synthesis mode, screening of new AMPs and other fields, indicating that the relevant research results of AMPs for the treatment of drug-resistant bacteria had entered the actual clinical stage, with higher practical significance. Conclusion The research history, global research status, future research hotspots, and trends of the research of AMPs in the treatment of drug-resistant bacteria were discussed in depth in this study, which can provide research references and inspiration for researchers inside and outside the related field.
Collapse
Affiliation(s)
- Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xuqiu Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yihan Chai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Kexin Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Qi Chen
- Department of General Surgery, Hangzhou Fuyang Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Feng Zhao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
15
|
Jiang L, Ma Y, Chen Y, Cai M, Wu Z, Xiong Y, Duan X, Liao X, Wang J. Multi-target antibacterial mechanism of ruthenium polypyridine complexes with anthraquinone groups against Staphylococcus aureus. RSC Med Chem 2023; 14:700-709. [PMID: 37122548 PMCID: PMC10131643 DOI: 10.1039/d2md00430e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Three new Ru(ii) complexes, [Ru(dtb)2PPAD](PF6)2 (Ru-1), [Ru(dmob)2PPAD](PF6)2 (Ru-2) and [Ru(bpy)2PPAD](PF6)2 (Ru-3) (dtb = 4,4'-di-tert-butyl-2,2'-bipyridine, dmob = 4,4'-dimethyl-2,2'-bipyridine, bpy = 2,2'-bipyridine and PPAD = 2-(pyridine-3-yl)-1H-imidazo[4,5f][1.10]phenanthracene-9,10-dione), were synthesized and characterized by 1H NMR and 13C NMR spectroscopy, HRMS and HPLC. Among them, Ru-1 showed excellent antimicrobial activity against Gram-positive bacteria Staphylococcus aureus (minimum inhibitory concentration (MIC) = 1 μg mL-1) and low hemolytic and cytotoxic activity. In addition, Ru-1 showed obviously rapid bactericidal activity, low resistance rate, bacterial biofilm destroying activity and high biosafety in vivo. Moreover, skin infection models and a mouse model of sepsis indicated that the anti-infective efficacy of Ru-1 was comparable to that of vancomycin. Mechanism exploration results showed that the antibacterial behavior is probably related with targeting of the bacterial cell membrane and inhibiting topoisomerase I.
Collapse
Affiliation(s)
- Li Jiang
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Yuanyuan Ma
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Yiman Chen
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Mengcheng Cai
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Zhixing Wu
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Yanshi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Xuemin Duan
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Xiangwen Liao
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| | - Jintao Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang China
| |
Collapse
|
16
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Synthesis and Evaluation of the Antimicrobial Activity of Cationic Amphiphiles Based on Bivalent Diethylenetriamine Derivatives. Pharm Chem J 2023. [DOI: 10.1007/s11094-023-02834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
18
|
Gao R, Li X, Xue M, Shen N, Wang M, Zhang J, Cao C, Cai J. Development of lipidated polycarbonates with broad-spectrum antimicrobial activity. Biomater Sci 2023; 11:1840-1852. [PMID: 36655904 PMCID: PMC10848156 DOI: 10.1039/d2bm01995g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antimicrobial resistance is a global challenge owing to the lack of discovering effective antibiotic agents. Antimicrobial polymers containing the cationic groups and hydrophobic groups which mimic natural host-defense peptides (HDPs) show great promise in combating bacteria. Herein, we report the synthesis of lipidated polycarbonates bearing primary amino groups and hydrophobic moieties (including both the terminal long alkyl chain and hydrophobic groups in the sequences) by ring-opening polymerization. The hydrophobic/hydrophilic group ratios were adjusted deliberately and the lengths of the alkyl chains at the end of the polymers were modified to achieve the optimized combination for the lead polymers, which exhibited potent and broad-spectrum bactericidal activity against a panel of Gram-positive and Gram-negative bacteria. The polymers only showed very limited hemolytic activity, demonstrating their excellent selectivity. Comprehensive analyses using biochemical and biophysical assays revealed the strong interaction between the polymers and bacteria membranes. Moreover, the polymers also showed strong biofilm inhibition activity and did not readily induce antibiotic resistance. Our results suggest that lipidated polycarbonates could be a new class of antimicrobial agents.
Collapse
Affiliation(s)
- Ruixuan Gao
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Xuming Li
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Menglin Xue
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Ning Shen
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Jingyao Zhang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Chuanhai Cao
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
19
|
Teng P, Shao H, Huang B, Xie J, Cui S, Wang K, Cai J. Small Molecular Mimetics of Antimicrobial Peptides as a Promising Therapy To Combat Bacterial Resistance. J Med Chem 2023; 66:2211-2234. [PMID: 36739538 DOI: 10.1021/acs.jmedchem.2c00757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinically, antibiotics are widely used to treat infectious diseases; however, excessive drug abuse and overuse exacerbate the prevalence of drug-resistant bacterial pathogens, making the development of novel antibiotics extremely difficult. Antimicrobial peptide (AMP) is one of the most promising candidates for overcoming bacterial resistance owing to its unique structure and mechanism of action. This study examines the development of small molecular mimetics of AMPs over the past two decades. These mimetics can selectively disrupt membranes, which are the characteristic antibacterial mechanism of AMPs. In addition, the advantages and disadvantages of small AMP mimetics are discussed. The small molecular mimetics of AMPs are anticipated to garner interest and investment in discovering new antibiotics. This Perspective will assist in revitalizing the golden age of antibiotics in the current era of combating bacterial resistance.
Collapse
Affiliation(s)
- Peng Teng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Haodong Shao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Bo Huang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
20
|
Jian Y, Peng Y, Zhou W, Xu Y, Li C, Wang X, Zhou Q. Ru(II) Complexes with Enaminone Structures for Rapid Sterilization of Staphylococcus aureus and MRSA with Little Accumulation of Drug Resistance. ChemMedChem 2023; 18:e202300065. [PMID: 36751034 DOI: 10.1002/cmdc.202300065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/09/2023]
Abstract
Drug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), pose a serious threat to human life. Therefore, there is urgent need to develop antibiotics with new chemical structures and antibacterial mechanisms, especially those that elicit little drug resistance after long-term use. Herein we synthesized three novel ruthenium complexes (Ru1-Ru3) containing the enaminone structures for the first time. At a concentration of 5 μM, Ru1-Ru3 can lead to a CFU reduction of about 5 log units towards S. aureus and MRSA. Interestingly, Ru3 displayed rapid bactericidal effects and could decrease the CFU numbers of both pathogens by 5 log units within 40 min. The control compounds (Ru4 and Ru5) without the enaminone structures displayed very poor antibacterial activity under the same conditions. Moreover, S. aureus did not show apparent drug resistance towards Ru3 after 20 passages incubation with a sublethal concentration. These results highlight the critical role of enaminone structures for antibacterial applications.
Collapse
Affiliation(s)
- Yao Jian
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yatong Peng
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Wanpeng Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yunli Xu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Chao Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xuesong Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Qianxiong Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| |
Collapse
|
21
|
Guo X, Yan T, Rao J, An Y, Yue X, Miao X, Wang R, Sun W, Cai J, Xie J. Novel Feleucin-K3-Derived Peptides Modified with Sulfono-γ-AA Building Blocks Targeting Pseudomonas aeruginosa and Methicillin-Resistant Staphylococcus aureus Infections. J Med Chem 2023; 66:1254-1272. [PMID: 36350686 DOI: 10.1021/acs.jmedchem.2c01396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The prevalence of multidrug-resistant bacterial infections has led to dramatically increased morbidity and mortality. Antimicrobial peptides (AMPs) have great potential as new therapeutic agents to reverse this dangerous trend. Herein, a series of novel AMP Feleucin-K3 analogues modified with unnatural peptidomimetic sulfono-γ-AA building blocks were designed and synthesized. The structure-activity, structure-toxicity, and structure-stability relationships were investigated to discover the optimal antimicrobial candidates. Among them, K122 exhibited potent and broad-spectrum antimicrobial activity and high selectivity. K122 had a rapid bactericidal effect and a low tendency to induce resistance. Surprisingly, K122 showed excellent effectiveness against bacterial pneumonia. For biofilm and local skin infections, K122 significantly decreased the bacterial load and improved tissue injury at a dose of only 0.25 mg/kg, which was 160 times lower than the concentration deemed to be safe for local dermal applications. In summary, K122 is an outstanding candidate for the treatment of multidrug-resistant bacteria and biofilm infections.
Collapse
Affiliation(s)
- Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou730000, China
| | - Tiantian Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou730000, China
| | - Jing Rao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou730000, China
| | - Yingying An
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou730000, China
| | - Xin Yue
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou730000, China
| | - Xiaokang Miao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou730000, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100050, China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou730000, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida33620, United States
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou730000, China
| |
Collapse
|
22
|
Cheng W, Xu T, Cui L, Xue Z, Liu J, Yang R, Qin S, Guo Y. Discovery of Amphiphilic Xanthohumol Derivatives as Membrane-Targeting Antimicrobials against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2023; 66:962-975. [PMID: 36584344 DOI: 10.1021/acs.jmedchem.2c01793] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are increasing worldwide, and with limited clinically available antibiotics, it is urgent to develop new antimicrobials to combat these MDR bacteria. Here, a class of novel amphiphilic xanthohumol derivatives were prepared using a building-block approach. Bioactivity assays showed that the molecule IV15 not only exhibited a remarkable antibacterial effect against clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates (MICs: 1-2 μg/mL) but also had the advantages of rapid bactericidal properties, low toxicity, good plasma stability, and not readily inducing bacterial resistance. Mechanistic studies indicated that IV15 has good membrane-targeting ability and can bind to phosphatidylglycerol and cardiolipin in bacterial membranes, thus disrupting the bacterial cell membranes and causing increased intracellular reactive oxygen species and leakage of proteins and DNA, eventually resulting in bacterial death. Notably, IV15 exhibited remarkable in vivo anti-MRSA efficacy, superior to vancomycin, making it a potential candidate to combat MRSA infections.
Collapse
Affiliation(s)
- Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ting Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liping Cui
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zihan Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ruige Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China
| |
Collapse
|
23
|
Schultz JR, Costa SK, Jachak GR, Hegde P, Zimmerman M, Pan Y, Josten M, Ejeh C, Hammerstad T, Sahl HG, Pereira PM, Pinho MG, Dartois V, Cheung A, Aldrich CC. Identification of 5-(Aryl/Heteroaryl)amino-4-quinolones as Potent Membrane-Disrupting Agents to Combat Antibiotic-Resistant Gram-Positive Bacteria. J Med Chem 2022; 65:13910-13934. [PMID: 36219779 PMCID: PMC9826610 DOI: 10.1021/acs.jmedchem.2c01151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nosocomial infections caused by resistant Gram-positive organisms are on the rise, presumably due to a combination of factors including prolonged hospital exposure, increased use of invasive procedures, and pervasive antibiotic therapy. Although antibiotic stewardship and infection control measures are helpful, newer agents against multidrug-resistant (MDR) Gram-positive bacteria are urgently needed. Here, we describe our efforts that led to the identification of 5-amino-4-quinolone 111 with exceptionally potent Gram-positive activity with minimum inhibitory concentrations (MICs) ≤0.06 μg/mL against numerous clinical isolates. Preliminary mechanism of action and resistance studies demonstrate that the 5-amino-4-quinolones are bacteriostatic, do not select for resistance, and selectively disrupt bacterial membranes. While the precise molecular mechanism has not been elucidated, the lead compound is nontoxic displaying a therapeutic index greater than 500, is devoid of hemolytic activity, and has attractive physicochemical properties (clog P = 3.8, molecular weight (MW) = 441) that warrant further investigation of this promising antibacterial scaffold for the treatment of Gram-positive infections.
Collapse
Affiliation(s)
- John R Schultz
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen K Costa
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Gorakhnath R Jachak
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Yan Pan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Michaele Josten
- Institute for Pharmaceutical Microbiology and Institute for Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53115 Bonn, Germany
| | - Chinedu Ejeh
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Travis Hammerstad
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hans Georg Sahl
- Institute for Pharmaceutical Microbiology and Institute for Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53115 Bonn, Germany
| | - Pedro M Pereira
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2781-901 Oeiras, Portugal
| | - Mariana G Pinho
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2781-901 Oeiras, Portugal
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Ambrose Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Kong Q, Li G, Zhang F, Yu T, Chen X, Jiang Q, Wang Y. N-Arylimidazoliums as Highly Selective Biomimetic Antimicrobial Agents. J Med Chem 2022; 65:11309-11321. [PMID: 35930690 DOI: 10.1021/acs.jmedchem.2c00818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Antibiotic resistance has become one of the greatest health threats in the world. In this study, a charge-dispersed dimerization strategy is described for the antimicrobial peptide (AMP) mimics via a tunable cationic charge to improve the selectivity between prokaryotic microbes and eukaryotic cells. This strategy is demonstrated with a series of charge-dispersed AMP mimics based on N-arylimidazolium skeletons. These N-arylimidazolium AMP mimics show potent antibacterial activity against strains along with a low rate of drug resistance, good hemocompatibility, and low cytotoxicity. In addition to the elimination of planktonic bacteria, N-arylimidazolium AMP mimics can also inhibit biofilm formation and destroy the established biofilm. More importantly, methicillin-resistant Staphylococcus aureus (MRSA)-induced lung-infected mice can be effectively treated by the intravenous administration of N-arylimidazolium AMP mimic, which enable the design of N-arylimidazolium AMP mimics to offer an alternative avenue to eradicate drug-resistant bacterial infection.
Collapse
Affiliation(s)
- Qunshou Kong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Tao Yu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xiaotong Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
25
|
Langer MK, Rahman A, Dey H, Anderssen T, Zilioli F, Haug T, Blencke HM, Stensvåg K, Strøm MB, Bayer A. A concise SAR-analysis of antimicrobial cationic amphipathic barbiturates for an improved activity-toxicity profile. Eur J Med Chem 2022; 241:114632. [DOI: 10.1016/j.ejmech.2022.114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 11/03/2022]
|
26
|
Ratrey P, Datta B, Mishra A. Intracellular Bacterial Targeting by a Thiazolyl Benzenesulfonamide and Octaarginine Peptide Complex. ACS APPLIED BIO MATERIALS 2022; 5:3257-3268. [PMID: 35736131 DOI: 10.1021/acsabm.2c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A brominated thiazolyl benzenesulfonamide (BTB) derivative is conjugated with the cell-penetrating peptide octaarginine (R8) in an effort to construct innovative antibacterial products. The noncovalent complex of BTB and R8 is characterized by Fourier transform infrared (FTIR) spectroscopy, which indicates hydrogen bonding between the two constituents. Attachment of the peptide moiety renders aqueous solubility to the hydrophobic benzenesulfonamide drug and bestows bactericidal activity. Confocal imaging in conjunction with dye probes shows successful clearance of intracellular Staphylococcus aureus bacteria by the BTB-R8 complex. Scanning electron micrographs and studies with a set of fluorescent dyes suggest active disruption of the bacterial cell membrane by the BTB-R8 complex. In contrast, the complex of BTB with octalysine (K8) fails to cause membrane damage and displays a modest antibacterial effect. A complex of BTB with the water-soluble hydrophilic polymer poly(vinylpyrrolidone) (PVP) does not display any antibacterial effect, indicating the distinctive role of the cell-penetrating peptide (CPP) R8 in the cognate complex. The leakage of the encapsulated dye from giant unilamellar vesicles upon interaction with the BTB-R8 complex further highlights the membrane activity of the complex, which cannot be accomplished by bare sulfonamide alone. This work broadens the scope of use of CPPs with respect to eliciting antibacterial activity and potentially expands the limited arsenal of membrane-targeting antibiotics.
Collapse
Affiliation(s)
- Poonam Ratrey
- Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Bhaskar Datta
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Abhijit Mishra
- Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| |
Collapse
|
27
|
Wang Y, Wu P, Liu F, Chen J, Xue J, Qin Y, Chen F, Wang S, Ji L. Design, synthesis, and biological evaluation of membrane-active honokiol derivatives as potent antibacterial agents. Eur J Med Chem 2022; 240:114593. [PMID: 35820350 DOI: 10.1016/j.ejmech.2022.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022]
Abstract
Infections caused by drug-resistant bacteria have emerged to be one of the greatest threats to global public health, and new antimicrobial agents with novel mechanisms of action hence are in an urgent need to combat bacterial resistance. Herein, we reported the design, synthesis, and antibacterial evaluation of novel honokiol derivatives as mimics of antimicrobial peptides (AMPs). These mimics showed potent antimicrobial properties against Gram-positive bacteria. Among them, the most promising compound 13b exhibited excellent antibacterial activity, rapid bactericidal properties, avoidance of antibiotic resistance, and weak hemolytic and cytotoxic activities. In addition, compound 13b not only inhibited the biofilm formation but also destroy the preformed biofilm. Mechanism studies further revealed that compound 13b killed bacteria rapidly by interrupting the bacterial membrane. More intriguingly, compound 13b exhibited potent in vivo antibacterial efficacy in a mouse septicemia model induced by Staphylococcus aureus ATCC43300. These results highlight the potential of 13b to be used as therapeutic agents.
Collapse
Affiliation(s)
- Yinhu Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China.
| | - Ping Wu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Fangquan Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Junjie Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Jie Xue
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Yinhui Qin
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Fang Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Shuo Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China.
| | - Lusha Ji
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China.
| |
Collapse
|
28
|
Li F, Lin L, Chi J, Wang H, Du M, Feng D, Wang L, Luo R, Chen H, Quan G, Cai J, Pan X, Wu C, Lu C. Guanidinium-rich lipopeptide functionalized bacteria-absorbing sponge as an effective trap-and-kill system for the elimination of focal bacterial infection. Acta Biomater 2022; 148:106-118. [PMID: 35671875 DOI: 10.1016/j.actbio.2022.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Focal bacterial infections are often difficult to treat due to the rapid emergence of antibiotic-resistant bacteria, high risk of relapse, and severe inflammation at local lesions. To address multidrug-resistant skin and soft tissue infections, a bacteria-absorbing sponge was prepared to involve a "trap-and-kill" mechanism. The system describes a guanidinium-rich lipopeptide functionalized lyotropic liquid-crystalline hydrogel with bicontinuous cubic networks. Amphiphilic lipopeptides can be spontaneously anchored to the lipid-water interface, exposing their bacterial targeting sequences to enhance antibacterial trapping/killing activity. Computational simulations supported our structural predictions, and the sponge was confirmed to successfully remove ∼98.8% of the bacteria in the medium. Release and degradation behavior studies indicated that the bacteria-absorbing sponge could degrade, mediate enzyme-responsive lipopeptide release, or generate ∼200 nm lipopeptide nanoparticles with environmental erosion. This implies that the sponge can effectively capture and isolate high concentrations of bacteria at the infected site and then sustainably release antimicrobial lipopeptides into deep tissues for the eradication of residual bacteria. In the animal experiment, we found that the antibacterial performance of the bacterial-absorbing sponge was significant, which demonstrated not only a long-term inhibition effect to disinfect and avoid bacterial rebound, but also a unique advantage to protect tissue from bacterial attack. STATEMENT OF SIGNIFICANCE: Host defense peptides/peptidomimetics (HDPs) have shown potential for the elimination of focal bacterial infections, but the application of their topical formulations suffers from time-consuming preparation processes, indistinctive toxicity reduction effects, and inefficient bacterial capture ability. To explore new avenues for the development of easily prepared, low-toxicity and high-efficiency topical antimicrobials, a guanidinium-rich lipopeptide was encapsulated in a lyotropic liquid-crystalline hydrogel (denoted as "bacteria-absorbing sponge") to achieve complementary superiorities. The superior characteristic of the bacteria-absorbing sponge involves a "trap-and-kill" mechanism, which undergoes not only a long-term inhibition effect to disinfect and avoid bacterial rebound, but also effective bacterial capture and isolating action to confine bacterial diffusion and protect tissues from bacterial attack.
Collapse
Affiliation(s)
- Feng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liming Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Hui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minqun Du
- Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Disang Feng
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Liqing Wang
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Rui Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Hangping Chen
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
29
|
Zhang X, Wang M, Zhu X, Peng Y, Fu T, Hu CH, Cai J, Liao G. Development of Lipo-γ-AA Peptides as Potent Antifungal Agents. J Med Chem 2022; 65:8029-8039. [PMID: 35637173 DOI: 10.1021/acs.jmedchem.2c00595] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of drug-resistant fungal pathogens poses great threats to an increasing number of vulnerable populations worldwide, and the need for novel antifungal agents is imperative. In this work, a series of lipo-γ-AA peptides were synthesized and evaluated for their biological activities. One lead, MW5, exhibited potent and broad-spectrum antifungal activity. In addition, MW5 potently boosted the efficacy of fluconazole against clinical azole-resistant Candida isolates. Mechanistic investigation showed that the lead compound disrupted the cell membrane, significantly boosted the production of reactive oxygen species, and undermined the function of the efflux pump, thus resensitizing drug-resistant Candida albicans to fluconazole. Notably, coadministration of MW5 and fluconazole exhibited potent in vivo antifungal activity in a murine model of mucocutaneous candidiasis. Our results demonstrated that lipo-γ-AA peptides have great promise for use alone or in combination to combat drug-resistant Candida infections.
Collapse
Affiliation(s)
- Xing Zhang
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaodi Zhu
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Yan Peng
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Tiwei Fu
- Chongqing Medical University Stomatology College, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, PR China
| | - Chang-Hua Hu
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Guojian Liao
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
30
|
Wu Y, Jiang W, Cong Z, Chen K, She Y, Zhong C, Zhang W, Chen M, Zhou M, Shao N, Xiao G, Shao X, Dai Y, Fei J, Song G, Liu R. An Effective Strategy to Develop Potent and Selective Antifungal Agents from Cell Penetrating Peptides in Tackling Drug-Resistant Invasive Fungal Infections. J Med Chem 2022; 65:7296-7311. [PMID: 35535860 DOI: 10.1021/acs.jmedchem.2c00274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The high mortality rate of invasive fungal infections and quick emergence of drug-resistant fungal pathogens urgently call for potent antifungal agents. Inspired by the cell penetrating peptide (CPP) octaarginine (R8), we elongated to 28 residues poly(d,l-homoarginine) to obtain potent toxicity against both fungi and mammalian cells. Further incorporation of glutamic acid residues shields positive charge density and introduces partial zwitterions in the obtained optimal peptide polymer that displays potent antifungal activity against drug-resistant fungi superior to antifungal drugs, excellent stability upon heating and UV exposure, negligible in vitro and in vivo toxicity, and strong therapeutic effects in treating invasive fungal infections. Moreover, the peptide polymer is insusceptible to antifungal resistance owing to the unique CPP-related antifungal mechanism of fungal membrane penetration followed by disruption of organelles within fungal cells. All these merits imply the effectiveness of our strategy to develop promising antifungal agents.
Collapse
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weinan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Cong
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kang Chen
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yunrui She
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Zhong
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjing Zhang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minzhang Chen
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ning Shao
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guohui Xiao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyan Shao
- Shanghai Ruijin Rehabilitation Hospital, Shanghai 200023, China
| | - Yidong Dai
- Shanghai Ruijin Rehabilitation Hospital, Shanghai 200023, China
| | - Jian Fei
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gonghua Song
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
31
|
Multitargeted anti-infective drugs: resilience to resistance in the antimicrobial resistance era. FUTURE DRUG DISCOVERY 2022; 4:FDD73. [PMID: 35600289 PMCID: PMC9112235 DOI: 10.4155/fdd-2022-0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/08/2022] [Indexed: 12/23/2022] Open
Abstract
The standard drug discovery paradigm of single molecule – single biological target – single biological effect is perhaps particularly unsuitable for anti-infective drug discovery. This is due to the rapid evolution of resistance likely to be observed with single target drugs. Multitargeted anti-infective drugs are likely to be superior due to their lower susceptibility to target-related resistance mechanisms. Strathclyde minor groove binders are a class of compounds which have been developed by adopting the multitargeted anti-infective drugs paradigm, and their effectiveness against a wide range of pathogenic organisms is discussed. The renaming of this class to Strathclyde nucleic acid binders is also presented due to their likely targets including both DNA and RNA.
Collapse
|
32
|
Zhang D, Shi C, Cong Z, Chen Q, Bi Y, Zhang J, Ma K, Liu S, Gu J, Chen M, Lu Z, Zhang H, Xie J, Xiao X, Liu L, Jiang W, Shao N, Chen S, Zhou M, Shao X, Dai Y, Li M, Zhang L, Liu R. Microbial Metabolite Inspired β-Peptide Polymers Displaying Potent and Selective Antifungal Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104871. [PMID: 35307990 PMCID: PMC9108603 DOI: 10.1002/advs.202104871] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Potent and selective antifungal agents are urgently needed due to the quick increase of serious invasive fungal infections and the limited antifungal drugs available. Microbial metabolites have been a rich source of antimicrobial agents and have inspired the authors to design and obtain potent and selective antifungal agents, poly(DL-diaminopropionic acid) (PDAP) from the ring-opening polymerization of β-amino acid N-thiocarboxyanhydrides, by mimicking ε-poly-lysine. PDAP kills fungal cells by penetrating the fungal cytoplasm, generating reactive oxygen, and inducing fungal apoptosis. The optimal PDAP displays potent antifungal activity with minimum inhibitory concentration as low as 0.4 µg mL-1 against Candida albicans, negligible hemolysis and cytotoxicity, and no susceptibility to antifungal resistance. In addition, PDAP effectively inhibits the formation of fungal biofilms and eradicates the mature biofilms. In vivo studies show that PDAP is safe and effective in treating fungal keratitis, which suggests PDAPs as promising new antifungal agents.
Collapse
Affiliation(s)
- Donghui Zhang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Chao Shi
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Zihao Cong
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Qi Chen
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Yufang Bi
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Junyu Zhang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Kaiqian Ma
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Shiqi Liu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Jiawei Gu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Minzhang Chen
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Ziyi Lu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Haodong Zhang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Jiayang Xie
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Longqiang Liu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Weinan Jiang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Sheng Chen
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Min Zhou
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Xiaoyan Shao
- Shanghai Ruijin Rehabilitation HospitalShanghai200023China
| | - Yidong Dai
- Shanghai Ruijin Rehabilitation HospitalShanghai200023China
| | - Maoquan Li
- Department of Interventional and Vascular SurgeryShanghai Clinical Research Center for Interventional MedicineShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Runhui Liu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghai200237China
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
33
|
Jiang W, Zhou M, Cong Z, Xie J, Zhang W, Chen S, Zou J, Ji Z, Shao N, Chen X, Li M, Liu R. Short Guanidinium-Functionalized Poly(2-oxazoline)s Displaying Potent Therapeutic Efficacy on Drug-Resistant Fungal Infections. Angew Chem Int Ed Engl 2022; 61:e202200778. [PMID: 35182092 DOI: 10.1002/anie.202200778] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 12/22/2022]
Abstract
New antifungals are urgently needed to combat invasive fungal infections, due to limited types of available antifungal drugs and frequently encountered side effects, as well as the quick emergence of drug-resistance. We previously developed amine-pendent poly(2-oxazoline)s (POXs) as synthetic mimics of host defense peptides (HDPs) to have antibacterial properties, but with poor antifungal activity. Hereby, we report the finding of short guanidinium-pendent POXs, inspired by cell-penetrating peptides, as synthetic mimics of HDPs to display potent antifungal activity, superior mammalian cells versus fungi selectivity, and strong therapeutic efficacy in treating local and systemic fungal infections. Moreover, the unique antifungal mechanism of fungal cell membrane penetration and organelle disruption explains the insusceptibility of POXs to antifungal resistance. The easy synthesis and structural diversity of POXs imply their potential as a class of promising antifungal agents.
Collapse
Affiliation(s)
- Weinan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihao Cong
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiayang Xie
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjing Zhang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Sheng Chen
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingcheng Zou
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhemin Ji
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ning Shao
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
34
|
Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection. Acta Biomater 2022; 142:113-123. [PMID: 35189382 DOI: 10.1016/j.actbio.2022.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022]
Abstract
With the increased emergence and threat of multi-drug resistant microorganisms, MXenes have become not only an emerging class of two-dimensional functional nanomaterials, but also potential nanomedicines (i.e., antimicrobial agents) that deserve further exploration. Very recently, Ti3C2 MXene was observed to offer a unique membrane-disruption effect and superior light-to-heat conversion efficiency, but its antibacterial property remains unsatisfactory due to poor MXene-bacteria interactions, low photothermal therapy efficiency, and occurrence of bacterial rebound in vivo. Herein, the cationic antibiotic ciprofloxacin (Cip) is combined with Ti3C2 MXene, and a hybrid hydrogel was constructed by incorporating Cip-Ti3C2 nanocomposites into the network structure of a Cip-loaded hydrogels to effectively trap and kill bacteria. We found that the Cip-Ti3C2 nanocomposites achieved an impressive in vitro bactericidal efficiency of >99.99999% (7.03 log10) for the inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by combining chemotherapy with photothermal therapy. In an MRSA-induced murine abscess model, the hybrid hydrogel simultaneously achieved high-efficiency sterilization and long-term inhibition effects, avoiding the rebound of bacteria after photothermal therapy, and thus maximized the in vivo therapeutic efficacy of Ti3C2 MXene-based systems. Overall, this work provides a strategy for efficiently combating localized bacterial infection by rationally designing MXene-based hybrid hydrogels. STATEMENT OF SIGNIFICANCE: Two-dimensional Ti3C2 MXene was recently regarded as a promising functional nanomaterial, however, its antibacterial applications are limited by the poor MXene-bacteria interactions, low photothermal therapy efficiency, and the occurrence of bacterial rebound in vivo. This work aims to construct a Ti3C2 MXene-based hybrid hydrogel for chemo-photothermal therapy and enhance the antimicrobial performance via a combination of the high-efficiency sterilization of ciprofloxacin-Ti3C2 nanocomposites with the long-term inhibition effect of ciprofloxacin hydrogel. The present study provides an example of efficient MXene-based antimicrobials to treat localized bacterial infection such as methicillin-resistant Staphylococcus aureus (MRSA)-induced skin abscess.
Collapse
|
35
|
Jiang W, Zhou M, Cong Z, Xie J, Zhang W, Chen S, Zou J, Ji Z, Shao N, Chen X, Li M, Liu R. Short Guanidinium‐Functionalized Poly(2‐oxazoline)s Displaying Potent Therapeutic Efficacy on Drug‐Resistant Fungal Infections. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Weinan Jiang
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Min Zhou
- ECUST: East China University of Science and Technology School of Pharmacy CHINA
| | - Zihao Cong
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Jiayang Xie
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Wenjing Zhang
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Sheng Chen
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Jingcheng Zou
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Zhemin Ji
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Ning Shao
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Xin Chen
- ECUST: East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Maoquan Li
- Tongji University Tenth People's Hospital: Shanghai Tenth People's Hospital School of medicine CHINA
| | - Runhui Liu
- East China University of Science and Technology Materials Science and Engineering 130 Meilong Road 200237 Shanghai CHINA
| |
Collapse
|
36
|
Huang B, Zhou L, Liu R, Wang L, Xue S, Shi Y, Jeong GH, Jeong IH, Li S, Yin J, Cai J. Activation of E6AP/UBE3A-Mediated Protein Ubiquitination and Degradation Pathways by a Cyclic γ-AA Peptide. J Med Chem 2022; 65:2497-2506. [PMID: 35045253 PMCID: PMC8889547 DOI: 10.1021/acs.jmedchem.1c01922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Manipulating the activities of E3 ubiquitin ligases with chemical ligands holds promise for correcting E3 malfunctions and repurposing the E3s for induced protein degradation in the cell. Herein, we report an alternative strategy to proteolysis-targeting chimeras (PROTACs) and molecular glues to induce protein degradation by constructing and screening a γ-AA peptide library for cyclic peptidomimetics binding to the HECT domain of E6AP, an E3 ubiquitinating p53 coerced by the human papillomavirus and regulating pathways implicated in neurodevelopmental disorders such as Angelman syndrome. We found that a γ-AA peptide P6, discovered from the affinity-based screening with the E6AP HECT domain, can significantly stimulate the ubiquitin ligase activity of E6AP to ubiquitinate its substrate proteins UbxD8, HHR23A, and β-catenin in reconstituted reactions and HEK293T cells. Furthermore, P6 can accelerate the degradation of E6AP substrates in the cell by enhancing the catalytic activities of E6AP. Our work demonstrates the feasibility of using synthetic ligands to stimulate E3 activities in the cell. The E3 stimulators could be developed alongside E3 inhibitors and substrate recruiters such as PROTACs and molecular glues to leverage the full potential of protein ubiquitination pathways for drug development.
Collapse
Affiliation(s)
- Bo Huang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Li Zhou
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ruochuan Liu
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lei Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Songyi Xue
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yan Shi
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Geon Ho Jeong
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - In Ho Jeong
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Sihao Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jun Yin
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
37
|
Lin L, Chi J, Yan Y, Luo R, Feng X, Zheng Y, Xian D, Li X, Quan G, Liu D, Wu C, Lu C, Pan X. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B 2021; 11:2609-2644. [PMID: 34589385 PMCID: PMC8463292 DOI: 10.1016/j.apsb.2021.07.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
Membrane-disruptive peptides/peptidomimetics (MDPs) are antimicrobials or anticarcinogens that present a general killing mechanism through the physical disruption of cell membranes, in contrast to conventional chemotherapeutic drugs, which act on precise targets such as DNA or specific enzymes. Owing to their rapid action, broad-spectrum activity, and mechanisms of action that potentially hinder the development of resistance, MDPs have been increasingly considered as future therapeutics in the drug-resistant era. Recently, growing experimental evidence has demonstrated that MDPs can also be utilized as adjuvants to enhance the therapeutic effects of other agents. In this review, we evaluate the literature around the broad-spectrum antimicrobial properties and anticancer activity of MDPs, and summarize the current development and mechanisms of MDPs alone or in combination with other agents. Notably, this review highlights recent advances in the design of various MDP-based drug delivery systems that can improve the therapeutic effect of MDPs, minimize side effects, and promote the co-delivery of multiple chemotherapeutics, for more efficient antimicrobial and anticancer therapy.
Collapse
Affiliation(s)
- Liming Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yilang Yan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Rui Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xiaoqian Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yuwei Zheng
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Dongyi Xian
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Li
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Daojun Liu
- Shantou University Medical College, Shantou 515041, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
38
|
Bhattacharjee B, Ghosh S, Patra D, Haldar J. Advancements in release-active antimicrobial biomaterials: A journey from release to relief. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1745. [PMID: 34374498 DOI: 10.1002/wnan.1745] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Escalating medical expenses due to infectious diseases are causing huge socioeconomic pressure on mankind globally. The emergence of antibiotic resistance has further aggravated this problem. Drug-resistant pathogens are also capable of forming thick biofilms on biotic and abiotic surfaces to thrive in a harsh environment. To address these clinical problems, various strategies including antibacterial agent delivering matrices and bactericidal coatings strategies have been developed. In this review, we have discussed various types of polymeric vehicles such as hydrogels, sponges/cryogels, microgels, nanogels, and meshes, which are commonly used to deliver antibiotics, metal nanoparticles, and biocides. Compositions of these polymeric matrices have been elaborately depicted by elucidating their chemical interactions and potential activity have been discussed. On the other hand, various implant/device-surface coating strategies which exploit the release-active mechanism of bacterial killing are discussed in elaboration. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Dipanjana Patra
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| |
Collapse
|
39
|
Zhang E, Qin S. Small Scorpion-like Peptidomimetics: Potential Broad-Spectrum Membrane Active Antimicrobials without Detectable Resistance. J Med Chem 2021; 64:9891-9893. [PMID: 34197106 DOI: 10.1021/acs.jmedchem.1c01065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptidomimetics have been explored as potential antimicrobial agents against Gram-positive and Gram-negative bacteria. A new scorpion-like peptidomimetic, compound 12, inspired by molecular design in bioengineering, exhibited excellent antimicrobial activity and good selectivity between bacteria and human cells. In addition, compound 12 showed impressive therapeutic efficacy with 99.998% reduction in the in vivo model.
Collapse
Affiliation(s)
- En Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|