1
|
Janssens DH, Duran M, Otto DJ, Wu W, Xu Y, Kirkey D, Mullighan CG, Yi JS, Meshinchi S, Sarthy JF, Ahmad K, Henikoff S. MLL oncoprotein levels influence leukemia lineage identities. Nat Commun 2024; 15:9341. [PMID: 39472576 PMCID: PMC11522475 DOI: 10.1038/s41467-024-53399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Chromosomal translocations involving the mixed-lineage leukemia (MLL) locus generate potent oncogenic fusion proteins (oncoproteins) that disrupt regulation of developmental gene expression. By profiling the oncoprotein-target sites of 36 broadly representative MLL-rearranged leukemia samples, including three samples that underwent a lymphoid-to-myeloid lineage-switching event in response to therapy, we find the genomic enrichment of the oncoprotein is highly variable between samples and subject to dynamic regulation. At high levels of expression, the oncoproteins preferentially activate either an acute lymphoblastic leukemia (ALL) program, enriched for pro-B-cell genes, or an acute myeloid leukemia (AML) program, enriched for hematopoietic-stem-cell genes. The fusion-partner-specific-binding patterns over these gene sets are highly correlated with the prevalence of each mutation in ALL versus AML. In lineage-switching samples the oncoprotein levels are reduced and the oncoproteins preferentially activate granulocyte-monocyte progenitor (GMP) genes. In a sample that lineage switched during treatment with the menin inhibitor revumenib, the oncoprotein and menin are reduced to undetectable levels, but ENL, a transcriptional cofactor of the oncoprotein, persists on numerous oncoprotein-target loci, including genes in the GMP-like lineage-switching program. We propose MLL oncoproteins promote lineage-switching events through dynamic chromatin binding at lineage-specific target genes, and may support resistance to menin inhibitors through similar changes in chromatin occupancy.
Collapse
Affiliation(s)
- Derek H Janssens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Melodie Duran
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Dominik J Otto
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Weifang Wu
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yiling Xu
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Danielle Kirkey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joanna S Yi
- Pediatric Hematology and Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Soheil Meshinchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jay F Sarthy
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Ogino J, Dou Y. Histone methyltransferase KMT2A: Developmental regulation to oncogenic transformation. J Biol Chem 2024; 300:107791. [PMID: 39303915 DOI: 10.1016/j.jbc.2024.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Our current understanding of epigenetic regulation is deeply rooted in the founding contributions of Dr C. David Allis. In 2002, Allis and colleagues first characterized the lysine methyltransferase activity of the mammalian KMT2A (MLL1), a paradigm-shifting discovery that brings epigenetic dysregulation into focus for many human diseases that carry KMT2A mutations. This review will discuss the current understanding of the multifaceted roles of KMT2A in development and disease, which has paved the way for innovative and upcoming approaches to cancer therapy.
Collapse
Affiliation(s)
- Jayme Ogino
- Division of Pediatric Hematology-Oncology, Children's Hospital Los Angeles, Los Angeles, California, USA; Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Yali Dou
- Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
3
|
Xue Z, Qin L, Xuan H, Luo K, Huang M, Xie L, Su Y, Xu L, Harsh J, Dale B, Shi X, Chen X, Kaniskan HÜ, Jin J, Wen H. A potent and selective ENL degrader suppresses oncogenic gene expression and leukemia progression. SCIENCE ADVANCES 2024; 10:eado1432. [PMID: 39196923 PMCID: PMC11352836 DOI: 10.1126/sciadv.ado1432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
The histone acylation reader eleven-nineteen leukemia (ENL) plays a pivotal role in sustaining oncogenesis in acute leukemias, particularly in mixed-lineage leukemia-rearranged (MLL-r) leukemia. ENL relies on its reader domain to recognize histone lysine acylation promoting oncogenic gene expression and leukemia progression. Here, we report the development of MS41, a highly potent and selective von Hippel-Lindau-recruiting ENL degrader that effectively inhibits the growth of ENL-dependent leukemia cells. MS41-induced ENL degradation reduces the chromatin occupancy of ENL-associated transcription elongation machinery, resulting in the suppression of key oncogenic gene expression programs and the activation of differentiation genes. MS41 is well-tolerated in vivo and substantially suppresses leukemia progression in a xenograft mouse model of MLL-r leukemia. Notably, MS41 also induces the degradation of mutant ENL proteins identified in Wilms' tumors. Our findings emphasize the therapeutic potential of pharmacological ENL degradation for treating ENL-dependent cancers, making MS41 not only a valuable chemical probe but also potential anticancer therapeutic for further development.
Collapse
Affiliation(s)
- Zhaoyu Xue
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Lihuai Qin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kaixiu Luo
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Mengying Huang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yangzhou Su
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Longxia Xu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Josiah Harsh
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Brandon Dale
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Hong Wen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
4
|
Song L, Li Q, Xia L, Sahay AE, Qiu Q, Li Y, Li H, Sasaki K, Susztak K, Wu H, Wan L. Single-cell multiomics reveals ENL mutation perturbs kidney developmental trajectory by rewiring gene regulatory landscape. Nat Commun 2024; 15:5937. [PMID: 39009564 PMCID: PMC11250843 DOI: 10.1038/s41467-024-50171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
How disruptions to normal cell differentiation link to tumorigenesis remains incompletely understood. Wilms tumor, an embryonal tumor associated with disrupted organogenesis, often harbors mutations in epigenetic regulators, but their role in kidney development remains unexplored. Here, we show at single-cell resolution that a Wilms tumor-associated mutation in the histone acetylation reader ENL disrupts kidney differentiation in mice by rewiring the gene regulatory landscape. Mutant ENL promotes nephron progenitor commitment while restricting their differentiation by dysregulating transcription factors such as Hox clusters. It also induces abnormal progenitors that lose kidney-associated chromatin identity. Furthermore, mutant ENL alters the transcriptome and chromatin accessibility of stromal progenitors, resulting in hyperactivation of Wnt signaling. The impacts of mutant ENL on both nephron and stroma lineages lead to profound kidney developmental defects and postnatal mortality in mice. Notably, a small molecule inhibiting mutant ENL's histone acetylation binding activity largely reverses these defects. This study provides insights into how mutations in epigenetic regulators disrupt kidney development and suggests a potential therapeutic approach.
Collapse
Affiliation(s)
- Lele Song
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qinglan Li
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lingbo Xia
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of the School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Arushi Eesha Sahay
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qi Qiu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuanyuan Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Katalin Susztak
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Liling Wan
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Mabe NW, Perry JA, Malone CF, Stegmaier K. Pharmacological targeting of the cancer epigenome. NATURE CANCER 2024; 5:844-865. [PMID: 38937652 DOI: 10.1038/s43018-024-00777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Epigenetic dysregulation is increasingly appreciated as a hallmark of cancer, including disease initiation, maintenance and therapy resistance. As a result, there have been advances in the development and evaluation of epigenetic therapies for cancer, revealing substantial promise but also challenges. Three epigenetic inhibitor classes are approved in the USA, and many more are currently undergoing clinical investigation. In this Review, we discuss recent developments for each epigenetic drug class and their implications for therapy, as well as highlight new insights into the role of epigenetics in cancer.
Collapse
Affiliation(s)
- Nathaniel W Mabe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer A Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Clare F Malone
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Song L, Li Q, Xia L, Sahay A, Qiu Q, Li Y, Li H, Sasaki K, Susztak K, Wu H, Wan L. Single-Cell multiomics reveals ENL mutation perturbs kidney developmental trajectory by rewiring gene regulatory landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.591709. [PMID: 38766219 PMCID: PMC11100752 DOI: 10.1101/2024.05.09.591709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Cell differentiation during organogenesis relies on precise epigenetic and transcriptional control. Disruptions to this regulation can result in developmental abnormalities and malignancies, yet the underlying mechanisms are not well understood. Wilms tumors, a type of embryonal tumor closely linked to disrupted organogenesis, harbor mutations in epigenetic regulators in 30-50% of cases. However, the role of these regulators in kidney development and pathogenesis remains unexplored. By integrating mouse modeling, histological characterizations, and single-cell transcriptomics and chromatin accessibility profiling, we show that a Wilms tumor-associated mutation in the chromatin reader protein ENL disrupts kidney development trajectory by rewiring the gene regulatory landscape. Specifically, the mutant ENL promotes the commitment of nephron progenitors while simultaneously restricting their differentiation by dysregulating key transcription factor regulons, particularly the HOX clusters. It also induces the emergence of abnormal progenitor cells that lose their chromatin identity associated with kidney specification. Furthermore, the mutant ENL might modulate stroma-nephron interactions via paracrine Wnt signaling. These multifaceted effects caused by the mutation result in severe developmental defects in the kidney and early postnatal mortality in mice. Notably, transient inhibition of the histone acetylation binding activity of mutant ENL with a small molecule displaces transcriptional condensates formed by mutant ENL from target genes, abolishes its gene activation function, and restores developmental defects in mice. This work provides new insights into how mutations in epigenetic regulators can alter the gene regulatory landscape to disrupt kidney developmental programs at single-cell resolution in vivo . It also offers a proof-of-concept for the use of epigenetics-targeted agents to rectify developmental defects.
Collapse
|
7
|
Chen PH, Guo XS, Zhang HE, Dubey GK, Geng ZZ, Fierke CA, Xu S, Hampton JT, Liu WR. Leveraging a Phage-Encoded Noncanonical Amino Acid: A Novel Pathway to Potent and Selective Epigenetic Reader Protein Inhibitors. ACS CENTRAL SCIENCE 2024; 10:782-792. [PMID: 38680566 PMCID: PMC11046469 DOI: 10.1021/acscentsci.3c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/01/2024]
Abstract
Epigenetic reader proteins interpret histone epigenetic marks to regulate gene expression. Given their vital roles and the link between their dysfunction and various diseases, these proteins present compelling targets for therapeutic interventions. Nevertheless, designing selective inhibitors for these proteins poses significant challenges, primarily due to their unique properties such as shallow binding sites and similarities with homologous proteins. To overcome these challenges, we propose an innovative strategy that uses phage display with a genetically encoded noncanonical amino acid (ncAA) containing an epigenetic mark. This ncAA guides binding to the reader protein's active site, allowing the identification of peptide inhibitors with enhanced affinity and selectivity. In this study, we demonstrate this novel approach's effectiveness by identifying potent inhibitors for the ENL YEATS domain that plays a critical role in leukemogenesis. Our strategy involved genetically incorporating Nε-butyryl-l-lysine (BuK), known for its binding to ENL YEATS, into a phage display library for enriching the pool of potent inhibitors. One resultant hit was further optimized by substituting BuK with other pharmacophores to exploit a unique π-π-π stacking interaction with ENL YEATS. This led to the creation of selective ENL YEATS inhibitors with a KD value of 2.0 nM and a selectivity 28 times higher for ENL YEATS than its close homologue AF9 YEATS. One such inhibitor, tENL-S1f, demonstrated robust cellular target engagement and on-target effects to inhibit leukemia cell growth and suppress the expression of ENL target genes. As a pioneering study, this work opens up extensive avenues for the development of potent and selective peptidyl inhibitors for a broad spectrum of epigenetic reader proteins.
Collapse
Affiliation(s)
- Peng-Hsun
Chase Chen
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xuejiao Shirley Guo
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hanyuan Eric Zhang
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gopal K. Dubey
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zhi Zachary Geng
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Carol A. Fierke
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Shiqing Xu
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Texas A&M
University, College
Station, Texas 77843, United States
| | - J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Texas A&M
University, College
Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
8
|
Michino M, Khan TA, Miller MW, Fukase Y, Vendome J, Adura C, Glickman JF, Liu Y, Wan L, Allis CD, Stamford AW, Meinke PT, Renzetti LM, Kargman S, Liverton NJ, Huggins DJ. Lead Optimization of Small Molecule ENL YEATS Inhibitors to Enable In Vivo Studies: Discovery of TDI-11055. ACS Med Chem Lett 2024; 15:524-532. [PMID: 38628784 PMCID: PMC11017412 DOI: 10.1021/acsmedchemlett.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024] Open
Abstract
Eleven-nineteen leukemia (ENL) is an epigenetic reader protein that drives oncogenic transcriptional programs in acute myeloid leukemia (AML). AML is one of the deadliest hematopoietic malignancies, with an overall 5-year survival rate of 27%. The epigenetic reader activity of ENL is mediated by its YEATS domain that binds to acetyl and crotonyl marks on histone tails and colocalizes with promoters of actively transcribed genes that are essential for leukemia. Prior to the discovery of TDI-11055, existing inhibitors of ENL YEATS showed in vitro potency, but had not shown efficacy in in vivo animal models. During the course of the medicinal chemistry campaign described here, we identified ENL YEATS inhibitor TDI-11055 that has an improved pharmacokinetic profile and is appropriate for in vivo evaluation of the ENL YEATS inhibition mechanism in AML.
Collapse
Affiliation(s)
- Mayako Michino
- Sanders
Tri-Institutional Therapeutics Discovery Institute, 1230 York Ave, Box 122, New York, New York 10065, United States
| | - Tanweer A. Khan
- Sanders
Tri-Institutional Therapeutics Discovery Institute, 1230 York Ave, Box 122, New York, New York 10065, United States
| | - Michael W. Miller
- Sanders
Tri-Institutional Therapeutics Discovery Institute, 1230 York Ave, Box 122, New York, New York 10065, United States
| | - Yoshiyuki Fukase
- Sanders
Tri-Institutional Therapeutics Discovery Institute, 1230 York Ave, Box 122, New York, New York 10065, United States
| | - Jeremie Vendome
- Schrödinger,
Inc., 1540 Broadway,
24th Floor, New York, New
York 10036, United States
| | - Carolina Adura
- Fisher
Drug Discovery Resource Center, The Rockefeller
University, New York, New York 10065, United States
| | - J. Fraser Glickman
- Fisher
Drug Discovery Resource Center, The Rockefeller
University, New York, New York 10065, United States
| | - Yiman Liu
- Department
of Cancer Biology and Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Liling Wan
- Department
of Cancer Biology and Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - C. David Allis
- Laboratory
of Chromatin Biology and Epigenetics, The
Rockefeller University, New York, New York 10065, United States
| | - Andrew W. Stamford
- Sanders
Tri-Institutional Therapeutics Discovery Institute, 1230 York Ave, Box 122, New York, New York 10065, United States
| | - Peter T. Meinke
- Sanders
Tri-Institutional Therapeutics Discovery Institute, 1230 York Ave, Box 122, New York, New York 10065, United States
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Louis M. Renzetti
- Bridge
Medicines, The Rockefeller University, 1230 York Avenue, Smith Hall Annex,
C-Floor, New York, New York 10065, United States
| | - Stacia Kargman
- Sanders
Tri-Institutional Therapeutics Discovery Institute, 1230 York Ave, Box 122, New York, New York 10065, United States
- Bridge
Medicines, The Rockefeller University, 1230 York Avenue, Smith Hall Annex,
C-Floor, New York, New York 10065, United States
| | - Nigel J. Liverton
- Sanders
Tri-Institutional Therapeutics Discovery Institute, 1230 York Ave, Box 122, New York, New York 10065, United States
| | - David J. Huggins
- Sanders
Tri-Institutional Therapeutics Discovery Institute, 1230 York Ave, Box 122, New York, New York 10065, United States
- Department
of Physiology and Biophysics, Weill Cornell
Medicine, New York, New York 10021, United States
| |
Collapse
|
9
|
Lo TL, Wang Q, Nickson J, van Denderen BJW, Deveson Lucas D, Chai HX, Knott GJ, Weerasinghe H, Traven A. The C-terminal protein interaction domain of the chromatin reader Yaf9 is critical for pathogenesis of Candida albicans. mSphere 2024; 9:e0069623. [PMID: 38376217 PMCID: PMC10964406 DOI: 10.1128/msphere.00696-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Fungal infections cause a large health burden but are treated by only a handful of antifungal drug classes. Chromatin factors have emerged as possible targets for new antifungals. These targets include the reader proteins, which interact with posttranslationally modified histones to influence DNA transcription and repair. The YEATS domain is one such reader recognizing both crotonylated and acetylated histones. Here, we performed a detailed structure/function analysis of the Candida albicans YEATS domain reader Yaf9, a subunit of the NuA4 histone acetyltransferase and the SWR1 chromatin remodeling complex. We have previously demonstrated that the homozygous deletion mutant yaf9Δ/Δ displays growth defects and is avirulent in mice. Here we show that a YEATS domain mutant expected to inactivate Yaf9's chromatin binding does not display strong phenotypes in vitro, nor during infection of immune cells or in a mouse systemic infection model, with only a minor virulence reduction in vivo. In contrast to the YEATS domain mutation, deletion of the C-terminal domain of Yaf9, a protein-protein interaction module necessary for its interactions with SWR1 and NuA4, phenocopies the null mutant. This shows that the C-terminal domain is essential for Yaf9 roles in vitro and in vivo, including C. albicans virulence. Our study informs on the strategies for therapeutic targeting of Yaf9, showing that approaches taken for the mammalian YEATS domains by disrupting their chromatin binding might not be effective in C. albicans, and provides a foundation for studying YEATS proteins in human fungal pathogens.IMPORTANCEThe scarcity of available antifungal drugs and rising resistance demand the development of therapies with new modes of action. In this context, chromatin regulation may be a target for novel antifungal therapeutics. To realize this potential, we must better understand the roles of chromatin regulators in fungal pathogens. Toward this goal, here, we studied the YEATS domain chromatin reader Yaf9 in Candida albicans. Yaf9 uses the YEATS domain for chromatin binding and a C-terminal domain to interact with chromatin remodeling complexes. By constructing mutants in these domains and characterizing their phenotypes, our data indicate that the Yaf9 YEATS domain might not be a suitable therapeutic drug target. Instead, the Yaf9 C-terminal domain is critical for C. albicans virulence. Collectively, our study informs how a class of chromatin regulators performs their cellular and pathogenesis roles in C. albicans and reveals strategies to inhibit them.
Collapse
Affiliation(s)
- Tricia L. Lo
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Qi Wang
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Joshua Nickson
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Bryce J. W. van Denderen
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | | | - Her Xiang Chai
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Gavin J. Knott
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Harshini Weerasinghe
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| |
Collapse
|
10
|
Erb MA. Small-molecule tools for YEATS domain proteins. Curr Opin Chem Biol 2023; 77:102404. [PMID: 37924571 PMCID: PMC10842393 DOI: 10.1016/j.cbpa.2023.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023]
Abstract
Chromatin reader domains are protein folds that bind to post-translational modifications of histones and other chromatin-associated proteins. Compared to other families of reader domains, the discovery that YEATS domains bind to acylated lysines is relatively recent. Four human proteins harbor a YEATS domain, and each is present in protein complexes that regulate chromatin and transcription (ENL, AF9, YEATS2, and YEATS4). Without chemical tools to enable temporally resolved perturbations, it is often unclear how reader domains contribute to protein function. Here, we will discuss recent progress in developing small-molecule tools for YEATS domains and highlight their usefulness for making biological discoveries.
Collapse
Affiliation(s)
- Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
11
|
Komata Y, Kanai A, Maeda T, Inaba T, Yokoyama A. MOZ/ENL complex is a recruiting factor of leukemic AF10 fusion proteins. Nat Commun 2023; 14:1979. [PMID: 37031220 PMCID: PMC10082848 DOI: 10.1038/s41467-023-37712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/22/2023] [Indexed: 04/10/2023] Open
Abstract
Changes in the transcriptional machinery cause aberrant self-renewal of non-stem hematopoietic progenitors. AF10 fusions, such as CALM-AF10, are generated via chromosomal translocations, causing malignant leukemia. In this study, we demonstrate that AF10 fusion proteins cause aberrant self-renewal via ENL, which binds to MOZ/MORF lysine acetyltransferases (KATs). The interaction of ENL with MOZ, via its YEATS domain, is critical for CALM-AF10-mediated leukemic transformation. The MOZ/ENL complex recruits DOT1L/AF10 fusion complexes and maintains their chromatin retention via KAT activity. Therefore, inhibitors of MOZ/MORF KATs directly suppress the functions of AF10 fusion proteins, thereby exhibiting strong antitumor effects on AF10 translocation-induced leukemia. Combinatorial inhibition of MOZ/MORF and DOT1L cooperatively induces differentiation of CALM-AF10-leukemia cells. These results reveal roles for the MOZ/ENL complex as an essential recruiting factor of the AF10 fusion/DOT1L complex, providing a rationale for using MOZ/MORF KAT inhibitors in AF10 translocation-induced leukemia.
Collapse
Affiliation(s)
- Yosuke Komata
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, 997-0052, Japan
| | - Akinori Kanai
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, 277-0882, Japan
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
| | - Takahiro Maeda
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka, 812-8582, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, 997-0052, Japan.
| |
Collapse
|
12
|
Design, synthesis of novel benzimidazole derivatives as ENL inhibitors suppressing leukemia cells viability via downregulating the expression of MYC. Eur J Med Chem 2023; 248:115093. [PMID: 36645983 DOI: 10.1016/j.ejmech.2023.115093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Eleven-Nineteen-Leukemia Protein (ENL) containing YEATS domain, a potential drug target, has emerged as a reader of lysine acetylation. SGC-iMLLT bearing with benzimidazole scaffold was identified as an effective ENL inhibitor, but with weak activity against mixed-lineage leukemia (MLL)-rearranged cells proliferation. In this study, a series of compounds were designed and synthesized by structural optimization on SGC-iMLLT. All the compounds have been evaluated for their ENL inhibitory activities. The results showed that compounds 13, 23 and 28 are the most potential ones with the IC50 values of 14.5 ± 3.0 nM, 10.7 ± 5.3 nM, and 15.4 ± 2.2 nM, respectively, similar with that of SGC-iMLLT. They could interact with ENL protein and strengthen its thermal stability in vitro. Among them, compound 28 with methyl phenanthridinone moiety replacement of indazole in SGC-iMLLT, exhibited significantly inhibitory activities towards MV4-11 and MOLM-13 cell lines with IC50 values of 4.8 μM and 8.3 μM, respectively, exhibiting ∼7 folds and ∼9 folds more potent inhibition of cell growth than SGC-iMLLT. It could also increase the ENL thermal stability while SGC-iMLLT had no obvious effect on leukemia cells. Moreover, compound 28 could downregulate the expression of target gene MYC either alone or in combination with JQ-1 in cells, which was more effective than SGC-iMLLT. Besides, in vivo pharmacokinetic studies showed that the PK properties for compound 28 was much improved over that of SGC-iMLLT. These observations suggested compound 28 was a potential ligand for ENL-related MLL chemotherapy.
Collapse
|
13
|
Wen H, Shi X. Histone Readers and Their Roles in Cancer. Cancer Treat Res 2023; 190:245-272. [PMID: 38113004 PMCID: PMC11395558 DOI: 10.1007/978-3-031-45654-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Histone proteins in eukaryotic cells are subjected to a wide variety of post-translational modifications, which are known to play an important role in the partitioning of the genome into distinctive compartments and domains. One of the major functions of histone modifications is to recruit reader proteins, which recognize the epigenetic marks and transduce the molecular signals in chromatin to downstream effects. Histone readers are defined protein domains with well-organized three-dimensional structures. In this Chapter, we will outline major histone readers, delineate their biochemical and structural features in histone recognition, and describe how dysregulation of histone readout leads to human cancer.
Collapse
Affiliation(s)
- Hong Wen
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Xiaobing Shi
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
14
|
Travis CR, Francis DY, Williams DC, Waters ML. Evaluation of acyllysine isostere interactions with the aromatic pocket of the AF9 YEATS domain. Protein Sci 2023; 32:e4533. [PMID: 36482045 PMCID: PMC9793969 DOI: 10.1002/pro.4533] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Amide-π interactions, in which an amide interacts with an aromatic group, are ubiquitous in biology, yet remain understudied relative to other noncovalent interactions. Recently, we demonstrated that an electrostatically tunable amide-π interaction is key to recognition of histone acyllysine by the AF9 YEATS domain, a reader protein which has emerged as a therapeutic target due to its dysregulation in cancer. Amide isosteres are commonly employed in drug discovery, often to prevent degradation by proteases, and have proven valuable in achieving selectivity when targeting epigenetic proteins. However, like amide-π interactions, interactions of amide isosteres with aromatic rings have not been thoroughly studied despite widespread use. Herein, we evaluate the recognition of a series of amide isosteres by the AF9 YEATS domain using genetic code expansion to evaluate the amide isostere-π interaction. We show that compared to the amide-π interaction with the native ligand, each isostere exhibits similar electrostatic tunability with an aromatic residue in the binding pocket, demonstrating that the isosteres maintain similar interactions with the aromatic residue. We identify a urea-containing ligand that binds with enhanced affinity for the AF9 YEATS domain, offering a promising starting point for inhibitor development. Furthermore, we demonstrate that carbamate and urea isosteres of crotonyllysine are resistant to enzymatic removal by SIRT1, a protein that cleaves acyl post-translational modifications, further indicating the potential of amide isosteres in YEATS domain inhibitor development. These results also provide experimental precedent for interactions of these common drug discovery moieties with aromatic rings that can inform computational methods.
Collapse
Affiliation(s)
- Christopher R. Travis
- Department of Chemistry, CB 3290University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Denver Y. Francis
- Department of Chemistry, CB 3290University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - David C. Williams
- Department of Pathology and Laboratory Medicine, CB 7525University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Marcey L. Waters
- Department of Chemistry, CB 3290University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
15
|
Malkova K, Bubyrev A, Krivovicheva V, Dar’in D, Bunev A, Krasavin M. A novel bis-triazole scaffold accessed via two tandem [3 + 2] cycloaddition events including an uncatalyzed, room temperature azide–alkyne click reaction. Beilstein J Org Chem 2022; 18:1636-1641. [DOI: 10.3762/bjoc.18.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
The previously described α-acetyl-α-diazomethanesulfonamide was employed in a three-component reaction with azide-containing benzaldehydes and propargylamines. Besides the initial formation of the triazole core, the reaction proceeded further, in uncatalyzed fashion at room temperature and yielded, after intramolecular azide–alkyne click reaction novel, structurally intriguing bistriazoles.
Collapse
|
16
|
Garcia K, Gingras AC, Harvey KF, Tanas MR. TAZ/YAP fusion proteins: mechanistic insights and therapeutic opportunities. Trends Cancer 2022; 8:1033-1045. [PMID: 36096997 PMCID: PMC9671862 DOI: 10.1016/j.trecan.2022.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
The Hippo pathway is dysregulated in many different cancers, but point mutations in the pathway are rare. Transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP) fusion proteins have emerged in almost all major cancer types and represent the most common genetic mechanism by which the two transcriptional co-activators are activated. Given that the N termini of TAZ or YAP are fused to the C terminus of another transcriptional regulator, the resultant fusion proteins hyperactivate a TEAD transcription factor-based transcriptome. Recent advances show that the C-terminal fusion partners confer oncogenic properties to TAZ/YAP fusion proteins by recruiting epigenetic modifiers that promote a hybrid TEAD-based transcriptome. Elucidating these cooperating epigenetic complexes represents a strategy to identify new therapeutic approaches for a pathway that has been recalcitrant to medical therapy.
Collapse
Affiliation(s)
- Keith Garcia
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA; Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
17
|
Liu Y, Li Q, Alikarami F, Barrett DR, Mahdavi L, Li H, Tang S, Khan TA, Michino M, Hill C, Song L, Yang L, Li Y, Pokharel SP, Stamford AW, Liverton N, Renzetti LM, Taylor S, Watt GF, Ladduwahetty T, Kargman S, Meinke PT, Foley MA, Shi J, Li H, Carroll M, Chen CW, Gardini A, Maillard I, Huggins DJ, Bernt KM, Wan L. Small-Molecule Inhibition of the Acyl-Lysine Reader ENL as a Strategy against Acute Myeloid Leukemia. Cancer Discov 2022; 12:2684-2709. [PMID: 36053276 PMCID: PMC9627135 DOI: 10.1158/2159-8290.cd-21-1307] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023]
Abstract
The chromatin reader eleven-nineteen leukemia (ENL) has been identified as a critical dependency in acute myeloid leukemia (AML), but its therapeutic potential remains unclear. We describe a potent and orally bioavailable small-molecule inhibitor of ENL, TDI-11055, which displaces ENL from chromatin by blocking its YEATS domain interaction with acylated histones. Cell lines and primary patient samples carrying MLL rearrangements or NPM1 mutations are responsive to TDI-11055. A CRISPR-Cas9-mediated mutagenesis screen uncovers an ENL mutation that confers resistance to TDI-11055, validating the compound's on-target activity. TDI-11055 treatment rapidly decreases chromatin occupancy of ENL-associated complexes and impairs transcription elongation, leading to suppression of key oncogenic gene expression programs and induction of differentiation. In vivo treatment with TDI-11055 blocks disease progression in cell line- and patient-derived xenograft models of MLL-rearranged and NPM1-mutated AML. Our results establish ENL displacement from chromatin as a promising epigenetic therapy for molecularly defined AML subsets and support the clinical translation of this approach. SIGNIFICANCE AML is a poor-prognosis disease for which new therapeutic approaches are desperately needed. We developed an orally bioavailable inhibitor of ENL, demonstrated its potent efficacy in MLL-rearranged and NPM1-mutated AML, and determined its mechanisms of action. These biological and chemical insights will facilitate both basic research and clinical translation. This article is highlighted in the In This Issue feature, p. 2483.
Collapse
Affiliation(s)
- Yiman Liu
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qinglan Li
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fatemeh Alikarami
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Declan R. Barrett
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Leila Mahdavi
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hangpeng Li
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of the School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sylvia Tang
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tanweer A. Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Mayako Michino
- Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Connor Hill
- Wistar Institute, Gene Expression and Regulation Program, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Pennsylvania
| | - Lele Song
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Yuanyuan Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing, China
| | | | | | - Nigel Liverton
- Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | | | - Simon Taylor
- Pharmaron Drug Discovery, Pharmaron UK, West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire, United Kingdom
| | - Gillian F. Watt
- Pharmaron Drug Discovery, Pharmaron UK, West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire, United Kingdom
| | - Tammy Ladduwahetty
- Pharmaron Drug Discovery, Pharmaron UK, West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire, United Kingdom
| | - Stacia Kargman
- Tri-Institutional Therapeutics Discovery Institute, New York, New York.,Bridge Medicines, New York, New York
| | - Peter T. Meinke
- Tri-Institutional Therapeutics Discovery Institute, New York, New York.,Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Michael A. Foley
- Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Junwei Shi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Martin Carroll
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Alessandro Gardini
- Wistar Institute, Gene Expression and Regulation Program, Philadelphia, Pennsylvania
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David J. Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, New York.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Kathrin M. Bernt
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Corresponding Authors: Liling Wan, University of Pennsylvania, BRB II/III, RM751, 421 Curie Boulevard, Philadelphia, PA 19104. Phone: 215-898-3116; E-mail: ; and Kathrin M. Bernt, Children's Hospital of Philadelphia, Colket Translational Research Center, Room 3064, 3501 Civic Center Boulevard, Philadelphia, PA 19104. Phone: 215-370-3171; E-mail:
| | - Liling Wan
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Corresponding Authors: Liling Wan, University of Pennsylvania, BRB II/III, RM751, 421 Curie Boulevard, Philadelphia, PA 19104. Phone: 215-898-3116; E-mail: ; and Kathrin M. Bernt, Children's Hospital of Philadelphia, Colket Translational Research Center, Room 3064, 3501 Civic Center Boulevard, Philadelphia, PA 19104. Phone: 215-370-3171; E-mail:
| |
Collapse
|
18
|
Li X, Yao Y, Wu F, Song Y. A proteolysis-targeting chimera molecule selectively degrades ENL and inhibits malignant gene expression and tumor growth. J Hematol Oncol 2022; 15:41. [PMID: 35395864 PMCID: PMC8994274 DOI: 10.1186/s13045-022-01258-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
Background Chromosome translocations involving mixed lineage leukemia 1 (MLL1) cause acute leukemia in most infants and 5–10% children/adults with dismal clinical outcomes. Most frequent MLL1-fusion partners AF4/AFF4, AF9/ENL and ELL, together with CDK9/cyclin-T1, constitute super elongation complexes (SEC), which promote aberrant gene transcription, oncogenesis and maintenance of MLL1-rearranged (MLL1-r) leukemia. Notably, ENL, but not its paralog AF9, is essential for MLL1-r leukemia (and several other cancers) and therefore a drug target. Moreover, recurrent ENL mutations are found in Wilms tumor, the most common pediatric kidney cancer, and play critical roles in oncogenesis. Methods Proteolysis-Targeting Chimera (PROTAC) molecules were designed and synthesized to degrade ENL. Biological activities of these compounds were characterized in cell and mouse models of MLL1-r leukemia and other cancers. Results Compound 1 efficiently degraded ENL with DC50 of 37 nM and almost depleted it at ~ 500 nM in blood and solid tumor cells. AF9 (as well as other proteins in SEC) was not significantly decreased. Compound 1-mediated ENL reduction significantly suppressed malignant gene signatures, selectively inhibited cell proliferation of MLL1-r leukemia and Myc-driven cancer cells with EC50s as low as 320 nM, and induced cell differentiation and apoptosis. It exhibited significant antitumor activity in a mouse model of MLL1-r leukemia. Compound 1 can also degrade a mutant ENL in Wilms tumor and suppress its mediated gene transcription. Conclusion Compound 1 is a novel chemical probe for cellular and in vivo studies of ENL (including its oncogenic mutants) and a lead compound for further anticancer drug development. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01258-8.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yuan Yao
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fangrui Wu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Fragment-Based Discovery of AF9 YEATS Domain Inhibitors. Int J Mol Sci 2022; 23:ijms23073893. [PMID: 35409252 PMCID: PMC8998803 DOI: 10.3390/ijms23073893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
YEATS (YAF9, ENL, AF9, TAF14, SAS5) family proteins recognize acylated histones and in turn regulate chromatin structure, gene transcription, and stress signaling. The chromosomal translocations of ENL and mixed lineage leukemia are considered oncogenic drivers in acute myeloid leukemia and acute lymphoid leukemia. However, known ENL YEATS domain inhibitors have failed to suppress the proliferation of 60 tested cancer cell lines. Herein, we identified four hits from the NMR fragment-based screening against the AF9 YEATS domain. Ten inhibitors of new chemotypes were then designed and synthesized guided by two complex structures and affinity assays. The complex structures revealed that these inhibitors formed an extra hydrogen bond to AF9, with respect to known ENL inhibitors. Furthermore, these inhibitors demonstrated antiproliferation activities in AF9-sensitive HGC-27 cells, which recapitulated the phenotype of the CRISPR studies against AF9. Our work will provide the basis for further structured-based optimization and reignite the campaign for potent AF9 YEATS inhibitors as a precise treatment for AF9-sensitive cancers.
Collapse
|
20
|
Yeewa R, Chaiya P, Jantrapirom S, Shotelersuk V, Lo Piccolo L. Multifaceted roles of YEATS domain-containing proteins and novel links to neurological diseases. Cell Mol Life Sci 2022; 79:183. [PMID: 35279775 PMCID: PMC11071958 DOI: 10.1007/s00018-022-04218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
The so-called Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins, hereafter referred to as YD proteins, take control over the transcription by multiple steps of regulation either involving epigenetic remodelling of chromatin or guiding the processivity of RNA polymerase II to facilitate elongation-coupled mRNA 3' processing. Interestingly, an increasing amount of evidence suggest a wider repertoire of YD protein's functions spanning from non-coding RNA regulation, RNA-binding proteins networking, post-translational regulation of a few signalling transduction proteins and the spindle pole formation. However, such a large set of non-canonical roles is still poorly characterized. Notably, four paralogous of human YEATS domain family members, namely eleven-nineteen-leukaemia (ENL), ALL1-fused gene from chromosome 9 protein (AF9), YEATS2 and glioma amplified sequence 41 (GAS41), have a strong link to cancer yet new findings also highlight a potential novel role in neurological diseases. Here, in an attempt to more comprehensively understand the complexity of four YD proteins and to gain more insight into the novel functions they may accomplish in the neurons, we summarized the YD protein's networks, systematically searched and reviewed the YD genetic variants associated with neurodevelopmental disorders and finally interrogated the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
- Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pawita Chaiya
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Salinee Jantrapirom
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Centre for Genomics and Precision Medicine, The Thai Red Cross Society, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Musculoskeletal Science and Translational Research Centre (MSTR), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
21
|
Li X, Liu S, Li X, Li XD. YEATS Domains as Novel Epigenetic Readers: Structures, Functions, and Inhibitor Development. ACS Chem Biol 2022; 18:994-1013. [PMID: 35041380 DOI: 10.1021/acschembio.1c00945] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interpretation of the histone posttranslational modifications (PTMs) by effector proteins, or readers, is an important epigenetic mechanism to regulate gene function. YEATS domains have been recently identified as novel readers of histone lysine acetylation and a variety of nonacetyl acylation marks. Accumulating evidence has revealed the association of dysregulated interactions between YEATS domains and histone PTMs with human diseases, suggesting the therapeutic potential of YEATS domain inhibition. Here, we discuss the molecular mechanisms adopted by YEATS domains in recognizing their preferred histone marks and the biological significance of such recognitions in normal cell physiology and pathogenesis of human diseases. Recent progress in the development of YEATS domain inhibitors is also discussed.
Collapse
Affiliation(s)
- Xin Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Sha Liu
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
| | - Xiang Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
| | - Xiang David Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
| |
Collapse
|